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1 Introduction

The FSDEs are used in real-world systems that the phenomena are related to randomness
and fuzziness as two kinds of uncertainties, such as in economics and finance. There are
papers on FSDEs that each one is different from the others in the approach. The author in
[9] presented a definition of the fuzzy stochastic It6 integral. In [12—15] the author used
the fuzzy non-anticipating stochastic processes and Wiener process to drive the fuzzy It6
stochastic integral. The method deals with the embedding of a crisp It6 stochastic integral
into fuzzy space to build a fuzzy random variable.

On the other hand, in the modeling of many stochastic systems, the fBm which shows a
long-range dependence, is suggested to replace the Brownian motion as the driving pro-
cess. The fBm with H € (0,1) as Hurst parameter is a Gaussian process with beneficial
properties, long-range dependence, self-similarity and stationary of increments. This pro-
cess is appropriate for the analysis of phenomena which present long-range and scale-
invariant correlations. Nevertheless, when H # %, the fBm is not a semimartingale.

In this paper, we introduce FSDEs with respect to the fBm. These equations can be help-
ful in the modeling of hybrid dynamic systems, including randomness, fuzziness and long-
range dependence. We apply an approximation procedure to fractional stochastic integral
to find the explicit solutions. We consider the Liouville form of the fBm with parameter
He (%, 1) to study the existence and uniqueness of strong solutions. Moreover, we con-
sider an application of the equations in financial models.
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The organization of the paper is as follows. In Sect. 2, the definition of the fBm and the
Liouville form of this process are reviewed. Then some preliminaries on fuzzy stochastic
processes and fuzzy stochastic integrals are recalled. In Sect. 3, a class of FSDEs driven by
fBm is introduced. Besides, an approximation approach is used to prove the existence and

uniqueness of the solutions. Finally, some conclusions are given in Sect. 4.

2 Preliminaries
2.1 Fractional Brownian motion
The fBm B = {BH(¢t),t € [0, T]} with Hurst parameter H € (0, 1) is a zero mean Gaussian

process with the following covariance function:
1
Ry (t,s) = E(B"(t)B"(s)) = 3 (s + 2 — e — 5. (2.1)

This process was introduced in [10] and studied in [16], where a stochastic integral repre-
sentation was established in terms of the Brownian motion. The long-range dependence
and self-similarity properties of this process, for H > 1/2, yield a suitable driving noise in
stochastic models, such as networks, finance, and physics. The classical It6 theory can-
not be used to construct a stochastic integral in terms of the fBm, because B is not a
semimartingale if H # 1/2. Two approaches have been used to define stochastic integrals
with respect to fBm. In the first one, the Riemann—Stieltjes stochastic integral can be de-
fined using Young’s integral [19] in the case of H > 1/2. The second approach to defining a
stochastic integral with respect to the fBm is based on the Malliavin calculus (see [2—4, 6]).

In [16] a representation of By () was given as follows:

H 1 0 o o
B “):m( [ Te-97-9 ]dw<s>+BH(t>),

o]

where W is a Brownian motion, & = H — % and By(t) = fot(t —5)*dW (s). The process By (t),
with H € (0,1) is called the Liouville form of a fractional Brownian motion (LfBm) which
holds many properties of the fBm except that it has non-stationary of increments. In [2] the

Malliavin calculus technique was used to approximate B (t) by a semimartingale process

as follows:
t
By (t) = / (t—s+e)*dW(s), €>0. (2.2)
0
Furthermore,
t
By (t) =« / 0 (s)ds + €* W (¢), (2.3)
0
where
t
e (t) = / (t—s+€)* Ldw(s). (2.4)
0

The process By (t) converges to By/(t) in L2(S2) when € tends to zero [18].



Jafari et al. Advances in Difference Equations (2021) 2021:16 Page 3 of 17

2.2 Fuzzy background

In this section, we provide some preliminaries on fuzzy random variable, fuzzy stochastic
process and fuzzy stochastic integral (see [7, 11, 13]). Let us denote by IC(R) the family of
all nonempty, compact and convex subsets of R. The Hausdorff metric, denoted by dy, is
defined by

dy(A,B) = max[sup inf |a — b|, sup inf |a — b| }
acA beB beB acA

The space KC(R) is a complete and separable metric space with respect to dy. If A,B,C €
K(R), then

du(A + C,B+C) =dy(A, B).

