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Abstract
As is well known the novel coronavirus (COVID-19) is a zoonotic virus and our model
is concerned with the effect of the zoonotic source of the coronavirus during the
outbreak in China. We present a SEIS complex network epidemic model for the novel
coronavirus. Our model is presented in fractional form and with varying population.
The steady states and the basic reproductive number are calculated. We also present
some numerical examples and the sensitivity analysis of the basic reproductive
number for the parameters.
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1 Introduction
The corona virus family continues to clone new strains that threaten human life. The world
is witnessing these days the emergence of a new strain of corona virus in the Chinese city
of Wuhan. This novel corona virus strain (COVID-19) is the seventh of the corona fam-
ily, which includes, for example, influenza, SARS, and Middle East respiratory syndrome
(MERS). The family of coronaviruses is characterized by being common among different
types of animal species, such as bats, cats, camels, and cattle.

In December 31, 2019, the Chinese city of Wuhan announced the outbreak of a new
strain of coronavirus. And this new strain is considered among the zoonotic viruses that
are transmitted from animal to human and then transmitted from human to human [1–6].

On February 27, 2020 (at the time of writing), there were 82,294 infected cases of this
virus worldwide, according to the World Health Organization’s report No. 38 on the epi-
demiological situation of the virus, including 2747 deaths in China and 57 death cases
outside China [7]. This is equivalent to 3.41% mortality worldwide.

The Chinese city of Wuhan in Hubei Province is the origin of this virus, which quickly
spread to many Chinese cities (34 cities so far). Then it moved out of the Chinese terri-
tory until it reached 46 countries worldwide [7]. Nowadays, we find that China is close to
eradicating the COVID-19 epidemic.

The Chinese city of Wuhan is among the most important cities in China in terms of com-
bining many transportation lines between Chinese cities as well as internal transportation
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outside China. Wuhan also contains a large market for seafood and animals, which is the
source of the emergence and spread of COVID-19.

And when looking at how COVID-19 spreads from person to person, we find that the
pattern of spread is not known yet, but most of the current information about the method
of spread is based on previous information on corona viruses. Also, the spread of COVID-
19 from a person infected with the virus to a healthy person needs close communication
with the infected person where there will be an effect of cough and sneezing droplets. It
turned out from the current cases of infection, whether simple or severe, that symptoms
of this disease (COVID-19) appear in the form of fever, shortness of breath and cough. To
date, there is no vaccine for this virus, so general prevention instructions such as avoiding
direct contact with infected people and using gloves and face masks should be adhered to.

The study focused in this model on the zoonotic nature of the virus because of its con-
tinuous effect on the spread of the virus, especially at the beginning of the spread. In ad-
dition, the model was placed in a fractional form, with the community being represented
by a heterogeneous network, in order for the model to be more realistic.

In the following section we present a heterogeneous network epidemic model for
COVID-19 in a fractional form [8–10] using the Caputo definition. The SEIS scenario
was chosen as the mode of diffusion, as it was considered more suitable than the SEIR
because some cases have been confirmed to be re-infected with COVID-19 [11–13]. For
more information about the basics of fractional calculus and fractional model stability, see
[14–20] and [21–24], for networks see [25]. In Sect. 2 we described the model. In Sect. 3
we find the steady states and the basic reproductive function. In Sect. 4 we proved the
local stability of the steady states. In Sect. 5 we present the sensitivity analysis to get the
most effective parameter and some numerical examples. Section 6 is the conclusion.

2 Fractional SEIS model description
In this model we divided the population into three compartments susceptible, exposed and
infected. The susceptible individuals can be exposed because of being in close contact with
infected one. Also, the infection could be transmitted to a susceptible individual from a
zoonotic source of COVID-19 (an unknown animal embracing the virus). This interaction
between susceptible and the zoonotic source happened in a homogeneous pattern during
buying and walking in the seafood market. Also, the number of zoonotic sources is con-
sidered to be constant in the seafood market (sellers put other animals after the animals
that were sold). The exposed individual become infected after the incubation period. The
infected individual became susceptible again after the infectious period. The city’s popu-
lation (Wuhan city) is changing as a result of traveling continuously to and from the city.
In this model we ignored the births and the deaths.

