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Abstract
We derive an iterative procedure for solving a generalized Sylvester matrix equation
AXB + CXD = E, where A,B,C,D, E are conforming rectangular matrices. Our algorithm
is based on gradients and hierarchical identification principle. We convert the matrix
iteration process to a first-order linear difference vector equation with matrix
coefficient. The Banach contraction principle reveals that the sequence of
approximated solutions converges to the exact solution for any initial matrix if and
only if the convergence factor belongs to an open interval. The contraction principle
also gives the convergence rate and the error analysis, governed by the spectral
radius of the associated iteration matrix. We obtain the fastest convergence factor so
that the spectral radius of the iteration matrix is minimized. In particular, we obtain
iterative algorithms for the matrix equation AXB = C, the Sylvester equation, and the
Kalman–Yakubovich equation. We give numerical experiments of the proposed
algorithm to illustrate its applicability, effectiveness, and efficiency.
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1 Introduction
It is well known that linear matrix equations play crucial roles in control theory and re-
lated areas. Indeed, certain problems concerning analysis and design of control systems
(e.g., existence of solutions or controllability/observability of the system) are converted to
properties of associated matrix equations; see, for example, [1, Chs. 12–13] and [2]. Such
matrix equations are particular cases of or closely related to the generalized Sylvester ma-
trix equation

AXB + CXD = E, (1)
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where A, B, C, D, E are given matrices, and X is an unknown matrix. This equation in-
cludes the equation AXB = E, the Lyapunov equation AX +XAT = E, the (continuous-time)
Sylvester equation AX + XB = E, and the Kalman–Yakubovich equation or the discrete-
time Sylvester equation AXB + X = E. The generalized Sylvester equation naturally arises
in robust control, singular system control, neural network, and statistics; see, foe example,
[3, 4]. An important particular case of (1), the Sylvester equation, also has applications to
image restoration and numerical methods for implicit ordinary differential equations; see,
for example, [5, 6].

Let us discuss how to solve (1) via the direct Kronecker linearization. We can convert
the matrix equation (1) into a vector–matrix equation by taking the vector operator vec(·)
so that (1) is reduced to Px = b, where

P = BT ⊗ A + DT ⊗ C, x = vec X, b = vec E.

Here the symbol ⊗ denotes the Kronecker product. Thus Eq. (1) has a unique solution
if and only if P is nonsingular. However, if the dimensions of matrices are large, then it
will lead to computational difficulty, and so this approach is only applicable for small-
dimensional matrices. For more information about analytical methods for solving such
linear matrix equations, see, for example, [1, Ch. 12], [7, Ch. 4], and [8, Sect. 7.1]. Another
technique is transforming the coefficient matrix into a Schur or Hessenberg form via an
orthogonal transformation; see [9, 10].

For large matrix systems, iterative methods for solving matrix equations have received
much attention. There are several ideas to formulate an iterative procedure for solving
Eq. (1) and particular cases, for example, block successive overrelaxation [11], matrix sign
function [12], block recursion [13, 14], Krylov subspace [15, 16], and truncated low-rank
methods [17]. A group of iterative methods, called Hermitian and skew-Hermitian split-
ting (HSS) methods, relies on the fact that every square complex matrix can be written as
the sum of its Hermitian and skew-Hermitian parts. Recently, there are several variants
of HSS, namely, the generalized modified HSS (GMHSS) method [18], the accelerated
double-step scale splitting (ADSS) method [19], the preconditioned HSS (PHSS) method
[20], and the four-parameter positive skew-Hermitian splitting (FPPSS) method [21]. The
idea of conjugate gradient (CG) also leads to several finite-step procedures to obtain the
exact solution of the linear matrix equations. The principle of CG is constructing an or-
thogonal basis from the gradient of the associated quadratic function, consisting of vectors
in the direction that approaches the fastest the exact solution. There are several variants
of CG to solve such linear matrix equations, for example, the generalized conjugate direc-
tion (GCD) method [22], the conjugate gradient least-squares (CGLS) method [23], and
generalized product-type methods based on biconjugate gradient (GPBiCG) method [24].
See more information in a survey [8] and references therein.

A group of gradient-based iterative algorithms relies on the ideas of hierarchical identi-
fication principle and minimization of quadratic norm-error functions; see, for example,
[25–31]. Convergence analysis for such algorithms depends on the Frobenius norm ‖·‖F ,
the spectral norm ‖·‖2, the spectral radius ρ(·), and the condition number κ(·) of the asso-
ciated iteration matrix. Let us focus on the following iterative algorithms to approximate
the unique solution of Eq. (1) when all A, B, C, D are square matrices.
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Algorithm 1.1 ([32]) The gradient iterative algorithm (GI) for (1):

X1(k) = X(k – 1) + τAT[
E – AX(k – 1)B – CX(k – 1)D

]
BT ,

X2(k) = X(k – 1) + τCT[
E – AX(k – 1)B – CX(k – 1)D

]
DT ,

X(k) =
1
2
(
X1(k) + X2(k)

)
.

