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1 Introduction
In many problems, fractional derivatives accomplish a vital role. Fractional derivatives are
used to solve many imperative real-world problems. In recent decades, this field has been
highly considered by scientists and mathematicians. Fractional calculus is an important
branch of applied mathematics that tackles derivatives and integrals of arbitrary orders.
Fractional integral inequalities have demonstrated being one of the most significant and
effective tools for the advancement of many areas of pure and applied mathematics. The
latest formulations vary in various components from the existing ones. For example, clas-
sic partial derivatives are thus defined so that the classical derivatives in the sense of New-
ton and Leibniz are recovered within the limit, where the derivative order is an integer.

Different researchers have given numerous applications of integral inequalities in dif-
ferent fields of mathematics. Griiss-type inequalities have significant applications, which
include the s-integral arithmetic mean, inner product spaces, and the Mellin transform of
polynomials in Hilbert spaces. There are numerous significant integral inequalities, which
include Jensen’s, Holders’s, Minkowski’s, and reverse Minkowski’s inequalities; for these
applications, see [1-4, 6, 7,9, 11-13, 15, 17, 18, 20].

In recent years the inequalities involving fractional calculus play a very important role in
all mathematical fields, which gave rise to important theories in mathematics, engineering,
physics, and other fields of science. A remarkably large number of inequalities of the above
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type involving the special fractional integral (such as the Liouville, Riemann—Liouville,
Erdelyi—Kober, Katugampola, Hadamard, and Weyl types) have been investigated by many
researchers and received considerable attention: see Kiblas et al. [10].

Let @,V : [a,b] — R, be integrable functions such that

01(2) < D(2) <a(z) and  Yi(2) < W(2) < Yn(2), Vzela, bl

Griss-type inequality is defined as [8]

b b b
‘bia/ @(z)w(z)dz—ﬁ/ CD(z)dz/ W(2)dz

(P2 — 1) (Y2 — Y1), (1.1)

=

S

where the constant %‘ is the best value, not replaceable by any other value.

The paper is organized as follows. In Sect. 1, we give an introduction of the Griiss-type
inequalities. In Sect. 2, we present the definition of the k-fractional integrals in the sense
of Riemann-Liouville fractional integral and spaces needed for our research. In Sect. 3,
we show the Griiss inequality by using the generalized k-fractional Hilfer—Katugampola
derivative with the k-Rieman—-Liouville integral operator. In Sect. 4, we show another in-
equality by using the generalized k-fractional Hilfer—Katugampola derivative with the k-
Rieman-Liouville integral operator. By means of the given Griiss-type inequality we prove
other inequalities. Concluding marks are given in Sect. 5.

2 Preliminaries
Firstly, we include some mandatory definitions and mathematical preliminaries of the frac-
tional operators of calculus.

Definition 2.1 ([10]) Let [a, b] be a finite or infinite interval on the real axis R = (-00, 00).
By M,(a, b) we denote the set of the complex-valued Lebesgue-measurable function ¥ on

la, b],

b
Mq(a,b):{l/finlﬁqH:‘q// |1p(z)|qdz<+oo}, 1<g<oo.

In case g = 1, we have M(a, b) = M,(a, b).

Definition 2.2 ([5]) Diaz et al. defined the k-gamma function as
I (2) = / e dt (2.1)
0

with z,« > 0. It has the following properties: I, (z + k) = zI', (z) and T, (z) = K%‘lr‘(f).

Definition 2.3 ([19]) Sarikaya et al. presented the left and right generalized k-fractional
integrals of order w withm —1<w <m,meN,p >0,k >0,0w >0 as

w
1-%

V0=

/ z (2 =)y )y, z>a, (2.2)
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(L32v) () = /y—z” Tyl dy, z<b. (2.3)

/(1" (w)

Definition 2.4 ([14]) Nisar et al. presented the left and right generalized k-fractional

derivatives of order w in terms of the integral defined in Definition 2.3 as

RDI Y (2) = <Zl_p%> (k" LY ) (2), z>a, (2.4)
(@ = (204 ) e, s 5

Definition 2.5 ([16]) Letm-1<w<m,0<60 <1,meN, p>0,k >0,and € M,(a,b).
The generalized k-fractional Hilfer—Katugampola derivatives (left-sided and right-sided)

are defined as

(f{)@;,@ w)(z) _ (ﬁsz()(m—w) <Z1_p diz)m(lcm'fgﬂl—e)(xm—w)w)) (Z), (26)
(2 (2) = (gsz(“m'”) (zl-p diz)m (Km.;sgl-”(“'"-‘”)w)) (), (2.7)

where 3 is the integral from Definition 2.3.

