
Kittisopaporn et al. Advances in Difference Equations (2021) 2021:17
https://doi.org/10.1186/s13662-020-03185-9

R E S E A R C H Open Access

Convergence analysis of gradient-based
iterative algorithms for a class of rectangular
Sylvester matrix equations based on Banach
contraction principle
Adisorn Kittisopaporn1, Pattrawut Chansangiam1* and Wicharn Lewkeeratiyutkul2

*Correspondence:
pattrawut.ch@kmitl.ac.th
1Department of Mathematics,
Faculty of Science, King Mongkut’s
Institute of Technology Ladkrabang,
10520, Bangkok, Thailand
Full list of author information is
available at the end of the article

Abstract
We derive an iterative procedure for solving a generalized Sylvester matrix equation
AXB + CXD = E, where A,B,C,D, E are conforming rectangular matrices. Our algorithm
is based on gradients and hierarchical identification principle. We convert the matrix
iteration process to a first-order linear difference vector equation with matrix
coefficient. The Banach contraction principle reveals that the sequence of
approximated solutions converges to the exact solution for any initial matrix if and
only if the convergence factor belongs to an open interval. The contraction principle
also gives the convergence rate and the error analysis, governed by the spectral
radius of the associated iteration matrix. We obtain the fastest convergence factor so
that the spectral radius of the iteration matrix is minimized. In particular, we obtain
iterative algorithms for the matrix equation AXB = C, the Sylvester equation, and the
Kalman–Yakubovich equation. We give numerical experiments of the proposed
algorithm to illustrate its applicability, effectiveness, and efficiency.

MSC: 15A60; 15A69; 47H09; 47H10; 65F45

Keywords: Generalized Sylvester matrix equation; Gradient; Linear difference vector
equation; Banach contraction principle; Kronecker product; Matrix norms

1 Introduction
It is well known that linear matrix equations play crucial roles in control theory and re-
lated areas. Indeed, certain problems concerning analysis and design of control systems
(e.g., existence of solutions or controllability/observability of the system) are converted to
properties of associated matrix equations; see, for example, [1, Chs. 12–13] and [2]. Such
matrix equations are particular cases of or closely related to the generalized Sylvester ma-
trix equation

AXB + CXD = E, (1)

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-03185-9
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-03185-9&domain=pdf
http://orcid.org/0000-0002-9885-5685
mailto:pattrawut.ch@kmitl.ac.th

Kittisopaporn et al. Advances in Difference Equations (2021) 2021:17 Page 2 of 17

where A, B, C, D, E are given matrices, and X is an unknown matrix. This equation in-
cludes the equation AXB = E, the Lyapunov equation AX +XAT = E, the (continuous-time)
Sylvester equation AX + XB = E, and the Kalman–Yakubovich equation or the discrete-
time Sylvester equation AXB + X = E. The generalized Sylvester equation naturally arises
in robust control, singular system control, neural network, and statistics; see, foe example,
[3, 4]. An important particular case of (1), the Sylvester equation, also has applications to
image restoration and numerical methods for implicit ordinary differential equations; see,
for example, [5, 6].

Let us discuss how to solve (1) via the direct Kronecker linearization. We can convert
the matrix equation (1) into a vector–matrix equation by taking the vector operator vec(·)
so that (1) is reduced to Px = b, where

P = BT ⊗ A + DT ⊗ C, x = vec X, b = vec E.

Here the symbol ⊗ denotes the Kronecker product. Thus Eq. (1) has a unique solution
if and only if P is nonsingular. However, if the dimensions of matrices are large, then it
will lead to computational difficulty, and so this approach is only applicable for small-
dimensional matrices. For more information about analytical methods for solving such
linear matrix equations, see, for example, [1, Ch. 12], [7, Ch. 4], and [8, Sect. 7.1]. Another
technique is transforming the coefficient matrix into a Schur or Hessenberg form via an
orthogonal transformation; see [9, 10].

For large matrix systems, iterative methods for solving matrix equations have received
much attention. There are several ideas to formulate an iterative procedure for solving
Eq. (1) and particular cases, for example, block successive overrelaxation [11], matrix sign
function [12], block recursion [13, 14], Krylov subspace [15, 16], and truncated low-rank
methods [17]. A group of iterative methods, called Hermitian and skew-Hermitian split-
ting (HSS) methods, relies on the fact that every square complex matrix can be written as
the sum of its Hermitian and skew-Hermitian parts. Recently, there are several variants
of HSS, namely, the generalized modified HSS (GMHSS) method [18], the accelerated
double-step scale splitting (ADSS) method [19], the preconditioned HSS (PHSS) method
[20], and the four-parameter positive skew-Hermitian splitting (FPPSS) method [21]. The
idea of conjugate gradient (CG) also leads to several finite-step procedures to obtain the
exact solution of the linear matrix equations. The principle of CG is constructing an or-
thogonal basis from the gradient of the associated quadratic function, consisting of vectors
in the direction that approaches the fastest the exact solution. There are several variants
of CG to solve such linear matrix equations, for example, the generalized conjugate direc-
tion (GCD) method [22], the conjugate gradient least-squares (CGLS) method [23], and
generalized product-type methods based on biconjugate gradient (GPBiCG) method [24].
See more information in a survey [8] and references therein.

A group of gradient-based iterative algorithms relies on the ideas of hierarchical identi-
fication principle and minimization of quadratic norm-error functions; see, for example,
[25–31]. Convergence analysis for such algorithms depends on the Frobenius norm ‖·‖F ,
the spectral norm ‖·‖2, the spectral radius ρ(·), and the condition number κ(·) of the asso-
ciated iteration matrix. Let us focus on the following iterative algorithms to approximate
the unique solution of Eq. (1) when all A, B, C, D are square matrices.

Kittisopaporn et al. Advances in Difference Equations (2021) 2021:17 Page 3 of 17

Algorithm 1.1 ([32]) The gradient iterative algorithm (GI) for (1):

X1(k) = X(k – 1) + τAT[
E – AX(k – 1)B – CX(k – 1)D

]
BT ,

X2(k) = X(k – 1) + τCT[
E – AX(k – 1)B – CX(k – 1)D

]
DT ,

X(k) =
1
2
(
X1(k) + X2(k)

)
.