If we choose the convergence factor τ such that

τ =
(‖A‖2

2‖B‖2
2 + ‖C‖2

2‖D‖2
2
)–1 or τ =

(‖A‖2
F‖B‖2

F + ‖C‖2
F‖D‖2

F
)–1, (2)

then X(k) converges to the exact solution for any initial values X1(0) and X2(0). Numerical
simulations in [25] reveal that Algorithm 1.1 is more efficient than the B-Q algorithm [12].
In [33], Algorithm 1.1 was shown to be applicable if

0 < τ <
2

‖A‖2
2‖B‖2

2 + ‖C‖2
2‖D‖2

2
, (3)

so that the range of τ is wider than that of (2).

Algorithm 1.2 ([33]) The least-squares iterative algorithm (LSI) for (1):

X1(k) = X(k – 1) + μ
(
AT A

)–1AT(
E – AX(k – 1)B – CX(k – 1)D

)
BT(

BBT)–1,

X2(k) = X(k – 1) + μ
(
CT C

)–1CT(
E – AX(k – 1)B – CX(k – 1)D

)
DT(

DDT)–1,

X(k) =
1
2
(
X1(k) + X2(k)

)
.

To make Algorithm 1.2 applicable for any initial values X1(0) and X2(0), the convergence
factor μ must satisfy 0 < μ < 4.

There are many iterative algorithms for the Sylvester equation. The first solver is the
gradient iterative algorithm (GI), introduced by Ding and Chen [32]. Niu et al. [34] intro-
duced the relaxed gradient iterative algorithm (RGI), that is, GI with relaxation parameter
ω ∈ (0, 1). Wang et al. [35] modified the GI algorithm in such a way that the information
X1(k) has been fully considered to update X(k – 1); the result is called the MGI algorithm.
Recently, Tian et al. introduced JGI [36, Algorithm 4], AJGI1 [36, Algorithm 5], and AJGI2
[36, Algorithm 6] algorithms based on GI and the idea of extracting the diagonal part
from each coefficient matrix. Moreover, there are other iterative methods for solving the
generalized coupled Sylvester matrix equations; see, for example, [37, 38].

In this paper, we introduce an iterative method for solving the generalized Sylvester
equation (1), for which matrices A, B, C, D, E are not necessarily square. Our algorithm
is based on gradients and hierarchical identification principle. This algorithm consists of
only one parameter, the convergence factor θ , and the only initial value. To perform a con-
vergence analysis of the algorithm, we use analysis on a complete metric space, together
with matrix analysis. We convert the matrix iteration process to a first-order linear dif-
ference vector equation with matrix coefficient. Then we apply the Banach contraction
principle to show that the proposed algorithm converges to the unique solution for any
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initial value if and only if 0 < θ < 2/‖P‖2
2. The range of the parameter is wider than those of

[25, 33]. The convergence rate of the proposed algorithm is governed by the spectral ra-
dius of the associated iteration matrix. We also discuss error estimates; in particular, the
error at each iteration becomes smaller than the previous one. The fastest convergence
factor is determined so that the spectral radius of the iteration matrix is minimal. More-
over, we make convergence analysis of gradient-based iterative algorithms for the equation
AXB = C, the Sylvester equation, and the Kalman–Yakubovich equation. We also provide
numerical simulations to illustrate our results for the matrix equation (1) and the Sylvester
equation. We compare the efficiency of our algorithm with the direct Kronecker lineariza-
tion and recent algorithms, namely, GI, LSI, RGI, MGI, JGI, AJGI1, and AJGI2 algorithms.

The rest of the paper is organized as follows. We derive a gradient-based iterative al-
gorithm in Sect. 2. We then analyze the convergence of the algorithm in Sect. 3. Iterative
algorithms for particular cases of (1) are investigated in Sect. 4. We illustrate and discuss
numerical simulations of the algorithm in Sect. 5. Finally, we conclude the work in Sect. 6.

2 Deriving a gradient-based iterative algorithm for the generalized Sylvester
matrix equation

We denote by Mm,n the set of m × n real matrices and set Mn := Mn,n. In this section, we
derive an iterative algorithm based on gradients to find a matrix X ∈Mn,p satisfying

AXB + CXD = E. (4)

Here we are given A, C ∈ Mm,n, B, D ∈ Mp,q, and E ∈ Mm,q, where m, n, p, q ∈ N are such
that mq = np.