Lemma2.l Letm—-1<w<m0<60<1,meN, p>0,«>0,andy € My(a,b). Then

d\"
120 (2) = (5%2““"“‘” (zl"’d—z> (ke g w))(z)
_ pg@(fcm—w) Zl—pi m(Km pskm -0 (km— w) w(z)
o dz

Km—w - d " m o~cKm—w+t(km—w,
= (,’{’i‘sz( )<zl pd_z> (1 b yem—tertl )}1//))(2)
(0Gkm=wp perblem=ely) (z) by equation (2.4)
= (03
(<

2 DY)

Sy ) (2)

1—% z —w
- / (22 -»") VT_lypfll/f(”)(y) dy by equation (2.2),
kTe(y —o) Ja

where y = w + 0(km — o), @ > 0, and V) is the derivative of  from Definition 2.4.
So the previously defined generalized k-fractional Hilfer—Katugampola derivative can be

written as
o ~ plfl’;w z ~ y;w71 )
(207 v)(2) = P / (22 =y") © Ty Y dy, z>a (2.8)
oy p ’ _ o E -1 ()
(L2 ¥)(2) = Tl = a))/ (y” -2") YU (y)dy, z<b. (2.9)
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3 Auxiliary results
In this section, we prove a Griiss-type inequality by using the generalized k-fractional

Hilfer—Katugampola derivative.

Theorem 3.1 Let p,8,w,y,k,a > 0,and let @,V € M,[a, b] be positive integrable functions
on [a, b). Suppose that there exist ¢y, € |a, b] such that

¢1(2) < P(2) < ¢a(2), z€la,b] (3.1)

Then we have the following inequality for the generalized k-fractional Hilfer—Katugampola

derivative:

LD D) DY 9a(2) + L Do 01(2)0 D2 D(2)

> PPV 01(2)° DY 9a(2) + L DY D(2) D27 D(2). (3.2)
Proof Applying condition (3.1), we obtain
(p20) = D) (P(¢) - @1(2)) = 0.
By simplifying we get
P20)P() + e1(¢) = 201 (8) + ()P
Talking the yth derivative of this inequality with respect to y, we obtain

o)D) + DV W)e1(¢) = 0 ()er () + DV () D(Z). (33)

y—w

! and integrating with respect to

Multiplying inequality (3.3) by £——

kT (y—w) (
y from a to z, we get

V“”—l o1 ()
3 d
KF()/ w)/ Y ey () dy
1 re

ro) L [ @) T e 0
ol- re z yew
> gol({)m (2 -)* e ) dy
1 re z y-w
+ @({)m (Zp _yp) T—lyp—lcb(y)(y) dy.
By (2.9) we have

PN Dy 02(2) + 01(0) 27 D (2)
= 10D a2(2) + ) D (2). (3.4)
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Again taking the y th derivative of (3.4) with respect to ¢, we obtain

D@D a(2) + 0 ()P D27 D(2)

= 0 (277 9a22) + OV T7 D). (3.5)
V—3 =3
Multiplying (3.5) by f—r— (@ —¢f) ~1¢+=1 and integrating with respect to ¢ from a to
z, we have

LD ()L DLV 9a(2) + L DY 1(2)2 D2 (2)

> 0D 1) DY 9a(2) + LD D(2) DL D(2),
which is the desired inequality. O

Corollary 3.1 Ifwe take y =0, then (3.2) becomes

P D(2)P 32 0a(2) + L X001 ()23 D(2)

> 2001230 a(2) + LD ()3 D (2),
which converts to inequality for the generalized k-Riemann—Liouville integral.