If we choose the convergence factor τ such that

τ =
(‖A‖2

2‖B‖2
2 + ‖C‖2

2‖D‖2
2
)–1 or τ =

(‖A‖2
F‖B‖2

F + ‖C‖2
F‖D‖2

F
)–1, (2)

then X(k) converges to the exact solution for any initial values X1(0) and X2(0). Numerical
simulations in [25] reveal that Algorithm 1.1 is more efficient than the B-Q algorithm [12].
In [33], Algorithm 1.1 was shown to be applicable if

0 < τ <
2

‖A‖2
2‖B‖2

2 + ‖C‖2
2‖D‖2

2
, (3)

so that the range of τ is wider than that of (2).

Algorithm 1.2 ([33]) The least-squares iterative algorithm (LSI) for (1):

X1(k) = X(k – 1) + μ
(
AT A

)–1AT(
E – AX(k – 1)B – CX(k – 1)D

)
BT(

BBT)–1,

X2(k) = X(k – 1) + μ
(
CT C

)–1CT(
E – AX(k – 1)B – CX(k – 1)D

)
DT(

DDT)–1,

X(k) =
1
2
(
X1(k) + X2(k)

)
.

To make Algorithm 1.2 applicable for any initial values X1(0) and X2(0), the convergence
factor μ must satisfy 0 < μ < 4.

There are many iterative algorithms for the Sylvester equation. The first solver is the
gradient iterative algorithm (GI), introduced by Ding and Chen [32]. Niu et al. [34] intro-
duced the relaxed gradient iterative algorithm (RGI), that is, GI with relaxation parameter
ω ∈ (0, 1). Wang et al. [35] modified the GI algorithm in such a way that the information
X1(k) has been fully considered to update X(k – 1); the result is called the MGI algorithm.
Recently, Tian et al. introduced JGI [36, Algorithm 4], AJGI1 [36, Algorithm 5], and AJGI2
[36, Algorithm 6] algorithms based on GI and the idea of extracting the diagonal part
from each coefficient matrix. Moreover, there are other iterative methods for solving the
generalized coupled Sylvester matrix equations; see, for example, [37, 38].

In this paper, we introduce an iterative method for solving the generalized Sylvester
equation (1), for which matrices A, B, C, D, E are not necessarily square. Our algorithm
is based on gradients and hierarchical identification principle. This algorithm consists of
only one parameter, the convergence factor θ , and the only initial value. To perform a con-
vergence analysis of the algorithm, we use analysis on a complete metric space, together
with matrix analysis. We convert the matrix iteration process to a first-order linear dif-
ference vector equation with matrix coefficient. Then we apply the Banach contraction
principle to show that the proposed algorithm converges to the unique solution for any

Kittisopaporn et al. Advances in Difference Equations (2021) 2021:17 Page 4 of 17

initial value if and only if 0 < θ < 2/‖P‖2
2. The range of the parameter is wider than those of

[25, 33]. The convergence rate of the proposed algorithm is governed by the spectral ra-
dius of the associated iteration matrix. We also discuss error estimates; in particular, the
error at each iteration becomes smaller than the previous one. The fastest convergence
factor is determined so that the spectral radius of the iteration matrix is minimal. More-
over, we make convergence analysis of gradient-based iterative algorithms for the equation
AXB = C, the Sylvester equation, and the Kalman–Yakubovich equation. We also provide
numerical simulations to illustrate our results for the matrix equation (1) and the Sylvester
equation. We compare the efficiency of our algorithm with the direct Kronecker lineariza-
tion and recent algorithms, namely, GI, LSI, RGI, MGI, JGI, AJGI1, and AJGI2 algorithms.

The rest of the paper is organized as follows. We derive a gradient-based iterative al-
gorithm in Sect. 2. We then analyze the convergence of the algorithm in Sect. 3. Iterative
algorithms for particular cases of (1) are investigated in Sect. 4. We illustrate and discuss
numerical simulations of the algorithm in Sect. 5. Finally, we conclude the work in Sect. 6.

2 Deriving a gradient-based iterative algorithm for the generalized Sylvester
matrix equation

We denote by Mm,n the set of m × n real matrices and set Mn := Mn,n. In this section, we
derive an iterative algorithm based on gradients to find a matrix X ∈Mn,p satisfying

AXB + CXD = E. (4)

Here we are given A, C ∈ Mm,n, B, D ∈ Mp,q, and E ∈ Mm,q, where m, n, p, q ∈ N are such
that mq = np.

Recall that equation (4) has a unique solution if and only if the square matrix P = BT ⊗
A + DT ⊗ C is invertible. In this case, the (vector) solution is given by vec X = P–1 vec E.

To derive an iterative procedure for solving (4), we recall the hierarchical identification
principle from [33]. Define two matrices

M := E – CXD and N := E – AXB.

In view of (4), we would like to solve two subsystems

AXB = M and CXD = N . (5)

We will minimize the following quadratic norm-error functions:

L1(X) := ‖AXB – M‖2
F and L2(X) := ‖CXD – N‖2

F . (6)

Now we deduce their gradients as follows:

∂

∂X
L1(X) =

∂

∂X
tr
[
(AXB – M)T (AXB – M)

]

=
∂

∂X
tr
(
XBBT XT AT A

)
–

∂

∂X
tr
(
XT AT MBT)

–
∂

∂X
tr
(
BMT AX

)

=
(
AT A

)T X
(
BBT)

+ AT AXBBT – AT MBT –
(
BMT A

)T

Kittisopaporn et al. Advances in Difference Equations (2021) 2021:17 Page 5 of 17

= 2AT (AXB – M)BT . (7)

Similarly, we have

∂

∂X
L2(X) = 2CT (CXD – N)DT . (8)

Let X1(k) and X2(k) be the estimates or iterative solutions of system (5) at iteration k. We
introduce a step-size parameter τ ∈ R and a relaxation parameter ω ∈ (0, 1). We can derive
recursive formulas for X1(k) and X2(k) from the gradient formulas (7) and (8) as follows:

X1(k) = X(k – 1) + τ (1 – ω)AT[
M – AX(k – 1)B

]
BT

= X(k – 1) + τ (1 – ω)AT[
E – AX(k – 1)B – CXD

]
BT ,

X2(k) = X(k – 1) + τωCT[
N – CX(k – 1)D

]
DT

= X(k – 1) + τωCT[
E – AXB – CX(k – 1)D

]
DT .