According to the above system dynamic description, the model is defined as

C
0 Dα

t Sk(t) = A –
kβ1Sk(t)�(t)

Nk(t)
–

β2Sk(t)(Z(t) – Z(t – �t))
Nk(t)

+ γ Ik(t) – BSk(t),

C
0 Dα

t Ek(t) =
kβ1Sk(t)�(t)

Nk(t)
+

β2Sk(t)(Z(t) – Z(t – �t))
Nk(t)

– μEk(t) – BEk(t),

C
0 Dα

t Ik(t) = μEk(t) – γ Ik(t) – BIk(t), (2.1)
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Figure 1 The dynamical interacting of system (2.1)

Table 1 Parameters description

Parameter Description

β1 The infectious rate from infected individual.
β2 The infectious rate from the zoonotic source.
μ Rate of becoming infected.
γ Recovery rate and be susceptible again.
A The average number of passengers coming into the city.
B Traveling rate from the city.

where k is the degree of the node, 1 ≤ k ≤ n, n is the maximum degree of a node. �(t) is
the probability to be linked with an infected node and defined as

�(t) =
∑

k kP(k)Ik(t)
〈k〉 ,

where 〈k〉 =
∑

k kP(k).
P(k) is the degree distribution of the population. Nk(t) is the total population of degree k.

(Z(t) – Z(t – �t)) is a Heaviside function representing the zoonotic infection force. This
function affects only before seafood market closure (from 1 December 2019 to 31 De-
cember 2019). After the seafood market closure on 1 January 2020 this function is equal
to 0. Other parameters are described in Table 1. We used the Caputo definition for the
fractional order α ∈ (0, 1], which is defined as follows:

C
a Dα

t f (t) =
1

�(1 – α)

∫ t

a
(t – s)–αf ′(s) ds.

3 Steady states and the basic reproductive number
Let S = {(Sk(t), Ek(t), Ik(t)) ∈ R3k

+ , k = 1, 2, . . . , n|Nk(t) = Sk(t) + Ek(t) + Ik(t) ≤ A
B } be a closed

positive invariant set for system (2.1).
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We will find the equilibrium points of system (2.1) by putting its equations equal to zero
as follows:

A –
kβ1Sk(t)�(t)

Nk(t)
–

β2Sk(t)z(t)
Nk(t)

+ γ Ik(t) – BSk(t) = 0,

kβ1Sk(t)�(t)
Nk(t)

+
β2Sk(t)z(t)

Nk(t)
– μEk(t) – BEk(t) = 0,

μEk(t) – γ Ik(t) – BIk(t) = 0,

where Z(t) – Z(t – �t) = z(t). It is obvious that system (2.1) has a unique free disease equi-
librium point,

P0 =
{

A
B

, 0, 0
}

1≤k≤n
,

with respect to z(t) = 0 and an endemic point P2 = {S∗∗
k , E∗∗

k , I∗∗
k }1≤k≤n, where

S∗∗
k =

A2(μ + B)(γ + B)
B[(kβ1�∗ + β2z(t))B(B + γ + μ) + A(μ + B)(γ + B)]

,

E∗∗
k =

(γ + B)A(kβ1�
∗ + β2z(t))

(kβ1�∗ + β2z(t))B(B + γ + μ) + A(μ + B)(γ + B)
,

I∗∗
k =

μA(kβ1�
∗ + β2z(t))

(kβ1�∗ + β2z(t))B(B + γ + μ) + A(μ + B)(γ + B)
.