Corollary 3.2 If we consider ®(z) = z", then

y-w y—=8
zl —af) < zP —af)
Py (z) - — 2 =) and 1970 = — 2T
) o Lely =8+«k)
Inequality (3.2) becomes
y—8 y-o
(& —a’) = o (& —a’) =
= D7 02 + —= 2907 o1(2)
o Dy =8 +k) p* Ty —w+k)
2y—w—4
@ -ar) *

> 2D 01(2)0 D2V 0a(2) +

Zya)é

0 Cely —w+x)Te(y — 8+/<).
Corollary 3.3 Fory =0 and ®(z) = 1, we have

1-6

1-o
Zp_ Pk Zp_ Pk
P3ea(s) = — o) and 130 = 2T
pr M(l-w+k) p* (1 -6+k)
By inequality (3.2) we obtain
(20 — p)*a % p)l;‘“
zP —aPf)* zP —af)*
1-5 S p2(2) + 1o pNa‘ﬂl(z)
prIN(1-68+«) pr M(l-—w+k)
(Zp _ap) 2-w—48

$
= g"r‘\sa(pl( g?g‘pZ(z) + 2 w -8

re(l-w+x)l(1- 5+K).
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Corollary 3.4 For nz" < ®(z) <Nz, z € [a, b], we have

Y-

N(zf —af)*
P E Ty —w+x)

y=b
n(zf —af)=

P (y —8+k)

D" pa2) = and D)7 ¢1(2) =

Inequality (3.2) is

Y- )
NE =T pgprpe)e &= gy
p* Tely —~o+k) p'F Ty —8+«)
nN(z" — a”) ——
+0 DB D(2)0 D7 D (2). (3.6)

2y—w-8

S pE Dy —w+i)le(y =8 +x)

Corollary 3.5 Further, if we take y = 0 in (3.6), then we get

1-5
n(z’ —af)*©
= AL L €
ol (1-8+k)

2-w-§8
uN(z —af) «
2-w-48

T e T -w+k)Te(1-8+k)

1-w
N(z° —al) =
l—w( ) f("?sflcb(z)+
o INi(l-—w+k)

where 3 is the generalized k-Riemann—Liouville integral.

Theorem 3.2 Let p,8,w,y,k,a > 0,and let ®,V € M,[a, b] be positive integrable functions
on [a, b). Suppose that (3.1) holds and there exist g1, @2, V1, Vo € [a, b] such that

Vi(z) < W(z) <Yn(2), zelab). (3.7)

Then we have the following inequalities for the generalized k-fractional Hilfer—

Katugampola derivative:

PPV (2)° DY D(2) + L D2V W (2)P D2V 0y(2)

> DR DY pa(2) + LD W ()0 D2 D(2), (3.8)
PPV 01(2)° DLV W (2) + L DY D(2)2 D2 Yo (2)

> 0D 0@ D a2) + LD V()LD D(2), (3.9)
PPy (2)0 DOV 9y (2) + £ DDV U (2)° DY B(z)

= 0DV DY 0a2) + LDy V(D)L DY D(2), (3.10)
LDy (LD 01(2) + L D)7V (2) D D(2)

> PPEYU(2)P DOV 1(2) + L DOV Y1 (2)° D7 D(2). (3.11)
Proof Applying condition (3.1) and (3.7), we get

(#20) - @) (¥(2) - ¥1(2)) = 0.