Recall that equation (4) has a unique solution if and only if the square matrix P = BT ⊗
A + DT ⊗ C is invertible. In this case, the (vector) solution is given by vec X = P–1 vec E.

To derive an iterative procedure for solving (4), we recall the hierarchical identification
principle from [33]. Define two matrices

M := E – CXD and N := E – AXB.

In view of (4), we would like to solve two subsystems

AXB = M and CXD = N . (5)

We will minimize the following quadratic norm-error functions:

L1(X) := ‖AXB – M‖2
F and L2(X) := ‖CXD – N‖2

F . (6)

Now we deduce their gradients as follows:

∂

∂X
L1(X) =

∂

∂X
tr
[
(AXB – M)T (AXB – M)

]

=
∂

∂X
tr
(
XBBT XT AT A

)
–

∂

∂X
tr
(
XT AT MBT)

–
∂

∂X
tr
(
BMT AX

)

=
(
AT A

)T X
(
BBT)

+ AT AXBBT – AT MBT –
(
BMT A

)T
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= 2AT (AXB – M)BT . (7)

Similarly, we have

∂

∂X
L2(X) = 2CT (CXD – N)DT . (8)

Let X1(k) and X2(k) be the estimates or iterative solutions of system (5) at iteration k. We
introduce a step-size parameter τ ∈ R and a relaxation parameter ω ∈ (0, 1). We can derive
recursive formulas for X1(k) and X2(k) from the gradient formulas (7) and (8) as follows:

X1(k) = X(k – 1) + τ (1 – ω)AT[
M – AX(k – 1)B

]
BT

= X(k – 1) + τ (1 – ω)AT[
E – AX(k – 1)B – CXD

]
BT ,

X2(k) = X(k – 1) + τωCT[
N – CX(k – 1)D

]
DT

= X(k – 1) + τωCT[
E – AXB – CX(k – 1)D

]
DT .

By the hierarchical identification principle the unknown variable X is replaced by its esti-
mates at iteration k – 1. Instead of taking the arithmetic mean of X1(k) and X2(k) as in Al-
gorithm 1.1, our algorithm computes the weighted arithmetic mean ωX1(k) + (1 –ω)X2(k).
By introducing the parameter θ = τω(1 – ω) we get the following iterative algorithm.

Algorithm 2.1 Input A, C ∈ Mm,n, B, D ∈ Mp,q, and E ∈ Mm,q. Set A′ = AT , B′ = BT , C′ =
CT , and D′ = DT . Choose an initial matrix X(0) ∈ Mn,p. For each k = 0, 1, 2, . . . until End,
do:

F(k) = E – AX(k)B – CX(k)D,

X(k + 1) = X(k) + θ
[
A′F(k)B′ + C′F(k)D′].

Note that our algorithm avoids duplicate computations by introducing F(k) at each
iteration. To stop the process, we can impose a stopping rule such as ‖F(k)‖F < ε or
‖F(k)‖F /‖E‖F < ε, where ε is a chosen permissible error. The convergence of Algorithm
2.1 relies on the convergence factors θ , which will be determined in the next section. Note
that the algorithm requires only one parameter and one initial value and uses less com-
puting time than other gradient-based algorithms mentioned in Introduction.

3 Convergence analysis of the algorithm
In this section, we analyze the convergence of Algorithm 2.1. We convert the matrix it-
eration process to a first-order linear difference vector equation with contraction matrix
as the coefficient. It follows that the contraction reflects the convergence criteria, conver-
gence rate, and error estimates of the algorithm.

To analyze this algorithm, we recall useful facts in matrix analysis.

Lemma 3.1 (e.g. [7]) For any matrices A and B of conforming dimensions, we have
(i) ‖AT A‖2 = ‖A‖2

2;
(ii) ‖AB‖F ≤ ‖A‖2‖B‖F ;

(iii) if A is symmetric, then ‖A‖2 = ρ(A);
(iv) ‖A ⊗ B‖2 = ‖A‖2‖B‖2.
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3.1 Convergence criteria
From Algorithm 2.1 we start with considering the error matrix

X̂(k) = X(k) – X.

We will show that X̂(k) → 0 or, equivalently, vec X̂(k) → 0 as k → ∞. Now we convert
the matrix iteration process to a first-order linear difference vector equation with matrix
coefficient. Indeed, we have

F(k) = (AXB + CXD) – AX(k)B – CX(k)D

= –AX̂(k)B – CX̂(k)D,

and thus

vec F(k) = –
(
BT ⊗ A + DT ⊗ C

)
vec X̂(k) = –P vec X̂(k).