Let (2, A, P) be a probability space. The mapping F : © — KC(R) is called .A-measurable if
it satisfies

{weQ:F(a))ﬂC#qﬁ}EA,

for every closed set C C R. Let M(2, A; C(R)) denote a family of .A-measurable multi-
functions with values in JC(R). A multifunction F € M is said to be L”-integrably bounded,
for p > 1, if there exists & € (2, A, P; R, ) such that ||F|| < & P-a.e, R, = [0,00), and

IFIl = dy (F,{0}) = sup[f].
feF

It is well known that (see [8]) F € M is L?-integrably bounded if and only if ||F|| €
1P(Q, A, P;R,). Let us denote

LP(Q,A,P;KR)) = {F e M(Q,A4KR)) : IF|l € L7(2, A, P;R,)}.

The membership function u : R — [0,1] is defined for a fuzzy set u € R, where u(x) is

the degree of membership of x in the fuzzy set u. Let us denote by F(R) the fuzzy sets

u:R — [0,1] such that [u]* € IC(R) for every « € [0, 1], where [u]* = {x € R: u(x) > o}.
Define do, : F(R) x F(R) — [0, 00) by

doo(u,v) = sup dy([u]®, [V]*),

aegl0,1]

then d isametricin F(R) and (F(R), d) is a complete metric space. For every u, v, w,z €
F(R), A € R, we have the following properties:

o doo(u+w,v+w) =dy(u,v),

o dooU+Vv,W+2) =doo(tt, W) + doo(v, 2)

o doo(U,V) < doo(ut, W) + doo (W, v)

o doo(Mu, M) = | A doo (1, v).
We use (0) € F(R) as (0) := 1o}, where for y € R, 15y (x) = 1 if x = y and L) (x) = 0 if x # y.

Definition 2.1 ([17]) Let (2,4, P) be a probability space. A fuzzy random variable is a
function X : Q — F(R), if the mapping [X]* : @ — K(R) is an .A-measurable multifunc-
tion for all @ € [0, 1].
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Let us consider a metric p in the set 7(RR), and o -algebra B, generated by the topology
induced by p. A fuzzy random variable can be viewed as a measurable mapping between
two measurable spaces, namely (€2, A) and (F(R), B,,), we call X is A|B,-measurable. Con-

sider the following metric:

ds(u,v) := inf max{ sup |A(t) —t|, sup dH(Xu(t),Xu(k(t)))],
reh te[0,1] tef0,1]

where A denotes the set of strictly increasing continuous functions X : [0,1] — [0, 1] such
that 1(0) =0, A(1) = 1, and X, &, : [0,1] — F(R) are cadlag representations for the fuzzy
sets u,v € F(R) (see [5]). The space (F(R),d) is complete and non-separable, and the
space (F(R), d,) is a Polish metric space.

For a mapping X : Q — F(R) on the probability space (€2, .4, P), we have:

— X is a fuzzy random variable if and only if X is A|B,, -measurable.

- If X is A| B4, -measurable, then it is a fuzzy random variable; the opposite is not true.

Definition 2.2 A fuzzy random variable X : @ — F(R), is L?-integrably bounded, for
p=>1,if [X]¥ € LP(R, A, P; K(R)), for every « € [0, 1].

Let us denote by £7(R, A, P; F(R)) the set of all L?-integrably bounded fuzzy random
variables. The random variables X, Y € L?(2, A, P; F(R)) are identical if P(d(X,Y) = 0) =
1. For a fuzzy random variable X : 2 — F(R), and p > 1, the following conditions are
equivalent:

a) X € LP(Q, A, P; F(R)),

b) [X]° € £P(R, A, P; K(R)),

o) IIIX1°l € LP (2, A, P;R,).

Let I := [0, T], and (2, A, P) be a complete probability space with a filtration {4;};; sat-
isfying the hypotheses, an increasing and right continuous family of sub o -algebras of A,

and containing all P-null sets.

Definition 2.3 Ifthe mapping X(¢) : @ — F(R), foreveryt € [,isa fuzzy random variable,
then X : I x Q@ — F(R) is a fuzzy stochastic process.