The value of the endemic point changes with respect to the existence of z(t). If z(t) = 0,
then the endemic point take the form P1 = {S∗

k , E∗
k , I∗

k }1≤k≤n, where

S∗
k =

A2(μ + B)(γ + B)
B[kβ1�∗B(B + γ + μ) + A(μ + B)(γ + B)]

,

E∗
k =

(γ + B)Akβ1�
∗

kβ1�∗B(B + γ + μ) + A(μ + B)(γ + B)
,

I∗
k =

μAkβ1�
∗

kβ1�∗B(B + γ + μ) + A(μ + B)(γ + B)
.

3.1 The existence of the endemic point
By substituting with the value of I∗∗

k into the definition of �(t) we get the self-consistency
equation

� =
1

〈k〉
∑

k

kp(k)
μA(kβ1� + β2z(t))

(kβ1� + β2z(t))B(B + γ + μ) + A(μ + B)(γ + B)
.

We can put it in the following form:

g(�) =
1

〈k〉
∑

k

kp(k)
μA(kβ1� + β2z(t))

(kβ1� + β2z(t))B(B + γ + μ) + A(μ + B)(γ + B)
– � = 0.
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Now, we need to get a solution for g(�) in the interval � ∈ (0, 1). By calculating the value
of g(�) at both 0 and 1 we get

g(1) =
1

〈k〉
∑

k

kp(k)
μA(kβ1 + β2z(t))

(kβ1 + β2z(t))B(B + γ + μ) + A(μ + B)(γ + B)
– 1 < 0

and

g(0) =
1

〈k〉
∑

k

kp(k)
μAβ2z(t)

β2z(t)B(B + γ + μ) + A(μ + B)(γ + B)
≥ 0.

Therefore, we have two cases.
Case 1: If z(t) exists, then g(0) > 0. This leads to the function g(�) always having a non-

trivial solution in the interval (0, 1).
Case 2: If z(t) = 0, then g(0) = 0. Hence, the function g(�) has a non-trivial solution in

the interval (0, 1) under the condition

dg(�)
d�

∣
∣
∣
∣
�=0

> 0,

it follows

〈k2〉
〈k〉

μβ1

(μ + B)(γ + B)
> 1, (3.1)

where 〈k2〉 =
∑

k k2p(k).

3.2 The basic reproductive number
Only the exposed and infected compartments will be used to find the basic reproductive
value [26]. The rate of new infected nodes entering the two compartments Ek(t) and Ik(t)
is represented by the matrix F given by

F =

(
F11 F12

F21 F22

)

2n×2n

,

where F11, F12, F21 and F22 are n × n matrices [27]. The following matrix V represents
the rate of transferring out of and into the two compartments Ek(t) and Ik(t):

V =

(
V11 V12

V21 V22

)

2n×2n

,

where V11, V12, V21 and V22 are n × n matrices. The basic reproductive number is given by
the dominant eigenvalue of FV –1 calculated at the disease-free equilibrium point P0 and
z(t) = 0 (pure population). The elements of F are given by

F11 = F21 = F22 =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎞

⎟
⎟
⎟
⎟
⎠

n×n

,
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F12 =
β1

〈k〉

⎛

⎜
⎜
⎜
⎜
⎝

P(1) 2P(2) . . . nP(n)
2P(1) 22P(2) . . . 2nP(n)

...
...

. . .
...

nP(1) 2nP(2) . . . nnP(n)

⎞

⎟
⎟
⎟
⎟
⎠

n×n

,

and the elements of matrix V take the form

V11 =

⎛

⎜
⎜
⎜
⎜
⎝

B + μ 0 . . . 0
0 B + μ . . . 0
...

...
. . .

...
0 0 . . . B + μ

⎞

⎟
⎟
⎟
⎟
⎠

n×n

,

V12 =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎞

⎟
⎟
⎟
⎟
⎠

n×n

,

V21 =

⎛

⎜
⎜
⎜
⎜
⎝

–μ 0 . . . 0
0 –μ . . . 0
...