It follows that

vec X̂(k + 1) = vec
{

X̂(k) + θ
[
AT F(k)BT + CT F(k)DT]}

= vec X̂(k) + θ
[
vec

(
AT F(k)BT)

+ vec
(
CT F(k)DT)]

= vec X̂(k) + θPT vec F(k)

= vec X̂(k) – θPT P vec X̂(k)

= Pθ vec X̂(k), (9)

where Pθ = Inp – θPT P. Denoting u(k) = vec X̂(k) for k ∈ N, we obtain a first-order linear
difference vector equation, as desired.

Note that iteration (9) is also the Picard iteration

u(k + 1) = Tu(k), k ∈N, (10)

where T is the self-mapping on R
n defined by Tx = Pθ x. We will find some properties of

T yielding that the iteration converges to the fixed point u∗ = 0 of T for arbitrary initial
point u(0). In fact, this can be guaranteed by the Banach contraction principle:

Theorem 3.2 (e.g., [39, Sect. 5.1]) Let (X, d) be a nonempty complete metric space. Let
T : X →X be a contraction, that is, there is a constant α ∈ [0, 1) such that

d(Tx, Ty) ≤ αd(x, y) ∀x, y ∈X.

Then T has a unique fixed point x∗. The following estimates are equivalent and describe
the convergence rate:

(i) d(xn+1, x∗) ≤ αd(xn, x∗);
(ii) prior estimate: d(xn, x∗) ≤ αn

1–α
d(x1, x0);

(iii) posterior estimate: d(xn+1, x∗) ≤ α
1–α

d(xn+1, xn).
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Now we look for some conditions on Pθ making the mapping T a contraction. For each
x ∈R

n, we have by Lemma 3.1 that

‖Tx‖F = ‖Pθ x‖F ≤ ‖Pθ‖2‖x‖F = ρ(Pθ )‖x‖F .

The last equality holds since Pθ is a symmetric matrix. It follows that

‖Tx – Ty‖F =
∥∥T(x – y)

∥∥
F ≤ ρ(Pθ )‖x – y‖F ∀x, y ∈R

n.

Thus, if ρ(Pθ ) < 1, then T is a contraction relative to the metric induced by ‖·‖F . Note that
further characterizations of matrix contractions, involving (induced) matrix norms, are
given, for example, in [40]. Since Pθ is a symmetric matrix, all its eigenvalues are real, and
thus

ρ(Pθ ) = max
{∣∣1 – θλmin

(
PT P

)∣∣,
∣
∣1 – θλmax

(
PT P

)∣∣}. (11)

It follows that ρ(Pθ ) < 1 if and only if

0 < θλmin
(
PT P

)
< 2 and 0 < θλmax

(
PT P

)
< 2. (12)

Since P is invertible and PT P is positive semidefinite, we have that PT P is positive definite
and λmin(PT P) > 0. The positive definiteness of PT P and Lemma 3.1(i) imply

λmax
(
PT P

)
=

∥
∥PT P

∥
∥

2 = ‖P‖2
2.

Hence condition (12) holds if and only if

0 < θ <
2

‖P‖2
2

. (13)

Therefore, if (13) holds, then the sequence X(k) generated by Algorithm 2.1 converges to
the solution of (4) for any initial value X(0).

Conversely, suppose that θ does not satisfy (13). The above discussion implies that
ρ(Pθ ) ≥ 1, that is, there is an eigenvalue λ of Pθ such that |λ| ≥ 1. We can choose an eigen-
vector v ∈R

n – {0} such that Pθ v = λv. The Picard iteration (10) with initial point u(0) = v
yields

u(k) = Tku(0) = Tkv = λkv � 0.

Thus X̂(k) � 0 or X(k) � X.
We summarize a necessary and sufficient condition for the convergence criteria as fol-

lows.

Theorem 3.3 Let θ ∈R be given. Then the sequence X(k) generated by Algorithm 2.1 con-
verges to the solution of (4) for any initial value X(0) if and only if θ satisfies (13).

Thus, if θ ≤ 0 or θ ≥ 2
‖P‖2

2
, then Algorithm 2.1 is not applicable for some initial values.
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3.2 Convergence rate and error estimates
We now apply the Banach contraction principle to analyze the convergence rate and error
estimates of Algorithm 2.1. Note that the error at each step of the associated Picard itera-
tion is equal to that of the original matrix iterative algorithm. Indeed, for any k ∈ N∪ {0},
we have

∥∥u(k) – u∗∥∥
F =

∥∥vec X̂(k)
∥∥

F =
∥∥X̂(k)

∥∥
F =

∥∥X(k) – X
∥∥

F ,
∥∥u(k+1) – u(k)∥∥

F =
∥∥vec X̂(k + 1) – vec X̂(k)

∥∥
F

=
∥
∥X̂(k + 1) – X̂(k)

∥
∥

F =
∥
∥X(k + 1) – X(k)

∥
∥

F .