Page 6 of 16
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It follows that

P(NY(C) + PY1(L) = @20 VY1(2) + PP (E)

Taking the yth derivative with respect to y, we get

D)W () + ©V 3 (2) = 0V 0)y () + DV ()W (2). (3.12)

Y-

Multiplying (3) by % (2% —y°) e 9! and then integrating from a to z with respect
to y, we have

-5 z r=o_
VOL [ @) T 0y

-5 z r=o_
ﬂ/ (0 =y) = "y eVE)dy
_r=

+91(2)

12

1

K

P ‘ _ -1 pm1 (v)
zwl(é)Kr( — )/ (= =9") = e o) dy

+ ()t )/ T yeng)dy.
Using definition (2.9), we obtain
V()LD 92(2) + Y1(8) D77 @(2) = (0L D77 ¢2(2) + W) D7 D(2). (3.13)
Taking the yth derivative of (3.13), we have

N ()2 77 go(2) + ¥ ()2 727 D(2)
> ()LD 9a(2) + W)L D2 B(2).m (3.14)

y—z?

s
s (y (2" ~ ¢?) % 1¢P71, then integrating with respect to ¢ from a

Multiplying (3.14) by 2
to z, we have

LDV (2)E DL 3(2) + LDV Y (2)0 DY D(2)
> 2D (D)L DY a(2) + L DY W ()L D7 D(2),

which is the desired inequality (3.8).

Now we prove the other inequalities.

To prove inequality (3.9), we follow the same steps as in the proof of inequality (3.8) by
letting

(¥2(y) = 2») (¥ (2) - ¢1(2)) =

Similarly, the inequalities

(2200) = @) (¥(¢) - ¥2(2)) = 0,
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(1) = @) (V) - ¥1(0)) =0

leads to inequalities (3.10) and (3.11), respectively. (I

Corollary 3.6 Let y = 0. The inequalities in Theorem 3.2 lead to the inequalities for the
generalized k-Riemann—Liouville integral:

LY ()22 D (2) +0 LW (2)2 30 s (2)

§ ~0
=0 SaV1(@3592(2) + 3,V (2)0S; (=),

P @1(2)230W (2) +0 X0 D(2)0 32 Yo (2)

Kk~a
>0 1223 (2) +£ W (2)23L D(2),
E32@)05 (@) +L W ()37 0 (2)
>0 SV (230 92(2) + S92 (2)0 35 D(2),
L35 01(2) + S W (2035 D(2)

a Kk™~a

>0 W ()30 01(2) +2 Iy ()35 D(2).

Corollary 3.7 Let nz¥ < ®(z) < Nz¥ and mz" < V(z) < Mz". We have

Y
N(zf —af)*
DY 9a(2) = —=5 ,
pE ly —w+«)
(2 —a?)’%
nzt —a K
ﬁ-@jyywl(z) = 7-3 )

p* Lely-38+x)

Y-
Mz’ —af) ©

D7 Y(2) = = %
p « k\Yy —w+K

)
m(z —af)’®

0D (@) = —s

pTFK(V—SH)’

which by Theorem 3.2 lead to the inequalities

y-w
m(zP — a?) = N(zf —aP)*
=) gy, NE-a)

o Dy =8 +k) p* Ly —o+xk)

2y-w-3
mN(z° —aP)” *

PPV (z)

DTV D D),

2t Ty —o+)Te(y =8 +k)
n(z - aﬂ)yT_a M(z —a?) "
- POTW(2) + e » P B(2)
o ey =8+k) p* Ty —w+k)

2y-w-3
nM(z" —al)” «

F LD W) DO B(2),

A Cely —w+x)Te(y =8 + k)
2y-w—8
NM(zP —af)” «

+0 DV W(2)P DY D(2)

2y-w—8

o Dy —o+k)le(y =6 +k)
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Y-8
M(zP —af) = "
= D7 (2),
p Ly =8+x)

Y-
N(zf —a”) 5=

> NN T vy,

Py —w 1)

2y-w—-68
nm(z’ — a”) N

+P DY W (2) DY D(2)

p7F Ty —w+ )Ty =8 +1)
n(z* ap)y;w m(zP ap)VT_lS
> — f.@ﬁ'y\ll(z) +t—5 LDy O(2).
pE Tely —w+k) p = Tely =8 +«)
Corollary 3.8 Let ®(z) =z¥,V(z) = z¥. Then we have
Y-
P _ gP) %
L
p* Ty —w+k)
(z° p)y—f'S
z° —af) «
PP D(z) = = .
p Ly =d+x)
The inequalities in Theorem 3.2 lead to
Y- y=38
(z° —al) = (z° —af)'© "
7= LDV Y (2) + o DY o(2)
p* Lely —o+k) p* Ly =8+k)
( 0 p)2y—m—5
z’ —a «
> 0D (D] D 922) + —=