Definition 2.4 A fuzzy stochastic process X is do,-continuous, if almost all its trajecto-

ries, i.e. the mappings X(-,w) : I x Q — F(R) are d-continuous functions.

A fuzzy stochastic process X is a measurable, if [X]* : I x Q@ — K(R) is B(/) ® A-
measurable multifunction for all « € [0, 1], where B(I) denotes the Borel o -algebra of sub-
sets of I.

A process X is nonanticipating if and only if for every « € [0, 1], the multifunction [X]*

is measurable with respect to the o -algebra A/, which is defined as follows
N:={AecB(l)® A:A" € A foreveryt eI},

where A' = {w : (t,w) € A}.
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Definition 2.5 A fuzzy stochastic process X is called L”-integrably bounded (p > 1), if
there exists a real-valued stochastic process & € L (I x Q,/N;R,) such that

x| < ke, o),
for almost all (¢, w) € I x Q.

Let us denote by £P(I x Q,N;F(R)) the set of nonanticipating and L?-integrably
bounded fuzzy stochastic processes. Let X € LF(I x ©,N; F(R)), by the Fubini theorem,
the fuzzy integral is defined by

T
/ X(s,w)ds,
0

for w € Q\N,, where N, € Aand P(N,) = 0. The fuzzy integral fOTX (s, w) ds can be defined
level-wise. For every « € [0, 1], and every w € Q\Nj, the Aumann integral fOT [X(s,w)]* ds
belongs to IC(R), so a fuzzy random variable foT X(s,w) ds belongs to F(R) for every w €
Q\N,.

Definition 2.6 The fuzzy stochastic Lebesgue—Aumann integral of X € £L}(I x 2, N; F(R))
is defined as

fOT 110,(8)X(s,w)ds for every w € Q\N,
Lx(t: w) =
(0) for every w € Nj.

Proposition 2.1 ([13]) For the integral L,, one can show the following properties:
1) Letp>1.IfX € LP(I x QN; F(R)), then L,(,-) € LP(I x Q,N; F(R)).
2) Let X € LY x Q,N; F(R)), then {Ly(t)}rer is doo-continuous.
3) Let X,Y € LP(I x QN ; F(R)), for p > 1, then

sup db, (Lt,x(u),Lt,y(u)) Y /td{; (X(s), Y(s)) ds, a.e.
0

ue(0,t]

Let us denote by () : R — F(R) an embedding of R into F(R) i.e. for r € R,

1 fora=r,
(r)(a) =
0 foraeR\{r}.

If X: Q2 — R is a random variable on the probability space (2, A, P), then (X) : Q@ —
F(R) is a fuzzy random variable. For stochastic processes we have a similar property.

We define the fuzzy stochastic Ito integral by using the fuzzy random variable as
( fOTX (s)dW(s)), where W is a Wiener process. The following properties will be useful
[13].

Proposition 2.2 Let X € L>(I x Q,N;R), then {(fOtX(s)dW(s))}te] is a fuzzy stochastic
process and we have (fOtX(s) dw (s)) € L2 x ,N; F(R)).

Proposition 2.3 Let X € L*(I x Q,/N;R), then {(fot X(8) AW (8))}ser is doo-continuous.
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3 Application to fuzzy stochastic differential equation
In this section we consider a class of FSDEs driven by the fBm which is given as follows:

X(8) = Xo + / f(s:X(9) ds+< / g(s,X(s)) dBH(s)>, Xo = X(0), (3.1)
0 0

where By is a Liouville form fBm with H € (%, 1), Xo: Q2 — F(R)isan FRV, f: I x Q x
F(R) - F(R), and g : I x 2 x F(R) — R. The corresponding approximation equation
(3.1)is

X(t) =Xo + /0 f(s,Xe (s)) ds + <A‘ g(s,Xe (s)) dBf_I(S)>. (3.2)

Assumptions 3.1 Consider the following assumptions on the equation coefficients:
A1) The mappings f:I x Q x F(R) - F(R)and g:I x Q x F(R) — R are
N ® By,|B4,-measurable and N ® B, | B(R)-measurable, respectively.
A2) For every u,v € F(R) and every t € I, there exists a constant L > 0 such that

max {doo (f(t, w,u),f(t o, v)),

g(t, 0, u) - g(t,,v)|} < Ldoo(u, V).
A3) For every u,v e F(R) and every ¢ € I, there exists a constant C > 0 such that

max{du (f (£, w, u), (0)),

g(t,w,u)|} < C(1 +dos (1, (0))).