...
. . .

...
0 0 . . . –μ

⎞

⎟
⎟
⎟
⎟
⎠

n×n

,

V22 =

⎛

⎜
⎜
⎜
⎜
⎝

B + γ 0 . . . 0
0 B + γ . . . 0
...

...
. . .

...
0 0 . . . B + γ

⎞

⎟
⎟
⎟
⎟
⎠

n×n

.

The characteristic equation for the 2n eigenvalues λ of matrix FV –1 is

λn
( 〈k2〉

〈k〉
β1μ

(B + μ)(B + γ )
– λ

)n

= 0,

then the basic reproductive number R0 is defined as

R0 =
〈k2〉
〈k〉

β1μ

(B + μ)(B + γ )
.

Theorem 3.1 Define the basic reproductive number R0 as follows:

R0 =
〈k2〉
〈k〉

β1μ

(B + μ)(B + γ )
.

1. If z(t) = 0 and R0 < 1, then system (2.1) has a unique free disease equilibrium point P0.
2. If z(t) = 0 and R0 > 1, then system (2.1) has an unique endemic point P1.
3. If z(t) 	= 0, then system (2.1) always has an endemic point P2.
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4 Stability analysis of the steady states
4.1 The stability of the free disease equilibrium point P0

Firstly, we establish the Jacobian matrix of system (2.1) at P0 with respect to z(t) = 0, which
takes the form

J(P0) =

⎛

⎜
⎝

C11 C12 C13

C21 C22 C23

C31 C32 C33

⎞

⎟
⎠

3n×3n

, (4.1)

where each sub-matrix Cij, 1 ≤ i, j ≤ 3 is an n × n matrix and is given by

C11 =

⎛

⎜
⎜
⎝

–B · · · 0
...

. . .
...

0 · · · –B

⎞

⎟
⎟
⎠

n×n

,

C12 = C31 =

⎛

⎜
⎜
⎝

0 · · · 0
...

. . .
...

0 · · · 0

⎞

⎟
⎟
⎠

n×n

,

C13 =

⎛

⎜
⎜
⎝

–β1m11 + γ · · · –β1m1n
...

. . .
...

–β1mn1 · · · –β1mnn + γ

⎞

⎟
⎟
⎠

n×n

,

C21 =

⎛

⎜
⎜
⎝

0 · · · 0
...

. . .
...

0 · · · 0

⎞

⎟
⎟
⎠

n×n

,

C22 =

⎛

⎜
⎜
⎝

–μ – B · · · 0
...

. . .
...

0 · · · –μ – B

⎞

⎟
⎟
⎠

n×n

,

C23 =

⎛

⎜
⎜
⎝

β1m11 · · · β1m1n
...

. . .
...

β1mn1 · · · β1mnn

⎞

⎟
⎟
⎠

n×n

,

C32 =

⎛

⎜
⎜
⎝

μ · · · 0
...

. . .
...

0 · · · μ

⎞

⎟
⎟
⎠

n×n

,

C33 =

⎛

⎜
⎜
⎝

–γ – B · · · 0
...

. . .
...

0 · · · –γ – B

⎞

⎟
⎟
⎠

n×n

,

where mij = ijp(j)
〈k〉 ∀1 ≤ i, j ≤ n. All eigenvalues of the Jacobian matrix (4.1) should satisfy

the following condition:

∣
∣arg(xi)

∣
∣ >

απ

2
. (4.2)
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After expanding the Jacobian matrix, we get the following characteristic equation:

(B + x)n((γ + B + x)(μ + B + x)
)n–1

(

–μβ1
〈k2〉
〈k〉 + (γ + B + x)(μ + B + x)

)

= 0. (4.3)

Obviously, we have n negative eigenvalues equal to –B from the first bracket. From the
second bracket we have a second degree equation repeated n – 1 times in the form