3 FK(y—a)+K)FK(y—8+/c),

Y- )
(z° —af)® (z° —af)*
— LDy 01(2) + — LDV Yy(2)
p* Ty —w+k) p ey =6+k)
2y-w-3
(ZP — ﬂp) v K

> 0Dy 912 D Y (2) +

pTF Ty —w+ )T (y =8 +10)
2y-w-3
(ZP — d/’) K

LDV Y (2)E D2 (2) +

2y-w—8

p-* L(y—-w+k)l(y—8+k)

y=38 Y-
(Zp—ﬂp)T (Zp—ﬂp) [3
>—5 2D 9a(2) + —= LDy (2),
p* Ly =8 +k) pE Ly —w+x)
(2 — ﬂp)zy}m_'3

LD D () +

2y-w-3

p-* L(y—w+x)l(y—8+«)

Y

y-»

(" —aP) (2F —a’) 7

>— DT 01(2) + —= LD Y (2).
p* Tely —8+k) p* Ly —o+k)

<

4 Other related integral inequalities via generalized k-fractional
Hilfer-Katugampola derivative
In this section, we prove other related integral inequalities by using the generalized k-

fractional Hilfer—Katugampola derivative.

Theorem 4.1 Let p,8,w,y,k,a>0,andlet ®,¥ € M[a, b] be positive integrable functions
on [a, b]. Suppose that there exists g1, ¢, € [a,b). If p,q > 1 and 117 + % =1, then we have the
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following inequalities for the generalized k-fractional Hilfer—Katugampola derivative:

L (W L9 (0 + L7 (00) 7 (V@)

> PP OW)(2)) 27 (P V) (2), (4.1)
L7 (WY 17 (@) + L7 (0) 7 (V)

>0 7 (@ W @) 707 (PN 2), (4.2)
LY (VL9 (00) 4 L7 (0) (77 (Ve

> PP D5 W) (2)f T (D) (2), (4.3)
L7 (W)L 7 (0@ + L (0) 17 (V)
> PP QP (2P 907 [ Wi ) (2). (4.4)

Proof By Young’s inequality we have

1 1
—a’ + -b1>ab, a,b>0.
p q

Now, letting a = ®(y)W(¢) and b = ©(£)¥(y), we get

l%(cb(y)\v(;))" . é(@(c)wm)q > (@()W () (D)W G)). (4.5)

Taking the yth derivative with respect to y of inequality (4.5), we have

i{(@@)wm)”}”) + é{(@(owm)q}“ > {(®()w () (D) ¥ ()},

Y-

K

ol”
kT (y—w)

Multiplying by (z° — y°)"% ~Ly*~1 and integrating with respect to y from a to z, we

get

-5 z yo_
;m/ (z”—y”) 3 1yp—1{(q>(y)\p(§))17}(l’)dy

Y-
1-; z

1 p
+_7
quK(V_w) a

Y-
-

(2 —y”)Q_ly”’l{ (@)} dy

2 [ @) @) @0vm) d. (46)

Applying the definition in (2.9), we obtain

}92’-@;"” (W) + éﬁﬁf'y(é(g)w(z))q > 270 ((DR)W(E))(PQ)¥(2)). (47)
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It follows that

O g @@y + S 70wy = 01w 2e7 0w

)
Again taking the yth derivative of this inequality and then multiplying by % X

(2P —¢* )VTia‘lg r=1 and integrating with respect to ¢ from a to z, we obtain
1 1
ST (V@Y7 (9@) + L7 (0@) 20 (V@)
> 0Dy PV DT (PWN(2).

Which is the desired inequality.

Now to prove the other inequalities.

To prove inequality (4.2), we follow the same steps as in the proof of inequality (4.1) by
letting

o), )

“= 50 O ®(2), W(¢) #0.