Proposition 3.1 ([13]) Consider X,Y € L*(I x Q,N;R), then

E sup dgo (</MX(S) dW(s)>,</u Y(s)dW(s)>> < 4E/td§0(<X(s)>,<Y(s))) ds, (3.3)
0 0

uel0,] 0

foreverytel

Theorem 3.2 Suppose thatf : I x Q@ x F(R) > F(R) and g : I x Q@ x F(R) — R as map-
pings satisfy assumptions (A1)—(A3) and Xo € L*(R, Ao, P; F(R)). Then Eq. (3.2) has a
strong unique solution.

Proof Consider the SDE (3.2),
X€(t) =Xo + / f(s,Xe (s)) ds + </ g(s,XG (s)) dBfL,(s)>. (3.4)
0 0
By Eq. (2.3), we can write
X(t) =Xo + /tf(s,Xf(s)) ds
0

+ </ ap®(s)g(s, X (s)) ds + ] €*g(s, X(s)) dW(s)>. (3.5)
0 0

Let us consider the Picard iterations

Xe(2) =Xo + /(; f(s,XZ?l(s)) ds

Page 6 of 17
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t t
+ </ agoé(s)g(s,Xf,fl(s)) ds +/ eag(s,X;l(s)) dW(s)>, a.e., (3.6)
0 0
forn=1,2,..., and for every ¢ € I, and Xy(t) = Xo. For ¢ € I and n € N we denote

ju(t) =E sup d>, (X5(w), X5, (w)).

uel0,t]

Then, by Propositions 2.1, 3.1, and assumption A3, it can be written as

j1(6) =E sup dio (/Ouf(s,Xg(s)) ds

ue(0,t]

+ </ ozgoe(s)g(s,XS(s)) ds + / e"‘g(s,XS(s)) dW/(s)>, (0)>
0 0

<3E sup d* (/uf(s,Xg(s)) ds, (0))
0

uel0,t]

+3E sup d2, <</‘M ap(s)g(s, X5 (s)) ds>, (0))

ue(0,t] 0

+3E sup d2 <</0ue°‘g(s,XS(S)) dW(S)>» (0)>

uel0,t]

< StE/tdgo (f(s,X5(5)), (0)) ds + 3a”E sup d2, (<fu 9 (9)g(s, X5 (s)) ds>, (0))
0 0

uel0,t]

+ 1262“E/0td§0(<g(s,X5(s))), (0))ds

<6C*(T +4¢™) (L4 E[|[XT°[)z

+30°E sup d2, (< / (s, X505) ds>, <o>),
0

uel0,t]

fora =H — % > 0. Hence
ji(t) < 6C*(T +4€) (1 + E[|[x“]°||*)¢

+30’E sup d2, <</0'4 o (s)g(s, X5 () ds>, (O)). (3.7)

uel0,t]

We have

E sup dio<</0 <p5(s)g(s,X5(s)) ds>, (0))

uel0,]

<E sup d,%,({/o @ ()g(s, X5 (s)) ds},{O})

uel0,]

2

<E sup </ @ (5)g(s, X5 (s)) ds) . (3.8)
1\Jo

uel0,t

By applying (2.4) to (3.8), and the Holder inequality we get

2

E sup (/0 o (s)g(s, X5 () ds)

uel0,z]

Page 7 of 17
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=E sup
ue(0,t]

2
< (s—r+e)"‘1dW(r)>( 5(S))d$>

0

2
=E sup ( / g r,X (r) (r—s+e)” 1a’rdW(s))
uel0,t) 0
54E (

2
g(r X5 () (r—s+€)* 1dr> ds

§4E/ (/ g (r,Xe( ))(r—s+e)°‘1dr> </t(r—s+e)“1dr) ds
0 s s

< %(t + 6)“]E/Otg2(hX8 (r)(r +€)* dr
4 ‘
< S+ e E /0 & (rX5(0) dr
=5 e BT P
Hence, from (3.7) and (3.9) we obtain
() < 6C3H(T +4€> + &(T + ™) (1 + E[|[x5]°[|M)e.
for every ¢ € I. Then, similarly,
Jur1(£) < 3(¢ +4€> +4(t + €)*)L’E /0 t a2 (X5 (w), X5, (w)) ds
<3(t+4€* +4(t + €)*)L? /OtlE Sl[lg)]dgo (X5 (u), X5, (w) ds
uel0s

t
<3(t+4€™ +4(t + €)™)L / jn(s)ds.
0

Therefore

jul) < 2C?3"(t +4€™ + 4(t + €)*)" (1 + || [X5]° 1) 22 ”n!, telneN.