By the hierarchical identification principle the unknown variable X is replaced by its esti-
mates at iteration k – 1. Instead of taking the arithmetic mean of X1(k) and X2(k) as in Al-
gorithm 1.1, our algorithm computes the weighted arithmetic mean ωX1(k) + (1 –ω)X2(k).
By introducing the parameter θ = τω(1 – ω) we get the following iterative algorithm.

Algorithm 2.1 Input A, C ∈ Mm,n, B, D ∈ Mp,q, and E ∈ Mm,q. Set A′ = AT , B′ = BT , C′ =
CT , and D′ = DT . Choose an initial matrix X(0) ∈ Mn,p. For each k = 0, 1, 2, . . . until End,
do:

F(k) = E – AX(k)B – CX(k)D,

X(k + 1) = X(k) + θ
[
A′F(k)B′ + C′F(k)D′].

Note that our algorithm avoids duplicate computations by introducing F(k) at each
iteration. To stop the process, we can impose a stopping rule such as ‖F(k)‖F < ε or
‖F(k)‖F /‖E‖F < ε, where ε is a chosen permissible error. The convergence of Algorithm
2.1 relies on the convergence factors θ , which will be determined in the next section. Note
that the algorithm requires only one parameter and one initial value and uses less com-
puting time than other gradient-based algorithms mentioned in Introduction.

3 Convergence analysis of the algorithm
In this section, we analyze the convergence of Algorithm 2.1. We convert the matrix it-
eration process to a first-order linear difference vector equation with contraction matrix
as the coefficient. It follows that the contraction reflects the convergence criteria, conver-
gence rate, and error estimates of the algorithm.

To analyze this algorithm, we recall useful facts in matrix analysis.

Lemma 3.1 (e.g. [7]) For any matrices A and B of conforming dimensions, we have
(i) ‖AT A‖2 = ‖A‖2

2;
(ii) ‖AB‖F ≤ ‖A‖2‖B‖F ;

(iii) if A is symmetric, then ‖A‖2 = ρ(A);
(iv) ‖A ⊗ B‖2 = ‖A‖2‖B‖2.

Kittisopaporn et al. Advances in Difference Equations (2021) 2021:17 Page 6 of 17

3.1 Convergence criteria
From Algorithm 2.1 we start with considering the error matrix

X̂(k) = X(k) – X.

We will show that X̂(k) → 0 or, equivalently, vec X̂(k) → 0 as k → ∞. Now we convert
the matrix iteration process to a first-order linear difference vector equation with matrix
coefficient. Indeed, we have

F(k) = (AXB + CXD) – AX(k)B – CX(k)D

= –AX̂(k)B – CX̂(k)D,

and thus

vec F(k) = –
(
BT ⊗ A + DT ⊗ C

)
vec X̂(k) = –P vec X̂(k).

It follows that

vec X̂(k + 1) = vec
{

X̂(k) + θ
[
AT F(k)BT + CT F(k)DT]}

= vec X̂(k) + θ
[
vec

(
AT F(k)BT)

+ vec
(
CT F(k)DT)]

= vec X̂(k) + θPT vec F(k)

= vec X̂(k) – θPT P vec X̂(k)

= Pθ vec X̂(k), (9)

where Pθ = Inp – θPT P. Denoting u(k) = vec X̂(k) for k ∈ N, we obtain a first-order linear
difference vector equation, as desired.

Note that iteration (9) is also the Picard iteration

u(k + 1) = Tu(k), k ∈N, (10)

where T is the self-mapping on R
n defined by Tx = Pθ x. We will find some properties of

T yielding that the iteration converges to the fixed point u∗ = 0 of T for arbitrary initial
point u(0). In fact, this can be guaranteed by the Banach contraction principle:

Theorem 3.2 (e.g., [39, Sect. 5.1]) Let (X, d) be a nonempty complete metric space. Let
T : X →X be a contraction, that is, there is a constant α ∈ [0, 1) such that

d(Tx, Ty) ≤ αd(x, y) ∀x, y ∈X.

Then T has a unique fixed point x∗. The following estimates are equivalent and describe
the convergence rate:

(i) d(xn+1, x∗) ≤ αd(xn, x∗);
(ii) prior estimate: d(xn, x∗) ≤ αn

1–α
d(x1, x0);

(iii) posterior estimate: d(xn+1, x∗) ≤ α
1–α

d(xn+1, xn).

Kittisopaporn et al. Advances in Difference Equations (2021) 2021:17 Page 7 of 17

Now we look for some conditions on Pθ making the mapping T a contraction. For each
x ∈R

n, we have by Lemma 3.1 that

‖Tx‖F = ‖Pθ x‖F ≤ ‖Pθ‖2‖x‖F = ρ(Pθ)‖x‖F .

The last equality holds since Pθ is a symmetric matrix. It follows that

‖Tx – Ty‖F =
∥∥T(x – y)

∥∥
F ≤ ρ(Pθ)‖x – y‖F ∀x, y ∈R

n.

Thus, if ρ(Pθ) < 1, then T is a contraction relative to the metric induced by ‖·‖F . Note that
further characterizations of matrix contractions, involving (induced) matrix norms, are
given, for example, in [40]. Since Pθ is a symmetric matrix, all its eigenvalues are real, and
thus

ρ(Pθ) = max
{∣∣1 – θλmin

(
PT P

)∣∣,
∣
∣1 – θλmax

(
PT P

)∣∣}. (11)

It follows that ρ(Pθ) < 1 if and only if

0 < θλmin
(
PT P

)
< 2 and 0 < θλmax

(
PT P

)
< 2. (12)

Since P is invertible and PT P is positive semidefinite, we have that PT P is positive definite
and λmin(PT P) > 0. The positive definiteness of PT P and Lemma 3.1(i) imply

λmax
(
PT P

)
=

∥
∥PT P

∥
∥

2 = ‖P‖2
2.

Hence condition (12) holds if and only if

0 < θ <
2

‖P‖2
2

. (13)

Therefore, if (13) holds, then the sequence X(k) generated by Algorithm 2.1 converges to
the solution of (4) for any initial value X(0).

Conversely, suppose that θ does not satisfy (13). The above discussion implies that
ρ(Pθ) ≥ 1, that is, there is an eigenvalue λ of Pθ such that |λ| ≥ 1. We can choose an eigen-
vector v ∈R

n – {0} such that Pθ v = λv. The Picard iteration (10) with initial point u(0) = v
yields

u(k) = Tku(0) = Tkv = λkv � 0.