Similarly, the suppositions

a=dWUI(),  b=di()W(),
a= c[)z%(y)\ll({), b= cp%(y)w(g)

lead to inequalities (4.3) and (4.4), respectively. O

Corollary 4.1 Letting y =0 in Theorem 4.1, we have

17 17
= (V)32 (@) + = ()32 (V(2)" 2 SLUPWH )LD W) (2),

Kk Kk

lpmé PP ~w p lp(\S 9P ~w q

- 3 (v(2) N\ (@(2)) +5 S (@(2)" 3¢ (¥(2))
>0 S {0 W (2232 { W (2),

130 (W) 30 (0@) + L 3 (0() 3¢ (9(@)? 22 3 [0 w030 (0w) @),

K K

The inequalities convert to the generalized k-fractional Riemann—Liouville integral.

Theorem 4.2 Let p,8,w,y,k,a>0,andlet &,V € M[a, b] be positive integrable functions
on [a, b]. Suppose that there exist 1,9, € [a,b]. If p,qg > 1 and }7 + % =1, then we have the
inequalities for the generalized k-fractional Hilfer—Katugampola derivative:

77 (V@R 7 (0@} + 7 [ 2@} 757 { v (@)

Page 11 0of 16
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> P07 [ @1WP ) (2)L D07 | 9P W) (2),
PP D)W} 227 (@)} + a2 27 {(9(2)) "W ()} 227 | (¥ (2)) ")
=D W@ 297 | 9P (2)},

P (W)? Y707 {(0(2) ) + gL 207 {(@(2) 1 o707 { (w(2)") (4.8)
> PPV LOP ()W (2)}0 227 (D2 (2)W(2)},

P2 (W) 707 | (9(2)F (¥(2)")

+ @ 70 {(0@) T (V@)Y Y707 (W)
> 1987 (W) 707 (0%(2)).

Proof By arithmetic mean—geometric mean inequality we obtain

pa+qgb>a’b?!, p+qg=1. (4.9)
Now substituting

a=0(p)W() and b=E)V()
into (4.9), we obtain

POOIVE)+ OEV) = (G0)VQ)) (00)V0))" (4.10)

Taking the y th derivative of inequality (4.10), we have

Ple@w )} + (@@} = (@M)W Q) (e ()7} (4.11)
Multiplying (4.11) by %(z" — y*)" %" ~1y*~1 and integrating with respect to y from a

to z, we obtain

y—w
1-5 z

2 Ly »)
= ). @) YOO dy

Y-—w
1 K

+ 7[) _
T (y - )

Y-
-

V4
/-z (Z/’ _yp)yK;w_lypfl{qKC)‘I’(y)}(y)dy
e f Z (2 -9) % (@) (@O)we) ) dy. @12
- KFK(V _w) a

Now by definition (2.9) we have
PLIYT (W (0)} + éZ@f’V{WO\P(Z)} > 2707 {(@0)W (D) (@) v ()7},

which can be written in simplified form as

PY QLD (@) +qP(0)L D27 (Y (2)) = D)W ()LD 9P (2)V(2)}. (4.13)
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y—z?

Again taking the y th derivative of (4.13) and then multiplying by £—— (2 = ¢” )% -1 ¢rt

and integrating with respect to ¢ from a to z, we have

Pi2, (Y @): 757 (9@) + 4. 7,7 (®@) 737 (¥ (2))
> PP D ()W(2) )0 27 {DP ()W)},

which is the desired inequality.
For the second inequality of (4.8), let

o), Y0

= W{), = Wé_)’ CD(C)!\I'[(C) 7‘/0

Proceeding in the same way, as in the proof of the first part of inequality (4.8), we obtain
the desired one.
Now for the third and fourth parts of inequality (4.8), let

a=0W)Wr(E),  b=oi()U(y).

00, @10
vQ) Vo)

v, v #o.