Apply the Chebyshev inequality, it follows that

p<supd§o(X€(u> X)) > = ) < 2%,(T).

> —
uel 21

The series Y -, 2%j,(T) is convergent. From the Borel-Cantelli lemma, we derive

P<supd2 (Xf(u) X, 1(u))

1
infinitely often 0.
uel 2y 4 )

For almost all w € ©, there exists ny(w) such that

(5 50) =

if n > ng.

Page 8 of 17
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The sequence {X¢ (-, »)} is uniformly convergent to a d% -continuous fuzzy process X< (-, w)
for every w € €, in which Q. € A and P(Q2.) = 1. We can define the mapping X€ : I x Q@ —
F(R), as X(-,w) = )’?E(-,a)) if w € 2, and X¢(-,w) as freely chosen fuzzy function when
w e Q\ Q. For every « € [0,1] and every ¢ € I with a.e., we have

dH([Xf,(t)]a, [Xe(t)]a) —0 asun— oo.

Hence, X¢ will be a continuous fuzzy stochastic process. Then, by X¢ € £3(I x 2, N; F(R)),
we get X€ € L3I x ,N; F(R)). Hence, as n goes to infinity, we can verify that
¢ ¢ 2
E sup I:dio (X5(6), X4 (8)) +d2 (Xf,(t),Xg +[ S(s,X(s)) ds+ </ g(s, X)) dB;,(s)>):|
0 0

tel

tends to zero. Then

Esupdé[(XE(t),Xg + Atf(S,Xf(s)) ds + </Otg(S,X€(S)) dB;(s)>>] -o.

tel

Therefore

supdgo[(Xe(t),XS + /tf(s,XE(S)) ds + </tg(S’XE(S)) dB;(S)>)i| =0,
o 0

tel

which shows the existence of the strong solution.
Now, X¢, Y€ : I x Q — F(R) are assumed to be strong solutions. Consider

j©)=E sup d> (X (u),Y*(w)),

uel0,z]

then, by computations similar to the existence case, we have

jt) < 3(t+4e™ +4(t+6)2“)L2E/td§o (X€(s), Y¥(5)) ds < 3(T +4€>* +o)L? /tj(s) ds.
0 0

The implementation of the Gronwall inequality leads to j(¢) = 0 for ¢ € I. Then

sup d=, (Xé(t), Yé(t)) =0, a.e,

tel

by which the proof of uniqueness is completed. O

Lemma 3.1 Foreverye >0and0<a< % we have

a+1

/t((r—s+e)°‘_1 —(r—s)"‘_l)drf €“. (3.11)

o

Proof We apply the finite-increments formula to the function f(x) = x*~! to obtain

x+e) T —x*T=(a-1)x+06)Ye, 0<0<1, (3.12)
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then
|(r —s+e)t_(r- s)“’l} <l -1||r-s|*2e. (3.13)
Hence

/t‘(r_He)a_l_(’"_S)a_l|d’"= /S+6\(V—s+e)°‘_l—(r—s)“_1|dr
+/£ |(r=s+e)* ! = (r—9*"|dr
- /s+€ | (2(r B S))a—l _ (r _ S)ail‘ dr

t
+ o - 1|e/ |r = s|% 2 dr. (3.14)
S

+€

Therefore

t

t S+e€
f |(r—s+e)""1—(r—s)""1|dr§/ (r—s)""ldr+|a—1|6/ (r—s)*2dr
S s S

+€

1 erx—l
a-1

€. (3.15)
0

1
<—€“+|a-1|e
a

_a+1

o

Proposition 3.2 The solution X¢(t) of Eq. (3.2) converges to the solution X(t) of Eq. (3.1)
in L2(I x Q) as € — 0 uniformly with respect to t € [0, T].