Thus X̂(k) � 0 or X(k) � X.
We summarize a necessary and sufficient condition for the convergence criteria as fol-

lows.

Theorem 3.3 Let θ ∈R be given. Then the sequence X(k) generated by Algorithm 2.1 con-
verges to the solution of (4) for any initial value X(0) if and only if θ satisfies (13).

Thus, if θ ≤ 0 or θ ≥ 2
‖P‖2

2
, then Algorithm 2.1 is not applicable for some initial values.

Kittisopaporn et al. Advances in Difference Equations (2021) 2021:17 Page 8 of 17

3.2 Convergence rate and error estimates
We now apply the Banach contraction principle to analyze the convergence rate and error
estimates of Algorithm 2.1. Note that the error at each step of the associated Picard itera-
tion is equal to that of the original matrix iterative algorithm. Indeed, for any k ∈ N∪ {0},
we have

∥∥u(k) – u∗∥∥
F =

∥∥vec X̂(k)
∥∥

F =
∥∥X̂(k)

∥∥
F =

∥∥X(k) – X
∥∥

F ,
∥∥u(k+1) – u(k)∥∥

F =
∥∥vec X̂(k + 1) – vec X̂(k)

∥∥
F

=
∥
∥X̂(k + 1) – X̂(k)

∥
∥

F =
∥
∥X(k + 1) – X(k)

∥
∥

F .

Thus by Theorem 3.2(i) we obtain

∥
∥X(k + 1) – X

∥
∥

F ≤ ρ(Pθ)
∥
∥X(k) – X

∥
∥

F . (14)

It follows inductively that for each k ∈N,

∥
∥X(k) – X

∥
∥

F ≤ ρk(Pθ)
∥
∥X(0) – X

∥
∥

F . (15)

Hence ρ(Pθ) describes how fast the approximate solutions X(k) converge to the exact so-
lution X. The smaller the spectral radius, the faster X(k) goes to X. In that case, since
ρ(Pθ) < 1, if ‖X(k) – X‖F
= 0, then

∥∥X(k + 1) – X
∥∥

F <
∥∥X(k) – X

∥∥
F . (16)

Moreover, from the prior and posterior estimates in Theorem 3.4 we obtain the bounds

∥∥X(k) – X
∥∥

F ≤ ρk(Pθ)
1 – ρ(Pθ)

∥∥X(1) – X(0)
∥∥

F , (17)

∥
∥X(k + 1) – X

∥
∥

F ≤ ρ(Pθ)
1 – ρ(Pθ)

∥
∥X(k + 1) – X(k)

∥
∥

F . (18)

we summarize our discussion in the following theorem.

Theorem 3.4 Suppose that the parameter θ is chosen as in Theorem 3.3 so that the se-
quence X(k) generated by Algorithm 2.1 converges to X for any initial value. Then we have:

• The convergence rate of the algorithm is governed by the spectral radius (11).
• The error estimates ‖X(k + 1) – X‖F compared to the previous step and the first step

are provided by (14) and (15), respectively. In particular, the error at each iteration gets
smaller than the (nonzero) previous one, as in (16).

• The prior estimate (17) and the posterior estimate (18) hold.

From (11), if the eigenvalues of θPT P are close to 1, then the spectral radius of the iter-
ative matrix is close to 0, and hence the errors X̂(k) converge faster to 0.

Remark 3.5 The convergence criteria and the convergence rate of Algorithm 2.1 depend
on A, B, C, D but not on E. However, the matrix E can be used for a stopping criteria.

Kittisopaporn et al. Advances in Difference Equations (2021) 2021:17 Page 9 of 17

The following proposition determines the iteration number for which the approximated
solution X(k) is close to the exact solution X so that ‖X(k) – X‖F < ε.

Proposition 3.6 According to Algorithm 2.1, for each given error ε > 0, we have ‖X(k) –
X‖F < ε after k∗ iterations for any

k∗ >
log ε – log‖X(0) – X‖F

logρ(Pθ)
. (19)

Proof From estimate (15) we have

∥
∥X(k) – X

∥
∥

F ≤ ρk(Pθ)
∥
∥X(0) – X

∥
∥

F → 0 as k → ∞.

This precisely means that for each given ε > 0, there is k∗ ∈N such that for all k ≥ k∗,

ρk(Pθ)
∥
∥X(0) – X

∥
∥

F < ε.

Taking logarithms, we have that this condition is equivalent to (19). Thus, if we run Algo-
rithm 2.1 k∗ times, then we get ‖X(k) – X‖F < ε, as desired. �

3.3 Optimal parameter
We now discuss the fastest convergence factors for Algorithm 2.1.

Theorem 3.7 Let 0 < θ < 2
‖P‖2

2
. Denote κ as the condition number of the matrix P. Then the

optimal value of θ for which Algorithm 2.1 is applicable for any initial value is determined
by

θopt =
2

λmin(PT P) + λmax(PT P)
. (20)

In this case the spectral radius of the iteration matrix is given by

ρ(Pθopt) =
λmax(PT P) – λmin(PT P)
λmax(PT P) + λmin(PT P)

=
κ2 – 1
κ2 + 1

. (21)

Proof Theorem 3.3 tells us that the convergence of the algorithm implies (13). The con-
vergence rate of the algorithm is the same as that of the linear iteration (9) and thus is
governed by the spectral radius (11). Hence we would like to minimize the spectral radius
ρ(Pθ) subject to condition (13). Putting a = λmin(PT P) and b = λmax(PT P), we make the
following optimization:

min
0<θ< 2

b

{
max

{|1 – aθ |, |1 – bθ |}}.

The minimality is reached at θopt = 2/(a + b), so that the minimum value of ρ(Pθ) is equal
to (b – a)/(b + a). �

From Theorem 3.7, Algorithm 2.1 has a fast convergence if the condition number of P
is close to 1 or, equivalently, λmax(PT P) is close to λmin(PT P).

Kittisopaporn et al. Advances in Difference Equations (2021) 2021:17 Page 10 of 17

4 Iterative algorithms for particular cases of the generalized Sylvester
equation

In this section, we discuss iterative algorithms for solving interesting particular cases of
the generalized Sylvester equation.