(γ + B + x)(μ + B + x) = 0,

which having another two negative Eigenvalues –(γ +B) and –(μ+B). Each one is repeated
n – 1 times then we have 2n – 2 negative Eigenvalues from the second bracket. The third
bracket in (4.3) is a second degree equation equal to

x2 + ρ1x + ρ0 = 0,

where

ρ1 = 2B + γ + μ > 0,

ρ0 =
(
(γ + B)(μ + B)

)
(

1 –
〈k2〉
〈k〉

μβ1

(γ + B)(μ + B)

)

,

ρ0 =
(
(γ + B)(μ + B)

)
(1 – R0).

Therefore, ρ0 > 0; if R0 < 1 then the third bracket has two negative eigenvalues. Hence
condition (4.2) is satisfied.

Theorem 4.1 If R0 < 1 then the free disease steady state P0 is locally asymptotically stable
and unstable if R0 > 1.

4.2 The stability of the endemic points
Similarly, forming the Jacobian matrix at the endemic point P2 we get

J(P2) =

⎛

⎜
⎝

N11 N12 N13

N21 N22 N23

N31 N32 N33

⎞

⎟
⎠

3n×3n

, (4.4)

where each sub-matrix Nij, 1 ≤ i, j ≤ 3 is n × n matrix and given by

N11 =

⎛

⎜
⎜
⎝

–(w1 + υ1)(1 – ε1) – B · · · 0
...

. . .
...

0 · · · –(wn + υn)(1 – εn) – B

⎞

⎟
⎟
⎠

n×n

,

N12 =

⎛

⎜
⎜
⎝

ε1(w1 + υ1) · · · 0
...

. . .
...

0 · · · εn(wn + υn)

⎞

⎟
⎟
⎠

n×n

,
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N13 =

⎛

⎜
⎜
⎝

–ε1(u11 – (w1 + υ1)) + γ · · · –ε1u1n
...

. . .
...

–εnun1 · · · –εn(unn – (wn + υn)) + γ

⎞

⎟
⎟
⎠

n×n

,

N21 =

⎛

⎜
⎜
⎝

(w1 + υ1)(1 – ε1) · · · 0
...

. . .
...

0 · · · (wn + υn)(1 – εn)

⎞

⎟
⎟
⎠

n×n

,

N22 =

⎛

⎜
⎜
⎝

–ε1(w1 + υ1) – μ – B · · · 0
...

. . .
...

0 · · · –εn(wn + υn) – μ – B

⎞

⎟
⎟
⎠

n×n

,

N23 =

⎛

⎜
⎜
⎝

ε1(u11 – (w1 + υ1)) · · · ε1u1n
...

. . .
...

εnun1 · · · εn(unn – (wn + υn))

⎞

⎟
⎟
⎠

n×n

,

N31 =

⎛

⎜
⎜
⎝

0 · · · 0
...

. . .
...

0 · · · 0

⎞

⎟
⎟
⎠

n×n

,

N32 =

⎛

⎜
⎜
⎝

μ · · · 0
...

. . .
...

0 · · · μ

⎞

⎟
⎟
⎠

n×n

,

N33 =

⎛

⎜
⎜
⎝

–γ – B · · · 0
...

. . .
...

0 · · · –γ – B

⎞

⎟
⎟
⎠

n×n

,

where

wi =
β1i�∗

N∗
i

, εi =
S∗

i
N∗

i
, uij =

β1ijp(j)
〈k〉 ,

υi =
β2z(t)

N∗
i

, 1 – εi > 0, ∀1 ≤ i, j ≤ n.