Proof Consider Eq. (3.1) and the corresponding approximation of equations as follows:

X)) =Xy + /0 f(s,X(s)) ds + </0 g(s,X(s)) dBH(s)>, (3.16)
X€(t) =Xo + /0 f(s,XE (s)) ds + </0 g(s,XE (s)) dB;(s)>. (3.17)
We can write

E sup d2 (X (u),X(u))

uel0,t]

<2E sup /udio(f(s,X(s)),f(s,XG(s)))ds

uel0,t] JO

+2E sup dc2>o <<'/Oug(s,X(s)) dBH(S)>,</Oug(s,X€(s)) dB;(s)>).

uel0,t]

Then

E sup d* (X(u), X (u))

uel0,z]

Page 10 of 17
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<2E sup /udgo(f(s,X(s)),f(s,Xe(s)))ds

uel0,t] JO

+4E sup d2, <</Oug(s,X(s)) dBH(s)>,</(;ug(s,X(s)) dB;(s)>)

uel0,t]
2 “ € “ € €
+4E sup dZ, <</ g(s,X(s)) dBH(s)>,</ g(s,X (s)) dBH(s)>)
uef0,t] 0 0
-2 | (1 (5, X)), (5, X4 ) ds
0
u 2
+4F sup / 2(5,X(5)) (dBj;(s) — dBy(s))
uel0,t]1J0
u 2
+4E sup / (g(s, X(s)) —g(s, X(s)) dB5;(s)| -
uel0,t]1J0

Apply Eq. (2.3) to get

E sup dgo (X(u), X (u))

uel0,z]

< 2E'/Otd§o (f(S,X(S)),f(s,Xf(s))) ds

u 2
+ 8¢ sup / 2(5,X()) dW(s)
uel0,t]1J0
u s 2
+8a’E sup / 2(s,X(9) (/ (s=-r+e)* ' =(s=r"") dW(r)> ds
uefo,1Jo 0
u s 2
+8a’E sup / (g(s:X(s)) —g(s5,X(s)) (/ (s—r+e)*t dW(r)) ds
uel0,t]1J0 0
u 2
+8¢¥E sup / (g(s,X(s)) —g(s,XE(s)) dw (s)| . (3.18)
uel0,t]1J0
Then
E Sl[lp] A2 (X (u), X (u))
uel0,t
<2 L (F (5, XO).f (5. X°(5))) ds
0
u 2
+ 8¢ sup / g(s,X6 (s)) dW (s)
uel0,t]1J0
u u 2
+8a’E sup / / g(r,Xe(r)) ((r —s+e) - (r- s)“‘l) drdW (s)
uel0,]1J0 Js
U u 2
+8a’E sup / / (g(r,X(r)) —g(s,XG(s))(r —s+ ) tdrdwis)
uel0,t]1J0 Js
u 2
+ 8¢ sup / (g(s,X(s)) —g(S,XE(S)) dw (s)| . (3.19)
uel0,t]1J0
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Apply the Doob inequality, the Holder inequality and the It6 isometry property to obtain

E sup dgo (X(u), X (u))

uel0,z]

t
0

< 2E/td§o (F (s, X(5)).f (5, X(s))) s + 3262"‘1[3/ & (,X(s)) ds
0
+ SZaZEAt[ltgz(r,Xé(r)) (r=s+e)* ! =(r—s)*")dr
X /t((r s+ = (r-5"") dr} ds

+ 320(21E/:(/t(g(r,)((r)) —g(s,XG(s))Z(r —s+€)* " dr)

X (ft(r—s+e)“1dr> ds

t
+326*E / (g(s, X(s)) - g(s, X (s))* ds. (3.20)
0
By similar arguments to (3.9), from (3.11) and assumptions (A1)—(A3), we infer that

E sup d2 (X(u),X(u))

uel0,t]

<2L’E tdz X(s), X< (s)) ds + 64€2C? t 1+ E|||X(s) %) ds
0o 0

reacir s e [ B[O |) ds
o 0
+32L*(T + €)*E / tdgo (X(s), X (s)) ds
0
+ 320%™ E / tdgo (X(s), X(s)) dis. (3.21)
0