4.1 The equation AXB = E
Assume that the equation AXB = E has a unique solution or, equivalently, the square ma-
trix Q := BT ⊗ A is invertible. In the particular case where A and B are square matrices,
this condition is reduced to the invertibility of both A and B. The following algorithm is
proposed to find the solution X.

Algorithm 4.1 Set A′ = AT and B′ = BT . Choose X(0) ∈ Mn,p. For each k = 0, 1, 2, . . . until
End, do:

X(k + 1) = X(k) + θA′(C – AX(k)B
)
B′.

Note that QT Q = BBT ⊗ AT A by the mixed-product property of the Kronecker product.
Since Q is invertible, so is QT Q. It follows that AT A and BBT are positive definite. Thus

λmin
(
QT Q

)
= λmin

(
AT A

)
λmin

(
BBT)

= λmin
(
AT A

)
λmin

(
BT B

)
,

and, similarly, λmax(QT Q) = λmax(AT A)λmax(BT B). Now we obtain the following:

Corollary 4.2 Assume that the equation AXB = E has a unique solution. Let θ ∈ R. Then
we have:

1) Algorithm 4.1 is applicable for any initial value X(0) if and only if

0 < θ <
2

‖A‖2
2‖B‖2

2
.

2) The convergence rate of the iteration is governed by the spectral radius

ρ
(
Inp – θQT Q

)

= max
{∣∣1 – θλmin

(
AT A

)
λmin

(
BT B

)∣∣,
∣∣1 – θλmax

(
AT A

)
λmax

(
BT B

)∣∣}.

3) The optimal convergence factor for which Algorithm 4.1 is applicable for any initial
value is given by

θopt =
[
λmin

(
AT A

)
λmin

(
BT B

)
+ λmax

(
AT A

)
λmax

(
BT B

)]–1/2.

4.2 The Sylvester equation
Suppose that m = n and p = q. Assume that the Sylvester equation

AX + XD = E (22)

has a unique solution. This condition is equivalent to the invertibility of the Kronecker sum
DT ⊕ A := DT ⊗ In + Ip ⊗ A, or all possible sums of eigenvalues of A and D are nonzero.

Kittisopaporn et al. Advances in Difference Equations (2021) 2021:17 Page 11 of 17

Algorithm 4.3 Set A′ = AT and D′ = DT . Choose X(0) ∈Mn,p. For each k = 0, 1, 2, . . . until
End, do:

F(k) = E – AX(k) – X(k)D,

X(k + 1) = X(k) + θ
[
A′F(k) + F(k)D′].

Corollary 4.4 Assume that the equation AX + XD = E has a unique solution X. Then the
iterative sequence X(k) generated by Algorithm 4.3 converges to X for any initial value X(0)
if and only if

0 < θ <
2

‖DT ⊕ A‖2
2

.

Error estimates and the optimal convergence factor for Algorithm 4.3 can also be ob-
tained from Theorem 2.1 when B and C are the identity matrices.

Remark 4.5 If A and D are positive semidefinite, then ‖DT ⊕A‖2 is reduced to ‖A‖2 +‖D‖2.

4.3 The Kalman–Yakubovich equation
Suppose that m = n and p = q. Assume that the Kalman–Yakubovich equation

AXB + X = E (23)

has a unique solution. This condition is equivalent to the invertibility of BT ⊗ A + Inp or,
equivalently, to that all possible products of eigenvalues of A and B are not equal to –1.

Algorithm 4.6 Set A′ = AT and B′ = BT . Choose X(0) ∈ Mn,p. For each k = 0, 1, 2, . . . until
End, do:

F(k) = E – AX(k)B – X(k),

X(k + 1) = X(k) + θ
[
A′F(k)B′ + F(k)

]
.

Corollary 4.7 Assume that the equation AXB + X = E has a unique solution X. The iter-
ative sequence X(k) generated by Algorithm 4.6 converges to X for any initial value X(0) if
and only if

0 < θ <
2

‖BT ⊗ A + In2‖2
2

.

Remark 4.8 If A and B are positive semidefinite, then ‖BT ⊗ A + In2‖2 is reduced to
‖A‖2‖B‖2 + 1.

5 Numerical simulations
In this section, we report numerical results illustrating the effectiveness of Algorithm 2.1.
We consider matrix systems from small dimensions (say, 2 × 2) to large dimensions (say,
120 × 120). We investigate the effect of changing convergence factors (see Example 5.1)

Kittisopaporn et al. Advances in Difference Equations (2021) 2021:17 Page 12 of 17

Figure 1 Relative errors for Example 5.1

and initial points (Example 5.2). We compare the performance of the algorithm to the di-
rect Kronecker linearization (Example 5.1) and recent iterative algorithms (Example 5.3).
We show that Algorithm 2.1 is still effective when dealing with a nonsquare problem (see
Example 5.4). To measure errors at step k of the iteration, we consider the following rela-
tive error:

‖AX(k)B + CX(k)D – E‖F

‖E‖F
.

All iterations have been carried out on the same PC environment: MATLAB R2018a, In-
tel(R) Core(TM) i7-6700HQ CPU @ 2.60 GHz 2.60 GHz, RAM 8.00 GB. To measure the
computational time (in seconds) taken for a program, we use the tic and toc functions
in MATLAB and abbreviate CT for it. The readers are recommended to consider both
reported errors and CTs while comparing the performance of any algorithms.

Example 5.1 Consider the equation AXB + CXD = E, where A, B, C, D, E, X of sizes 100 ×
100 are given by

A = tridiag(–1, 2, –1), B = tridiag(6, 4, –1), C = tridiag(1, 2, 3),

D = tridiag(4, 2, –5), E = heptadiag(2, –22, 16, 92, 36, –58, –42).

We run Algorithm 2.1 with five convergence factors; one of them is the optimal conver-
gence factor θopt = 6.5398e-04, determined by Theorem 3.7. According to (13), the range
of appropriate θ is given by 0 < θ < 2/‖P‖2

2 ≈ 6.5398e-04 (in this case, λmin(PT P) ≈ 0), that
is, Algorithm 2.1 is applicable for every chosen θ . The result after 100 iterations is pre-
sented by Fig. 1 and Table 1. From the relative error plot versus iteration time in Fig. 1
we see that the optimal convergence factor gives the fastest convergence. Table 1 shows
that the computational times with the five convergence factors are significantly less than
that of the direct method vec X = P–1 vec E. The relative errors after 100 iterations are very
small in comparison with the dimensions of the coefficient matrices.