The characteristic equation has the form

(B + x)n
n∏

i=1

(
(x + μ + B)(x + γ + B) + (wi + υi)(x + γ + B + μ)

)

×
(

1 –
n∑

i=1

εiμuii

((x + μ + B)(x + γ + B) + (wi + υi)(x + γ + B + μ))

)

= 0. (4.5)

It is clear that Eq. (4.5) has n negative eigenvalues equal to –B. The next 2n eigenvalues
could be obtained from the second part of Eq. (4.5), which is defined as a polynomial
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function of degree 2n as follows:


(x) =
n∏

i=1

(
(x + μ + B)(x + γ + B) + (wi + υi)(x + γ + B + μ)

)

×
(

1 –
n∑

i=1

εiμuii

((x + μ + B)(x + γ + B) + (wi + υi)(x + γ + B + μ))

)

.

Now, we will search for the roots of 
(x) instead of calculating them. In the first case we
suppose that

(
(x + μ + B)(x + γ + B) + (wi + υi)(x + γ + B + μ)

)
= 0,

which is an equation of degree two with positive coefficients. That means that we have two
negative eigenvalues –ξ 1

i , –ξ 2
i depending on wi (wi has an increasing value) and having the

values

ξ 1
i =

(2B + γ + μ + wi + υi)
2

–
√

D
2

,

ξ 2
i =

(2B + γ + μ + wi + υi)
2

+
√

D
2

,

where

D = (2B + γ + μ + wi + υi)2

– 4
(
(γ + B)(μ + B) + (B + γ + μ)(wi + υi)

)
, ξ 1

i , ξ 2
i > 0 and ξ 1

i < ξ 2
i ,∀1 ≤ i ≤ n.

Therefore, we have the last 2n negative eigenvalues. In the second case, we suppose


(x) =
(
(x + μ + B)(x + γ + B) + (w1 + υ1)(x + γ + B + μ)

)

× (
(x + μ + B)(x + γ + B) + (w2 + υ2)(x + γ + B + μ)

)

· · · ((x + μ + B)(x + γ + B) + (wn + υn)(x + γ + B + μ)
)

– ε1μu11
(
(x + μ + B)(x + γ + B) + (w2 + υ2)(x + γ + B + μ)

)

× (
(x + μ + B)(x + γ + B) + (w3 + υ3)(x + γ + B + μ)

)

· · · ((x + μ + B)(x + γ + B) + (wn + υn)(x + γ + B + μ)
)

– · · ·
– εnμunn

(
(x + μ + B)(x + γ + B) + (w1 + υ1)(x + γ + B + μ)

)

× (
(x + μ + B)(x + γ + B) + (w2 + υ2)(x + γ + B + μ)

)

· · · ((x + μ + B)(x + γ + B) + (wn–1 + υn–1)(x + γ + B + μ)
)

= 0,

which is a continuous function. We can put the function 
(x) in a more simple form as
follows:


(x) =
((

x + ξ 1
1
)(

x + ξ 2
1
)(

x + ξ 1
2
)(

x + ξ 2
2
)

. . .
(
x + ξ 1

n
)(

x + ξ 2
n
))

– ε1μu11
((

x + ξ 1
2
)(

x + ξ 2
2
)(

x + ξ 1
3
)(

x + ξ 2
3
)

. . .
(
x + ξ 1

n
)(

x + ξ 2
n
))
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– ε2μu22
((

x + ξ 1
1
)(

x + ξ 2
1
)(

x + ξ 1
3
)(

x + ξ 2
3
)

. . .
(
x + ξ 1

n
)(

x + ξ 2
n
))

– · · ·
– εnμunn

((
x + ξ 1

1
)(

x + ξ 2
1
)(

x + ξ 1
2
)(

x + ξ 2
2
)

. . .
(
x + ξ 1

n–1
)(

x + ξ 2
n–1

))
,

we can observe that



(
–ξ 1

i
)



(
–ξ 1

i+1
)

< 0, ∀1 ≤ i ≤ n,

therefore, we have one root in the interval [–ξ 1
i , –ξ 1

i+1]. In general, we have n – 1 negative
solutions in the interval [–ξ 1

1 , –ξ 1
n ]. Similarly, with ξ 2

i we get n – 1 negative solutions in
[–ξ 2

1 , –ξ 2
n ]. Searching for the last two roots, we have 
(–ξ 1

1 ) < 0 and 
(0) > 0 then we get
one more negative solution in the interval [–ξ 1

1 , 0]. Similarly, we can see that 
(–ξ 2
1 ) < 0.