Hence

E sup d2 (X (u),X(u))

uel0,z]

t
< (2L2 +32L%(T +€)* + 32L252°‘) / E sup dgo(X(u),Xé(u)) ds
0 uel0,s]

t
+ (6462"‘C2 +64CH(T + e)zaa—He“> / (1+E[[[x (s)]0|||2) ds. (3.22)
o 0

By Gronwall’s lemma, Esup,, o d% (X (u), X¢(u)) — 0 as € — 0, which completes the
proof. d

3.1 Examplein finance
The following crisp SFDE is typically used in financial modeling:

X)) =Xy + /t uX(s)ds + /toX(s) dBy(s), Xo=X(0), (3.23)
0 0
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where the underlying stochastic process is the fBm. The long-range dependence and self-
similarity property of fBm make this process suitable to describe the financial quantities.
On the other hand, we can model the price dynamics by the equation which involves the
uncertainties. This leads to modeling with fuzzy processes in equations. In the case of
linear coefficients, we obtain an explicit solution of Eq. (3.1). Thus, consider the fractional

FSDE which satisfy assumptions of Theorem 3.2 as follows:
t t o
X(8) = Xo + / uX(s)ds + < / E(X,l(s) +X(s)) dBH(s)>, (3.24)
0 0
where X : R, x @ — F(R), By is an fBm, X}, X} : R, x @ — R such that [X()]' =
(X} (@), X2(D)], Xo € L2(2, Ao, P; F(R)), and i, 0 € R. In order to find a closed explicit form

of a solution to (3.24), for i > 0, we obtain the following system of equations:

X}(6) = X}0) + [y uX}(s)ds + [y S(XMs) + XL (s) dBy(s),
X1(8) = X1(0) + [y uXL(s)ds + [y S(X}M(s) + XL(s) dBy(s),

then
t
X} () + XL (t) = X} (0) + X1 (0) + / w(X] (s) + X\(s)) ds
0
t
+ / o (X} (s) + X,,(s)) dBu(s). (3.25)
0
By equation (2.3), the approximation form of Eq. (3.25) is
t
XN + XEHe) = XFH0) + XEH0) + / (//, + oa(pe(s)) (Xfl(s) + X;l(s)) ds
0
t
+ / o€’ (X (s) + X5 (s)) AW (s). (3.26)
0
Hence, from the explicit solution of the crisp linear SDEs, one has a unique solution,
t 1
Xfl(t) + XZl(t) = (Xfl(O) + X;l(O)) exp(ut +toa / 0 (s)ds — Eazezat +0¢€” W/(t))
0
1
= (X5'(0) + X:'(0)) exp (;Lt + 0B (t) - 50262%). (3.27)

Now, for every « € [0, 1], we apply a similar procedure to obtain the following systems:

X5(t) = X{(0) + [y uXfo(s)ds + [y SXL(s) + XE1(s)) dBgy (s),
XE(t) = XE(0) + [y uXso(s)ds + [y S(X5L(s) + XEX(s)) dBg(s).

For i > 0, we apply the solution (3.27) to get the following system:

t
X7*() = X;%(0) + / uX;*(s)ds
0
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+/t (X61(0)+X€1(0))exp<,us+aB (s) - a 2¢ s> dB,(s),
0 2

t
X (8) = X< (0) + / JLXE () ds
0

+/tE(Xlel(o)+X;1(0))exp<,us+aB (s) - —cr Ze s) dBs,(s),
0o 2

or in terms of the Wiener process W, we have

XE9(£) = XE4(0) + fo uX5%(s) ds
oe% (X£1(0) + X£(0))

t s l
X / °(s)exp (us +oa / 0 (u) du — 50262"% +oe” W(s)) ds
0 0

+e % (XEL(0) + XE1(0))
t s 1
x/ exp<,us+aoe/ (pe(u)du—iazezas+aeaW(s)> dw (s),
0 0
t
X&) = X5(0) +f uX*(s)ds
0
g Xel €l
oez( 710+ X5'(0))

t s 1
X / °(s)exp (l,LS +oa / 0 (u) du — 50262"‘5 +o¢e” W(s)) ds
0 0

+ e % (XEL(0) + XE1(0))

t s 1
X / exp(,us + Joe/ o (u) du - 5(7262% +0¢e” W(s)) dw (s).
0 0

Apply Theorem 8.5.2 in [1] to obtain the unique solution to (3.28) in a form:
X5 (t) = e X;*(0)
+ a2 (X71(0) + X1(0)

t s 1
X / °(s)exp (oa / 0 (u) du — 50262"’5 +oe” W(s)) ds
0

+ete? 5 (Xd(O) +X€1(O))
X/o exp<a /(p (u)du — 50 2¢¥s o€ W(s))dW(s),
X4 (t) = e X5 (0)