Thus by Theorem 3.2(i) we obtain

∥
∥X(k + 1) – X

∥
∥

F ≤ ρ(Pθ )
∥
∥X(k) – X

∥
∥

F . (14)

It follows inductively that for each k ∈N,

∥
∥X(k) – X

∥
∥

F ≤ ρk(Pθ )
∥
∥X(0) – X

∥
∥

F . (15)

Hence ρ(Pθ ) describes how fast the approximate solutions X(k) converge to the exact so-
lution X. The smaller the spectral radius, the faster X(k) goes to X. In that case, since
ρ(Pθ ) < 1, if ‖X(k) – X‖F 
= 0, then

∥∥X(k + 1) – X
∥∥

F <
∥∥X(k) – X

∥∥
F . (16)

Moreover, from the prior and posterior estimates in Theorem 3.4 we obtain the bounds

∥∥X(k) – X
∥∥

F ≤ ρk(Pθ )
1 – ρ(Pθ )

∥∥X(1) – X(0)
∥∥

F , (17)

∥
∥X(k + 1) – X

∥
∥

F ≤ ρ(Pθ )
1 – ρ(Pθ )

∥
∥X(k + 1) – X(k)

∥
∥

F . (18)

we summarize our discussion in the following theorem.

Theorem 3.4 Suppose that the parameter θ is chosen as in Theorem 3.3 so that the se-
quence X(k) generated by Algorithm 2.1 converges to X for any initial value. Then we have:

• The convergence rate of the algorithm is governed by the spectral radius (11).
• The error estimates ‖X(k + 1) – X‖F compared to the previous step and the first step

are provided by (14) and (15), respectively. In particular, the error at each iteration gets
smaller than the (nonzero) previous one, as in (16).

• The prior estimate (17) and the posterior estimate (18) hold.

From (11), if the eigenvalues of θPT P are close to 1, then the spectral radius of the iter-
ative matrix is close to 0, and hence the errors X̂(k) converge faster to 0.

Remark 3.5 The convergence criteria and the convergence rate of Algorithm 2.1 depend
on A, B, C, D but not on E. However, the matrix E can be used for a stopping criteria.
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The following proposition determines the iteration number for which the approximated
solution X(k) is close to the exact solution X so that ‖X(k) – X‖F < ε.

Proposition 3.6 According to Algorithm 2.1, for each given error ε > 0, we have ‖X(k) –
X‖F < ε after k∗ iterations for any

k∗ >
log ε – log‖X(0) – X‖F

logρ(Pθ )
. (19)

Proof From estimate (15) we have

∥
∥X(k) – X

∥
∥

F ≤ ρk(Pθ )
∥
∥X(0) – X

∥
∥

F → 0 as k → ∞.

This precisely means that for each given ε > 0, there is k∗ ∈N such that for all k ≥ k∗,

ρk(Pθ )
∥
∥X(0) – X

∥
∥

F < ε.

Taking logarithms, we have that this condition is equivalent to (19). Thus, if we run Algo-
rithm 2.1 k∗ times, then we get ‖X(k) – X‖F < ε, as desired. �

3.3 Optimal parameter
We now discuss the fastest convergence factors for Algorithm 2.1.

Theorem 3.7 Let 0 < θ < 2
‖P‖2

2
. Denote κ as the condition number of the matrix P. Then the

optimal value of θ for which Algorithm 2.1 is applicable for any initial value is determined
by

θopt =
2

λmin(PT P) + λmax(PT P)
. (20)

In this case the spectral radius of the iteration matrix is given by

ρ(Pθopt ) =
λmax(PT P) – λmin(PT P)
λmax(PT P) + λmin(PT P)

=
κ2 – 1
κ2 + 1

. (21)

Proof Theorem 3.3 tells us that the convergence of the algorithm implies (13). The con-
vergence rate of the algorithm is the same as that of the linear iteration (9) and thus is
governed by the spectral radius (11). Hence we would like to minimize the spectral radius
ρ(Pθ ) subject to condition (13). Putting a = λmin(PT P) and b = λmax(PT P), we make the
following optimization:

min
0<θ< 2

b

{
max

{|1 – aθ |, |1 – bθ |}}.

The minimality is reached at θopt = 2/(a + b), so that the minimum value of ρ(Pθ ) is equal
to (b – a)/(b + a). �

From Theorem 3.7, Algorithm 2.1 has a fast convergence if the condition number of P
is close to 1 or, equivalently, λmax(PT P) is close to λmin(PT P).
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4 Iterative algorithms for particular cases of the generalized Sylvester
equation

In this section, we discuss iterative algorithms for solving interesting particular cases of
the generalized Sylvester equation.