Then we get another negative solution in the interval [–ξ 2
1 , 0]. Finally, the function 
(x)

has 2n negative solutions in the interval [–ξ 2
n , 0]. Hence, condition (4.2) is satisfied and the

endemic equilibrium point P2 is locally asymptotically stable.

Theorem 4.2 The endemic steady state P2 is always locally asymptotically stable.

Remark 1 When z(t) = 0 and R0 > 1, then the last proof is valid for P1 and it will be locally
asymptotically stable.

5 Sensitivity analysis and numerical simulation
5.1 Sensitivity of the parameters
Sensitivity analysis shows us which of the parameters used in our mathematical model is
the most effective in spreading the infection [28]. In the definition of R0, it is depending
on five variables μ, β1, γ , B and k where k is the ratio between the second and the first
moment of the node degree k as an additional parameter. Using the sensitivity index SR0

r

which mean the sensitivity of the basic reproductive number with respect to r (any chosen
parameter) with the definition

SR0
r =

∂R0

∂r
r
R0

.

For example, SR0
r = 1 means that any increasing (decreasing) of the value of r by v% in-

creases (decreases) the value of R0 by the same percentage. In the opposite case, SR0
r = –1

means that any increasing (decreasing) of the value of r by v% decreases (increases) the
value of R0 by the same percentage. After applying the sensitivity analysis, we get the
following sensitivity indices:

SR0
μ =

B
B + μ

,

SR0
β1

= 1,

SR0
B = –B

(
1

B + γ
+

1
B + μ

)

,

SR0
γ = –

γ

B + γ
,

SR0
k = 1.
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Table 2 The value of the parameters used in the model and the initial values

Parameter Group 1 Group 2

Value Value

β1 0.2 0.6
β2 0.1 0.1
μ 0.5 0.27
γ 0.8 0.2
A 652,451 652,451
B 0.5553431859205776 0.0553431859205776
N0 11,081,000 11,081,000
S(0) 11,080,139 11,080,139
E(0) 820 820
I(0) 41 41

Using the values in Table 2, group 2 we get the following values for the sensitivity indices:

SR0
μ = 1.27, SR0

β1
= 1, SR0

B = –2.0260,

SR0
γ = –3.4140, SR0

k = 1.

It is obvious that the parameter γ is the most sensitive parameter i.e. if this parameter
increased by 10%, the value of R0 will be decreased by 34.14%. Notice that the values of
the sensitivity indices can be changed with respect to the parameters value.

5.2 Numerical simulation
In this section, we used an Adams-type predictor-corrector method [19, 20] for solving
system (2.1), showing the results obtained in previous sections. We have a BA random
scale free network with p(k) = mk–γ1 , where m is a constant satisfies

∑
k p(k) = 1 and 2 <

γ1 < 3 is the exponent of the power law distribution. Choosing γ1 = 2.3 and n = 100, we
present the following examples.

Example 5.1 In the absence of the zoonotic effect (z(t) = 0), choosing the values in group
1, Table 2, for model (2.1) parameters we get R0 = 0.7953 < 1. In this case, system (2.1)
has a unique disease-free steady state P0 which is locally asymptotically stable according
to Theorem 4.1. It is shown for Sk(t), Ek(t) and Ik(t) for different values of k with fractional
order α = 0.95, 0.98 and 1 in Figs. 2–4.