+ e az (X710 + X' (0)

x/otwé(s)exp(oot/ 0 (u) du — EO‘ 2¢¥s 1 g€ W(s))

(3.28)

Page 14 of 17
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+ee? (X‘1(0)+X€1(0))
! * € 1 2 2
x/ exp Gaf 1) (u)du—ia €“s+ae*W(s) | dW (s).
0 0
Then

X5 (t) = et [X “0) + — Xd(O) +X:1(0))

X/o exp(aBH(s —%a € S> dB¢ (S):|

Xea(t) = e’”[XZ"(O) " %(Xfl(O) + X5(0))
¢ 1
X / exp(aB;( )— —o2e s) dBs,(s ):|
0 2
Therefore, the approximation fuzzy solution for © > 0 is
X(t) = e X(0)
o ¢ 1
+ <5(Xf1(0) + XZI(O))e’”/ exp(aB;(s) - 50262a5> dB;(s)>. (3.29)
0

For 1 < 0, we can show that
t
X;*(t) = X;%(0) + / uX:*(s)ds
0
g €l €l
o (X;1(0) + X' (0))
t K 1
X / (pe(s)exp(,us + (roz/ 0 (u) du — 20‘ 225 4 o€ W(s))
0
o o €l €l
+e E(X, (0) +X:'(0))
t s 1
X / exp(,us + aa/ “(u) du — Ea 225 4 o€ W(s)) W (s),
0 t 0 (3.30)
Xe* () = X% (0) + / uX;*(s)ds
0
g Xel €l
a2( 71(0) + X51(0))
t s 1
X / (pe(s)exp(,us+aa/ “(u) du — 50 et 0e W(s))
0 0
o o €l €l
te E(X, (0) + X:'(0))
t s 1
X / exp(,us + aa/ o (u) du — 50262“5 +o¢e” W(s)) dw (s).
0 0
The unique solution to (3.30) is of the following matrix form:

X% () = X;%(0) cosh(ut) + X% (0) sinh(ut)
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¥ e’”ot% (X£1(0) + X£(0))
X /t ©°(s)exp (O'Ol /s o (u) du — %Uzez"‘s +o0€” W(s)) ds
+elfe” (XGI(O) X£H0))
t s 1
X/o exp<aa/0 “(u) du — o e¥st+oe W(s)> dw (s),
X:%(¢) = X;%(0) sinh(uz) + X% (0) cosh(ut)
¥ e’”a% (X£1(0) + X£(0))
X /t(pe(s)exp(oa /S<p (u) du — ;a s+ o€ W(s))
0

+ee” > 2 (X£1(0) + X1(0)
t s 1 -
X/o exp(oa/o (u) du — 50 €“s+oe*W(s )) aw (s).
Then

X;%(t) = X;%(0) cosh(ut) + X% (0) sinh(ut)
et 5 (X51(0) + X 1(0)) /o exp(aB;(s) - %UZEZ”S> dBs,(s),
Xe*(¢) = X;%(0) sinh(uz) + X% (0) cosh(ut)

t 1
et 5 (X5(0) + X5'(0)) / exp(aB;(s) - Eozezas) dBs,(s).
0
Consequently, the approximation fuzzy solution for p < 0 is

X€(t) = X(0) cosh(ut) + X(0) sinh(ut)

+ <E(Xf1(0) + XZI(O))e’” /l exp<aB§{(s) - 16262"‘5> dBf_,(s)>. (3.31)

4 Conclusions

We introduced a fuzzy stochastic differential equation with respect to the Liouville form
fBm, which has many properties like a long-range dependence. We applied an approxi-
mation approach to fractional stochastic integrals and the embedding of classical It6 in-
tegral into fuzzy set space. Using the Picard iteration method we studied the existence
and uniqueness of the solutions. We proved that the approximate solution converges uni-

formly to the exact solution.
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