Example 5.2 In this example, we consider the equation AXB + CXD = E with different
sizes of matrices, say, 2 × 2, 10 × 10, 100 × 100, and 120 × 120. For each case, we take
A = tridiag(7, –2, 5), B = tridiag(1, 6, 8), C = tridiag(3, –9, 1), D = tridiag(9, –2, 5), and E =
heptadiag(34, 21, 99, 8, 252, –9, 135) of corresponding sizes. We denote by ones(n) the n×n

Kittisopaporn et al. Advances in Difference Equations (2021) 2021:17 Page 13 of 17

Table 1 Relative error and computational time for Example 5.1

θ Relative error CT

θ = 6.5398e-04 5.800× 10–3 0.0324
θ = 2.500e-07 9.629× 10–1 0.0311
θ = 1.6700e-06 7.810× 10–1 0.0322
θ = 1.9580e-05 1.585× 10–1 0.0316
θ = 9.8530e-05 4.460× 10–2 0.0303
Direct method 20.8804

Table 2 Relative error and computational time for Example 5.2

Initial
value

Dimension 2× 2 Dimension 10× 10 Dimension 100× 100 Dimension 120× 120

θopt = 9.8701e-05 θopt = 1.6800e-05 θopt = 1.4951e-05 θopt = 1.4945e-05

CT Error CT Error CT Error CT Error

X1 3.4340e-04 0.2823 6.1930e-04 0.0934 0.0134 0.1096 0.0236 0.1098
X2 3.1870e-04 0.2770 3.7480e-04 0.0928 0.0151 0.1095 0.0240 0.1098
X3 3.0990e-04 0.2610 5.6450e-04 0.0915 0.0143 0.1096 0.0231 0.1099
X4 3.1040e-04 0.2250 4.5500e-04 0.0925 0.0147 0.1110 0.0228 0.1113
X5 3.1020e-04 0.2102 3.8710e-04 0.0947 0.0146 0.1120 0.0233 0.1124
X6 3.1550e-04 0.1867 3.7830e-04 0.1004 0.0145 0.1144 0.0225 0.1149

matrix that contains 1 at every position. For each n ∈ {2, 10, 100, 120}, we run Algorithm
2.1 with distinct initial candidates:

X1 = 0.1 × ones(n), X2 = 0.2 × ones(n), X3 = 0.5 × ones(n),

X4 = 1.2 × ones(n), X5 = 1.5 × ones(n), X6 = 2 × ones(n).

We run 50 iterations for the matrices of dimensions 2 × 2 and 10 × 10, whereas we run
100 iterations for large dimensions 100×100 and 120×120. The optimal convergence fac-
tors θ for each case are provided in Table 2. The computational times and errors reported
in Table 2 show that our algorithm is satisfactorily applicable for all initial candidates and
different sizes of coefficient matrices.

Example 5.3 We consider the equation AX + XB = C with three cases of coefficient matrix
sizes, namely 2 × 2, 10 × 10, and 100 × 100. We set

A0 =

[
1 2

–3 4

]

, B0 =

[
8 0

–5 –6

]

and Z =

[
2 3

–6 9

]

.

For each n ∈ {2, 10, 100}, we consider the coefficient matrices A = A0 ⊗ In/2, B = B0 ⊗ In/2,
and X∗ = Z ⊗ In/2 together with initial condition X(0) = 10–6 × ones(n). We compare Al-
gorithm 2.1 with GI [25], RGI [34], MGI [35], JGI [36, Algorithm 4], AJGI1 [36, Algorithm
5], AJGI2 [36, Algorithm 6], and LSI [33] algorithms.

We run 50 iterations for dimension 2 × 2, 100 iterations for dimension 10 × 10, and
200 iterations for dimension 100 × 100. The relative error and the computational time
in Table 3 reveal that our algorithm well performs comparing to the other algorithms.
Figure 2 displays the error plots of the first 100 iterations for each case; 2 × 2 (a), 10 × 10
(b), and 100 × 100 (c). We can see that our algorithm gives the fastest convergence.

Example 5.4 We consider the generalized Sylvester matrix equation with rectangu-
lar unknown matrix X ∈ M50,100. Let A, C ∈ M50 and B, D ∈ M100 be defined by A =

Kittisopaporn et al. Advances in Difference Equations (2021) 2021:17 Page 14 of 17

Table 3 Relative error and computational time for Example 5.3

Dimension 2× 2 Dimension 10× 10 Dimension 100× 100

Method CT Error CT Error CT Error

GI opt 2.7170e-04 9.4674e-04 4.5690e-04 0.0018 0.0188 0.0036
GI 2.3330e-04 0.0996 4.3030e-04 0.2125 0.0160 0.0709
RGI 2.6100e-04 0.0254 5.3710e-04 0.8040 0.0205 0.0456
MGI 2.7400e-04 0.0074 7.2790e-04 0.0072 0.0195 0.0240
JGI 2.6410e-04 0.0772 7.6200e-04 0.1649 0.0200 0.0267
AJGI 1 2.8810e-04 0.1601 7.8790e-04 0.1465 0.0267 0.1936
AJGI 2 2.8420e-04 0.0167 8.2090e-04 0.0251 0.0262 0.0229
LSI 2.5810e-04 0.2567 7.9300e-04 0.2935 0.0261 0.2329

Figure 2 Natural logarithm relative errors for
Example 5.3

Kittisopaporn et al. Advances in Difference Equations (2021) 2021:17 Page 15 of 17

Table 4 Relative error and computational time for Example 5.4

Method CT Error

GI opt 0.0185 0.0089
GI 0.0176 0.0336
RGI 0.0199 0.1053
MGI 0.0196 0.1819
direct method 3.6177

Figure 3 Relative errors for Example 5.4

tridiag(–1, 2, –1), B = tridiag(1, 4, –3), C = tridiag(3, –1, 2), and D = tridiag(3, 5, 7). The ex-
act solution is given by X∗ = X̃ ⊗ I10, where

X̃ =

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

1 3 –5 9 5 7 4 –6 9 10
2 –8 9 –7 4 5 –6 1 2 3
2 3 5 7 9 –8 –5 0 1 2
6 9 –8 7 5 4 –2 0 3 6

–8 –9 6 5 –1 2 0 3 –4 –7

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

.