4.1 The equation AXB = E
Assume that the equation AXB = E has a unique solution or, equivalently, the square ma-
trix Q := BT ⊗ A is invertible. In the particular case where A and B are square matrices,
this condition is reduced to the invertibility of both A and B. The following algorithm is
proposed to find the solution X.

Algorithm 4.1 Set A′ = AT and B′ = BT . Choose X(0) ∈ Mn,p. For each k = 0, 1, 2, . . . until
End, do:

X(k + 1) = X(k) + θA′(C – AX(k)B
)
B′.

Note that QT Q = BBT ⊗ AT A by the mixed-product property of the Kronecker product.
Since Q is invertible, so is QT Q. It follows that AT A and BBT are positive definite. Thus

λmin
(
QT Q

)
= λmin

(
AT A

)
λmin

(
BBT)

= λmin
(
AT A

)
λmin

(
BT B

)
,

and, similarly, λmax(QT Q) = λmax(AT A)λmax(BT B). Now we obtain the following:

Corollary 4.2 Assume that the equation AXB = E has a unique solution. Let θ ∈ R. Then
we have:

1) Algorithm 4.1 is applicable for any initial value X(0) if and only if

0 < θ <
2

‖A‖2
2‖B‖2

2
.

2) The convergence rate of the iteration is governed by the spectral radius

ρ
(
Inp – θQT Q

)

= max
{∣∣1 – θλmin

(
AT A

)
λmin

(
BT B

)∣∣,
∣∣1 – θλmax

(
AT A

)
λmax

(
BT B

)∣∣}.

3) The optimal convergence factor for which Algorithm 4.1 is applicable for any initial
value is given by

θopt =
[
λmin

(
AT A

)
λmin

(
BT B

)
+ λmax

(
AT A

)
λmax

(
BT B

)]–1/2.

4.2 The Sylvester equation
Suppose that m = n and p = q. Assume that the Sylvester equation

AX + XD = E (22)

has a unique solution. This condition is equivalent to the invertibility of the Kronecker sum
DT ⊕ A := DT ⊗ In + Ip ⊗ A, or all possible sums of eigenvalues of A and D are nonzero.
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Algorithm 4.3 Set A′ = AT and D′ = DT . Choose X(0) ∈Mn,p. For each k = 0, 1, 2, . . . until
End, do:

F(k) = E – AX(k) – X(k)D,

X(k + 1) = X(k) + θ
[
A′F(k) + F(k)D′].

Corollary 4.4 Assume that the equation AX + XD = E has a unique solution X. Then the
iterative sequence X(k) generated by Algorithm 4.3 converges to X for any initial value X(0)
if and only if

0 < θ <
2

‖DT ⊕ A‖2
2

.

Error estimates and the optimal convergence factor for Algorithm 4.3 can also be ob-
tained from Theorem 2.1 when B and C are the identity matrices.

Remark 4.5 If A and D are positive semidefinite, then ‖DT ⊕A‖2 is reduced to ‖A‖2 +‖D‖2.

4.3 The Kalman–Yakubovich equation
Suppose that m = n and p = q. Assume that the Kalman–Yakubovich equation

AXB + X = E (23)

has a unique solution. This condition is equivalent to the invertibility of BT ⊗ A + Inp or,
equivalently, to that all possible products of eigenvalues of A and B are not equal to –1.

Algorithm 4.6 Set A′ = AT and B′ = BT . Choose X(0) ∈ Mn,p. For each k = 0, 1, 2, . . . until
End, do:

F(k) = E – AX(k)B – X(k),

X(k + 1) = X(k) + θ
[
A′F(k)B′ + F(k)

]
.

Corollary 4.7 Assume that the equation AXB + X = E has a unique solution X. The iter-
ative sequence X(k) generated by Algorithm 4.6 converges to X for any initial value X(0) if
and only if

0 < θ <
2

‖BT ⊗ A + In2‖2
2

.

Remark 4.8 If A and B are positive semidefinite, then ‖BT ⊗ A + In2‖2 is reduced to
‖A‖2‖B‖2 + 1.

5 Numerical simulations
In this section, we report numerical results illustrating the effectiveness of Algorithm 2.1.
We consider matrix systems from small dimensions (say, 2 × 2) to large dimensions (say,
120 × 120). We investigate the effect of changing convergence factors (see Example 5.1)
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Figure 1 Relative errors for Example 5.1

and initial points (Example 5.2). We compare the performance of the algorithm to the di-
rect Kronecker linearization (Example 5.1) and recent iterative algorithms (Example 5.3).
We show that Algorithm 2.1 is still effective when dealing with a nonsquare problem (see
Example 5.4). To measure errors at step k of the iteration, we consider the following rela-
tive error:

‖AX(k)B + CX(k)D – E‖F

‖E‖F
.