Example 5.2 In the absence of the zoonotic effect (z(t) = 0), choosing the values in group
2, Table 2, for model (2.1) parameters we get R0 = 22.1121 > 1. In this case, system (2.1)
has a unique endemic steady state P1 which is locally asymptotically stable according to
Remark 1. It is shown for Sk(t), Ek(t) and Ik(t) for different values of k with fractional order
α = 0.95, 0, 98 and 1 in Fig. 5–7.

Example 5.3 In the case of existence of the zoonotic effect (z(t) = 1000 for �t = 100),
choosing the values in group 1, Table 2, for model (2.1) parameters we get R0 = 0.7953 < 1.
In this case, system (2.1) has a unique endemic steady state P2 which is locally asymptot-
ically stable according to Theorem 4.2. It is shown for Sk(t), Ek(t) and Ik(t) for different
values of k with fractional order α = 0.95 in Fig. 8.



El-Saka et al. Advances in Difference Equations          (2021) 2021:5 Page 13 of 19

Figure 2 α = 0.95 andR0 = 0.7953

After the numerical simulation, we can observe the effect of the fractional order α. De-
creasing the value of α gives a larger region for stability to our system i.e. for lower values
for α the more extended and lower peak we get. It is known that increasing the number of
infected individuals in a short period of time can lead to the collapse of the health organi-
zation anywhere. Therefore, the small value of the fractional order α helps to prolong the
period of time to reach the lower epidemic peak, which in turn helps the health system to
treat the largest number of infected individuals and avoid collapse.

The value of the basic reproductive number R0 depends on some parameters (β1, μ,
B, γ and 〈k2〉

〈k〉 ). The parameter 〈k2〉
〈k〉 is very important and representing the heterogeneity

of the network. In Fig. 9 we illustrate the importance of 〈k2〉
〈k〉 by plotting the change of R0

value with respect the value of degree k.
In Fig. 10, we compare the real data [29] of China from 22 January to 9 April with the

prediction curve of the infected individuals. We get the more suitable case with fractional
order α = 0.98.

6 Conclusion and discussion
In this paper we presented a heterogeneous epidemiological network model that illustrates
the novel coronavirus (COVID-19) prevalence pattern using a fractional-order system.
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Figure 3 α = 0.98 andR0 = 0.7953

Figure 4 α = 1 andR0 = 0.7953
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Figure 5 α = 0.95 andR0 = 22.1121

Figure 6 α = 0.98 andR0 = 22.1121
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Figure 7 α = 1 andR0 = 22.1121

Figure 8 α = 0.95 andR0 = 0.7953
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Figure 9 The change ofR0 value with respect the value of degree k, the left curve for group 1 parameters
and the right curve for group 2 parameters

Figure 10 The real data of China with the prediction curve of infected persons (this curve plotted with k = 1,
β1 = β2 = 0.2, μ = 0.27, B = 0.0953431859205776, γ = 0.6 and A = 561791. The initial values are
S(0) = 11,080,139, E(0) = 50,000 and I(0) = 41. We getR0 = 2.4103

Taking into account the effect of the zoonotic source origin of the disease, as well as the
continuous transport movement in Wuhan, the mainland city of the virus. We calculated
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the basic reproduction number, which significantly depends on traveling and movement
rates from and outside the city. In addition we calculated the equilibrium positions for
this system, as well as showing the local stability of the disease-free situation if the value
of the R0 < 1. Likewise, the epidemiological situation is locally asymptotically stable, if
the value of R0 > 1. And the danger of this virus (COVID-19) appears in the speed of its
spread among individuals and the danger of its transmission to many countries around the
world. There is a great fear of the formation of (COVID-19) for another large infection area
outside the mainland and containing another strain of the corona family. We cannot deny
the effective influence of the zoonotic source through which the virus was transmitted to
humans and which in turn has spread among humans. It is possible that the impact of
the zoonotic source continues until now and is not limited to the closure of the seafood
market in Wuhan, China, which is considered as a possible explanation for the increasing
numbers of infection.
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