These substitutions lead to the desired results. O

Corollary 4.2 Letting y = 0 in (4.8), we obtain the inequalities for the generalized k-

fractional Riemann—Liouville integral:

PV @Y S {0@)]) + g3 {2} 30 {w(2)}
>0 S {DIWP ) (2)030{ DY W) (2),

P @@ (2) ] + a3 (2@) W@ S { ()"
>,0 ~8 {\pq}(z)p@w{q)p(z)},

(V@) 1N {(002)} + 423 (02) T3 { (v @)
EAN 2{@1’(2)\11(2)} A d*(2)W(2)},

pﬁsi{(\ﬂ ) (e)

S{vr@i{ '@}

SIS

(W)} + 032 (0@) 7 (w@) )32 ()"}

Theorem 4.3 Let p,8,w,y,k,a>0,andlet &,V € M[a, b] be positive integrable functions
on [a, b. Suppose that there exist o1, ¢, € [a,b]. Let p,q > 1 and }7 + é =1, and let

and Q= max CI)—O/) (4.14)

0<y<z W(y) 0=y=z W(y)

Page 13 0of 16
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Then we have the following inequalities for the generalized k-fractional Hilfer—
Katugampola derivative:

2
g e@u@) 217 (W@ L7 (@) 2
4PQ
vP-JQ, .,
Wf.@a 4 { q)(Z)\IJ(Z)}
2 2 (4.15)
> 272 (W@ L 22 0] - 2727 [0 W()} > 0,
P-Q, . 2
2PQ LD D(2)¥(2)}
= 7 (@7 0@l - 70w )] 20
Proof Using the condition in (4.14), we have
() ) ( <1>(Y)) 2
— _pllo--2 v 0,
(563 -#) -y )vor=
which can be written as
(P+Q@()W() = P*(y) + PQP*(y).
Taking the yth derivative of this inequality, we get
P+ Qemv()}” = {020 + PQ[®*()}". (4.16)
Multiplying (4.16) by %(z’) —yP )y‘ly”’1 and integrating from a to z with respect
to y, we obtain
- z y=e_
(P + Q)m /ﬂ (zp _yp) 5 1yp_l{q>()/)\l/(y)}(y) dy
- pl—y;w /‘7- (Z,O B p)y;iw—l p_l{sz(y)}(y) d
a KFK (J/ - a)) a ’ ’ ’
Pl z L W TP V()
+ PQm A (Zp _yp) yp {d) ()/)} dy. (4.17)
By (2.9) we have
P+QLZ0"{d(2)W(2)} = L 227 {@*(2)} + L2 W (2)}. (4.18)

Now, since PQ >0 and

(Vezer @@} Paize” {w2@)) =0,

we get

0797 97(@)) + PQUYT (WD) 2 2, /L 707 (02(0)}\[PREZLY (20)).  (4.19)
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So, from inequalities (4.18) and (4.19) we get
(P+ Q)Z[fj@;“‘y{@(z)\lf(z)}]z > 4PQL Y7 D% ()} 207 (WP (2)}, (4.20)

which is the required result.
From inequality (4.20) we obtain

ZPJP—%‘K’@Z’”{MZ)\P(Z)} > \/f.%"”{dﬂ(z)}ﬁ@;“’y{w%z)}. (4.21)

Subtracting ? 7, {®(z)¥(z)} from inequality (4.21) leads to the second part of inequality
(4.15). Analogously, we can prove the third part of inequality (4.15). d

Corollary 4.3 Letting y = 0 in inequality (4.15), the inequalities turn to inequalities for
the generalized k-fractional Riemann—Liouville integral:

2
%ZS‘;”V{MZ)\]/(Z)}Z > SZ’V{\I’(Z)}zfs‘;V{cp(z)}z >0,
%m,y{%w@} > e (W@ (0] L 307 [9E@UE) 2 0,
%ﬁszj’y{q)(z)q’(z)}z =2 307 W@} 307 {e@)) - 2307 {0 (@))] = 0.

5 Conclusion

In this paper, we have presented the Griiss-type inequality via the generalized k-fractional
Hilfer—Katugampola derivative. We also proved other related inequalities by using the
given operator. The given derivative operator converts to the k-Riemann-Liouville frac-
tional integral by taking y = 0. The results are very significant and fascinating. Moreover,
other related integral inequalities can be easily derived by using the given derivative op-

erator.
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