All iterations have been carried out on the same PC environment: MATLAB R2018a, In-
tel(R) Core(TM) i7-6700HQ CPU @ 2.60 GHz 2.60 GHz, RAM 8.00 GB. To measure the
computational time (in seconds) taken for a program, we use the tic and toc functions
in MATLAB and abbreviate CT for it. The readers are recommended to consider both
reported errors and CTs while comparing the performance of any algorithms.

Example 5.1 Consider the equation AXB + CXD = E, where A, B, C, D, E, X of sizes 100 ×
100 are given by

A = tridiag(–1, 2, –1), B = tridiag(6, 4, –1), C = tridiag(1, 2, 3),

D = tridiag(4, 2, –5), E = heptadiag(2, –22, 16, 92, 36, –58, –42).

We run Algorithm 2.1 with five convergence factors; one of them is the optimal conver-
gence factor θopt = 6.5398e-04, determined by Theorem 3.7. According to (13), the range
of appropriate θ is given by 0 < θ < 2/‖P‖2

2 ≈ 6.5398e-04 (in this case, λmin(PT P) ≈ 0), that
is, Algorithm 2.1 is applicable for every chosen θ . The result after 100 iterations is pre-
sented by Fig. 1 and Table 1. From the relative error plot versus iteration time in Fig. 1
we see that the optimal convergence factor gives the fastest convergence. Table 1 shows
that the computational times with the five convergence factors are significantly less than
that of the direct method vec X = P–1 vec E. The relative errors after 100 iterations are very
small in comparison with the dimensions of the coefficient matrices.

Example 5.2 In this example, we consider the equation AXB + CXD = E with different
sizes of matrices, say, 2 × 2, 10 × 10, 100 × 100, and 120 × 120. For each case, we take
A = tridiag(7, –2, 5), B = tridiag(1, 6, 8), C = tridiag(3, –9, 1), D = tridiag(9, –2, 5), and E =
heptadiag(34, 21, 99, 8, 252, –9, 135) of corresponding sizes. We denote by ones(n) the n×n
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Table 1 Relative error and computational time for Example 5.1

θ Relative error CT

θ = 6.5398e-04 5.800× 10–3 0.0324
θ = 2.500e-07 9.629× 10–1 0.0311
θ = 1.6700e-06 7.810× 10–1 0.0322
θ = 1.9580e-05 1.585× 10–1 0.0316
θ = 9.8530e-05 4.460× 10–2 0.0303
Direct method 20.8804

Table 2 Relative error and computational time for Example 5.2

Initial
value

Dimension 2× 2 Dimension 10× 10 Dimension 100× 100 Dimension 120× 120

θopt = 9.8701e-05 θopt = 1.6800e-05 θopt = 1.4951e-05 θopt = 1.4945e-05

CT Error CT Error CT Error CT Error

X1 3.4340e-04 0.2823 6.1930e-04 0.0934 0.0134 0.1096 0.0236 0.1098
X2 3.1870e-04 0.2770 3.7480e-04 0.0928 0.0151 0.1095 0.0240 0.1098
X3 3.0990e-04 0.2610 5.6450e-04 0.0915 0.0143 0.1096 0.0231 0.1099
X4 3.1040e-04 0.2250 4.5500e-04 0.0925 0.0147 0.1110 0.0228 0.1113
X5 3.1020e-04 0.2102 3.8710e-04 0.0947 0.0146 0.1120 0.0233 0.1124
X6 3.1550e-04 0.1867 3.7830e-04 0.1004 0.0145 0.1144 0.0225 0.1149

matrix that contains 1 at every position. For each n ∈ {2, 10, 100, 120}, we run Algorithm
2.1 with distinct initial candidates:

X1 = 0.1 × ones(n), X2 = 0.2 × ones(n), X3 = 0.5 × ones(n),

X4 = 1.2 × ones(n), X5 = 1.5 × ones(n), X6 = 2 × ones(n).

We run 50 iterations for the matrices of dimensions 2 × 2 and 10 × 10, whereas we run
100 iterations for large dimensions 100×100 and 120×120. The optimal convergence fac-
tors θ for each case are provided in Table 2. The computational times and errors reported
in Table 2 show that our algorithm is satisfactorily applicable for all initial candidates and
different sizes of coefficient matrices.

Example 5.3 We consider the equation AX + XB = C with three cases of coefficient matrix
sizes, namely 2 × 2, 10 × 10, and 100 × 100. We set

A0 =

[
1 2

–3 4

]

, B0 =

[
8 0

–5 –6

]

and Z =

[
2 3

–6 9

]

.