The constant matrix E is determined by E = AX∗B + CX∗D.
We compare Algorithm 2.1 (θopt = 6.4000e-05) and the algorithms compatible with non-

square matrices, that is, GI [25], RGI [34], and MGI [35], with 100 iterations. The relative
error at terminal iteration and the computational time of each algorithm and of the direct
method are shown in Table 4, whereas Fig. 3 displays the error plots. Both of them reveal
the effectiveness in performance of our algorithm. The computational times of GI-opt and
GI are less than those of RGI and MGI. The reason that GI-opt takes little more time than
GI is that our algorithm needs more time to compute θopt in Theorem 3.7. On the other
hand, Algorithm 2.1 obtains a significantly better error than GI algorithm.

6 Conclusion
We propose a gradient-based iterative algorithm (Algorithm 2.1) for solving the rectangu-
lar generalized Sylvester matrix equation (4) and its famous particular cases. Theorem 3.3
informs us that the parameter θ must be chosen properly to have the proposed algorithm
applicable for any initial matrices. Moreover, we determine the optimal convergence fac-
tors, which makes the algorithm reach the fastest convergence rate. The asymptotic con-
vergence rate of the algorithm is governed by the spectral radius of Inp –θPT P. If the eigen-
value θPT P is close to 1, then the algorithm converges faster in the long run. The numerical

Kittisopaporn et al. Advances in Difference Equations (2021) 2021:17 Page 16 of 17

simulations reveal that our algorithm is suitable for both small and large matrix systems,
both square and nonsquare problems, and any initial points. In addition, the algorithm al-
ways gives the effective performance comparing to the errors obtained from recent meth-
ods, namely, GI, RGI, MGI, JGI, AJGI1, AJGI2, and LSI algorithms. There are two reasons
that cause our algorithm to perform well. The first reason is that the algorithm requires
only one parameter and one initial value, and avoids duplicated computations. The second
is that the convergence factor is chosen by an optimization method.

Acknowledgements
This work was supported by Thailand Science Research and Innovation (Thailand Research Fund). The authors would like
to thank referees for useful comments and suggestions.

Funding
This second author expresses his gratitude to Thailand Science Research and Innovation (Thailand Research Fund), Grant
No. MRG6280040, for financial support.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Author details
1Department of Mathematics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, 10520, Bangkok,
Thailand. 2Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, 10330,
Bangkok, Thailand.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 2 July 2020 Accepted: 14 December 2020

References
1. Lancaster, P., Tismenetsky, M.: The Theory of Matrices, 2nd edn. Academic Press, San Diego (1985)
2. Dullerud, G.E., Paganini, F.: A Course in Robust Control Theory: A Convex Approach. Springer, New York (1999)
3. Varga, A.: Robust pole assignment via Sylvester equation based state feedback parametrization. pp. 13–18 (2000)
4. Magnus, J.R., Neudecker, H.: Matrix Differential Calculus with Applications in Statistics and Econometries, 3rd edn.

Wiley, Chichester (2007)
5. Epton, M.: Methods for the solution of AXD – BXC = E and its applications in the numerical solution of implicit

ordinary differential equations. BIT Numer. Math. 20, 341–345 (1980)
6. Calvetti, D., Reichel, L.: Application of ADI iterative methods to the restoration of noisy images. SIAM J. Matrix Anal.

Appl. 17, 165–186 (1996)
7. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, New York (1991)
8. Simoncini, V.: Computational methods for linear matrix equations. SIAM Rev. 58(3), 377–441 (2016).

https://doi.org/10.1137/130912839
9. Bartels, R.H., Stewart, G.W.: Solution of the matrix equation AX + XB = C . Commun. ACM 15(9), 820–826 (1972).

https://doi.org/10.1145/361573.361582
10. Golub, G., Nash, S., Van Loan, C.: A Hessenberg–Schur method for the problem AX + XB = C . IEEE Trans. Autom.

Control 24(6), 909–913 (1979). https://doi.org/10.1109/TAC.1979.1102170
11. Starke, G., Niethammer, W.: SOR for AX – XB = C . Linear Algebra Appl. 154–156, 355–375 (1991).

https://doi.org/10.1016/0024-3795(91)90384-9
12. Benner, P., Quintana-Orti, E.S.: Solving stable generalized Lyapunov equations with the matrix sign function. Numer.

Algorithms 20, 75–100 (1999). https://doi.org/10.1023/A:1019191431273
13. Jonsson, I., Kagstrom, B.: Recursive blocked algorithms for solving triangular systems—part I: one-sided and coupled

Sylvester-type matrix equations. ACM Trans. Math. Softw. 28(4), 392–415 (2002).
https://doi.org/10.1145/592843.592845

14. Jonsson, I., Kagstrom, B.: Recursive blocked algorithms for solving triangular systems—part II: two-sided and
generalized Sylvester and Lyapunov matrix equations. ACM Trans. Math. Softw. 28(4), 416–435 (2002).
https://doi.org/10.1145/592843.592846

15. Kaabi, A., Kerayechian, A., Toutounian, F.: A new version of successive approximations method for solving Sylvester
matrix equations. Appl. Math. Comput. 186(1), 638–648 (2007). https://doi.org/10.1016/j.amc.2006.08.007

16. Lin, Y.Q.: Implicitly restarted global FOM and GMRES for nonsymmetric matrix equations and Sylvester equations.
Appl. Math. Comput. 167(2), 1004–1025 (2005). https://doi.org/10.1016/j.amc.2004.06.141

https://doi.org/10.1137/130912839
https://doi.org/10.1145/361573.361582
https://doi.org/10.1109/TAC.1979.1102170
https://doi.org/10.1016/0024-3795(91)90384-9
https://doi.org/10.1023/A:1019191431273
https://doi.org/10.1145/592843.592845
https://doi.org/10.1145/592843.592846
https://doi.org/10.1016/j.amc.2006.08.007
https://doi.org/10.1016/j.amc.2004.06.141

Kittisopaporn et al. Advances in Difference Equations (2021) 2021:17 Page 17 of 17

17. Kressner, D., Sirkovic, P.: Truncated low-rank methods for solving general linear matrix equations. Numer. Linear
Algebra Appl. 22(3), 564–583 (2015). https://doi.org/10.1002/nla.1973

18. Dehghan, M., Shirilord, A.: A generalized modified Hermitian and skew-Hermitian splitting (GMHSS) method for
solving complex Sylvester matrix equation. Appl. Math. Comput. 348, 632–651 (2019)

19. Dehghan, M., Shirilord, A.: Solving complex Sylvester matrix equation by accelerated double-step scale splitting
(ADSS) method Eng. Comput. (2019). https://doi.org/10.1007/s00366-019-00838-6

20. Li, S.Y., Shen, H.L., Shao, X.H.: PHSS iterative method for solving generalized Lyapunov equations. Mathematics 7(1),
Article ID 38 (2019). https://doi.org/10.3390/math7010038

21. Shen, H.L., Li, Y.R., Shao, X.H.: The four-parameter PSS method for solving the Sylvester equation. Mathematics 7(1),
Article ID 105 (2019). https://doi.org/10.3390/math7010105

22. Hajarian, M.: Generalized conjugate direction algorithm for solving the general coupled matrix equations over
symmetric matrices. Numer. Algorithms 73(3), 591–609 (2016)

23. Hajarian, M.: Extending the CGLS algorithm for least squares solutions of the generalized Sylvester-transpose matrix
equations. J. Franklin Inst. 353(5), 1168–1185 (2016)

24. Dehghan, M., Mohammadi–Arani, R.: Generalized product-type methods based on bi-conjugate gradient(GPBiCG) for
solving shifted linear systems. Comput. Appl. Math. 36(4), 1591–1606 (2017)

25. Ding, F., Chen, T.W.: Iterative least-squares solutions of coupled Sylvester matrix equations. Syst. Control Lett. 54(2),
95–107 (2005). https://doi.org/10.1016/j.sysconle.2004.06.008

26. Ding, F., Chen, T.W.: Hierarchical least squares identification methods for multivariable systems. IEEE Trans. Autom.
Control 50(3), 397–402 (2005). https://doi.org/10.1109/TAC.2005.843856

27. Ding, F., Chen, T.W.: Hierarchical gradient-based identification of multivariable discrete-time systems. Automatica
41(2), 315–325 (2005). https://doi.org/10.1016/j.automatica.2004.10.010

28. Zhang, X.D., Sheng, X.P.: The relaxed gradient based iterative algorithm for the symmetric (skew symmetric) solution
of the Sylvester equation AX + XB = C . Math. Probl. Eng. 2017, 1624969 (2017). https://doi.org/10.1155/2017/1624969

29. Kittisopaporn, A., Chansangiam, P.: The steepest descent of gradient-based iterative method for solving rectangular
linear systems with an application to Poisson’s equation. Adv. Differ. Equ. 2020(1), Article ID 259 (2020).
https://doi.org/10.1186/s13662-020-02715-9

30. Hajarian, M.: Matrix iterative methods for solving the Sylvester-transpose and periodic Sylvester matrix equations.
J. Franklin Inst. 350, 3328–3341 (2013)

31. Hajarian, M.: Solving the general Sylvester discrete-time periodic matrix equations via the gradient based iterative
method. Appl. Math. Lett. 52, 87–95 (2015)

32. Ding, F., Chen, T.W.: Gradient based iterative algorithms for solving a class of matrix equations. IEEE Trans. Autom.
Control 50(8), 1216–1221 (2005). https://doi.org/10.1109/TAC.2005.852558

33. Ding, F., Liu, P.X., Ding, J.: Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical
identification principle. Appl. Math. Comput. 197(1), 41–50 (2008). https://doi.org/10.1016/j.amc.2007.07.040

34. Niu, Q., Wang, X., Lu, L.Z.: A relaxed gradient based algorithm for solving Sylvester equations. Asian J. Control 13(3),
461–464 (2011). https://doi.org/10.1002/asjc.328

35. Wang, X., Dai, L., Liao, D.: A modified gradient based algorithm for solving Sylvester equations. Appl. Math. Comput.
218(9), 5620–5628 (2012). https://doi.org/10.1016/j.amc.2011.11.055

36. Tian, Z.L., Tian, M.Y., Gu, C.Q., Hao, X.N.: An accelerated Jacobi-gradient based iterative algorithm for solving Sylvester
matrix equations. Filomat 31(8), 2381–2390 (2017). https://doi.org/10.2298/FIL1708381T

37. Dehghan, M., Shirilord, A.: An iterative method for solving the generalized coupled Sylvester matrix equations over
generalized bisymmetric matrices. Appl. Math. Model. 34(3), 639–654 (2010)

38. Dehghan, M., Shirilord, A.: An iterative algorithm for the reflexive solutions of the generalized coupled Sylvester
matrix equations and its optimal approximation. Appl. Math. Comput. 202(2), 571–588 (2008)

39. Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley, New York (1978)
40. Lim, T.C.: Nonexpansive matrices with applications to solutions of linear systems by fixed point iterations. Fixed Point

Theory Appl. 2010, Article ID 821928 (2009). https://doi.org/10.1155/2010/821928

https://doi.org/10.1002/nla.1973
https://doi.org/10.1007/s00366-019-00838-6
https://doi.org/10.3390/math7010038
https://doi.org/10.3390/math7010105
https://doi.org/10.1016/j.sysconle.2004.06.008
https://doi.org/10.1109/TAC.2005.843856
https://doi.org/10.1016/j.automatica.2004.10.010
https://doi.org/10.1155/2017/1624969
https://doi.org/10.1186/s13662-020-02715-9
https://doi.org/10.1109/TAC.2005.852558
https://doi.org/10.1016/j.amc.2007.07.040
https://doi.org/10.1002/asjc.328
https://doi.org/10.1016/j.amc.2011.11.055
https://doi.org/10.2298/FIL1708381T
https://doi.org/10.1155/2010/821928

	Convergence analysis of gradient-based iterative algorithms for a class of rectangular Sylvester matrix equations based on Banach contraction principle
	Abstract
	MSC
	Keywords

	Introduction
	Deriving a gradient-based iterative algorithm for the generalized Sylvester matrix equation
	Convergence analysis of the algorithm
	Convergence criteria
	Convergence rate and error estimates
	Optimal parameter

	Iterative algorithms for particular cases of the generalized Sylvester equation
	The equation AXB = E
	The Sylvester equation
	The Kalman-Yakubovich equation

	Numerical simulations
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References