For each n ∈ {2, 10, 100}, we consider the coefficient matrices A = A0 ⊗ In/2, B = B0 ⊗ In/2,
and X∗ = Z ⊗ In/2 together with initial condition X(0) = 10–6 × ones(n). We compare Al-
gorithm 2.1 with GI [25], RGI [34], MGI [35], JGI [36, Algorithm 4], AJGI1 [36, Algorithm
5], AJGI2 [36, Algorithm 6], and LSI [33] algorithms.

We run 50 iterations for dimension 2 × 2, 100 iterations for dimension 10 × 10, and
200 iterations for dimension 100 × 100. The relative error and the computational time
in Table 3 reveal that our algorithm well performs comparing to the other algorithms.
Figure 2 displays the error plots of the first 100 iterations for each case; 2 × 2 (a), 10 × 10
(b), and 100 × 100 (c). We can see that our algorithm gives the fastest convergence.

Example 5.4 We consider the generalized Sylvester matrix equation with rectangu-
lar unknown matrix X ∈ M50,100. Let A, C ∈ M50 and B, D ∈ M100 be defined by A =
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Table 3 Relative error and computational time for Example 5.3

Dimension 2× 2 Dimension 10× 10 Dimension 100× 100

Method CT Error CT Error CT Error

GI opt 2.7170e-04 9.4674e-04 4.5690e-04 0.0018 0.0188 0.0036
GI 2.3330e-04 0.0996 4.3030e-04 0.2125 0.0160 0.0709
RGI 2.6100e-04 0.0254 5.3710e-04 0.8040 0.0205 0.0456
MGI 2.7400e-04 0.0074 7.2790e-04 0.0072 0.0195 0.0240
JGI 2.6410e-04 0.0772 7.6200e-04 0.1649 0.0200 0.0267
AJGI 1 2.8810e-04 0.1601 7.8790e-04 0.1465 0.0267 0.1936
AJGI 2 2.8420e-04 0.0167 8.2090e-04 0.0251 0.0262 0.0229
LSI 2.5810e-04 0.2567 7.9300e-04 0.2935 0.0261 0.2329

Figure 2 Natural logarithm relative errors for
Example 5.3
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Table 4 Relative error and computational time for Example 5.4

Method CT Error

GI opt 0.0185 0.0089
GI 0.0176 0.0336
RGI 0.0199 0.1053
MGI 0.0196 0.1819
direct method 3.6177

Figure 3 Relative errors for Example 5.4

tridiag(–1, 2, –1), B = tridiag(1, 4, –3), C = tridiag(3, –1, 2), and D = tridiag(3, 5, 7). The ex-
act solution is given by X∗ = X̃ ⊗ I10, where

X̃ =

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

1 3 –5 9 5 7 4 –6 9 10
2 –8 9 –7 4 5 –6 1 2 3
2 3 5 7 9 –8 –5 0 1 2
6 9 –8 7 5 4 –2 0 3 6

–8 –9 6 5 –1 2 0 3 –4 –7

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

.

The constant matrix E is determined by E = AX∗B + CX∗D.
We compare Algorithm 2.1 (θopt = 6.4000e-05) and the algorithms compatible with non-

square matrices, that is, GI [25], RGI [34], and MGI [35], with 100 iterations. The relative
error at terminal iteration and the computational time of each algorithm and of the direct
method are shown in Table 4, whereas Fig. 3 displays the error plots. Both of them reveal
the effectiveness in performance of our algorithm. The computational times of GI-opt and
GI are less than those of RGI and MGI. The reason that GI-opt takes little more time than
GI is that our algorithm needs more time to compute θopt in Theorem 3.7. On the other
hand, Algorithm 2.1 obtains a significantly better error than GI algorithm.

6 Conclusion
We propose a gradient-based iterative algorithm (Algorithm 2.1) for solving the rectangu-
lar generalized Sylvester matrix equation (4) and its famous particular cases. Theorem 3.3
informs us that the parameter θ must be chosen properly to have the proposed algorithm
applicable for any initial matrices. Moreover, we determine the optimal convergence fac-
tors, which makes the algorithm reach the fastest convergence rate. The asymptotic con-
vergence rate of the algorithm is governed by the spectral radius of Inp –θPT P. If the eigen-
value θPT P is close to 1, then the algorithm converges faster in the long run. The numerical
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simulations reveal that our algorithm is suitable for both small and large matrix systems,
both square and nonsquare problems, and any initial points. In addition, the algorithm al-
ways gives the effective performance comparing to the errors obtained from recent meth-
ods, namely, GI, RGI, MGI, JGI, AJGI1, AJGI2, and LSI algorithms. There are two reasons
that cause our algorithm to perform well. The first reason is that the algorithm requires
only one parameter and one initial value, and avoids duplicated computations. The second
is that the convergence factor is chosen by an optimization method.
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