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Abstract
We deal with the following Riemann–Liouville fractional nonlinear boundary value
problem:

{
Dαv(x) + f (x, v(x)) = 0, 2 < α ≤ 3, x ∈ (0, 1),

v(0) = v′(0) = v(1) = 0.

Under mild assumptions, we prove the existence of a unique continuous solution v to
this problem satisfying

∣∣v(x)∣∣ ≤ cxα–1(1 – x) for all x ∈ [0, 1] and some c > 0.

Our results improve those obtained by Zou and He (Appl. Math. Lett. 74:68–73, 2017).
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1 Introduction
Fractional differential equations have attracted great attention due to their ability to model
various phenomena in applied sciences. The so-called fractional differential equations are
specified by generalizing the standard integer-order derivative to arbitrary order. For more
interesting theoretical results and scientific applications of fractional differential equa-
tions, we refer to the monographs of Diethelm [2] and Kilbas et al. [3] and references
therein.

The existence, uniqueness, and global behavior of solutions for boundary value prob-
lems of fractional differential equations have been considered in several recent papers
(see, e.g., [1, 4–9] and references therein).
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Zou and He [1] investigated the problem

⎧⎨
⎩Dαv(x) + f (x, v(x)) = 0, 2 < α ≤ 3, x ∈ (0, 1),

v(0) = v′(0) = v(1) = 0,
(1.1)

where Dα denotes the standard Riemann–Liouville fractional derivative, and f satisfies
the following conditions:

(H1) f ∈ C((0, 1) ×R,R) and
∫ 1

0 |f (x, 0)|dx < ∞;
(H2) There exists q ∈ C((0, 1), [0,∞)) such that

∣∣f (x, v) – f (x, w)
∣∣ ≤ q(x)|v – w|, ∀x ∈ (0, 1), v, w ∈R,

and

0 <
∫ 1

0
q(x) dx < ∞. (1.2)

Let L > 0 be the minimum positive constant such that

∫ 1

0
Gα(x, y)q(y)yα–1(1 – y) dy ≤ Lxα–1(1 – x), (1.3)

where Gα(x, y) is the Green’s function (given later in this paper) associated with problem
(1.1). By using Banach’s contraction principle on some convenient Banach space they have
obtained the following result.

Theorem 1.1 Under assumptions (H1)–(H2) and L < 1, problem (1.1) has a unique solu-
tion in C([0, 1]).

Motivated by this reault, we prove that the conclusion of Theorem 1.1 remains true
under the following weaker assumptions:

(A1) f ∈ C((0, 1) ×R,R) and
∫ 1

0 (1 – x)α–2|f (x, 0)|dx < ∞;
(A2) There exists q ∈ C((0, 1), [0,∞)) such that

∣∣f (x, v) – f (x, w)
∣∣ ≤ q(x)|v – w|, ∀x ∈ (0, 1), v, w ∈R,

and

0 < Mq,α :=
1

�(α – 1)

∫ 1

0
xα–1(1 – x)α–1q(x) dx < ∞. (1.4)

Remark 1.2 It is clear that conditions (H1)–(H2) imply (A1)–(A2).
Conversely, for β ∈ [1,α – 1), the function f (x, v) := (1 – x)–β(1 + v) satisfies hypotheses

(A1)–(A2) but not conditions (H1)–(H2). So assumptions (A1)–(A2) are weaker.

In this paper, for α ∈ [2, 3), we use the following notations:
• h(x) := xα–1(1 – x), x ∈ [0, 1].
• Gα(x, y) denotes the Green’s function of the operator v → –Dαv with boundary condi-

tions v(0) = v′(0) = v(1).
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• E := {a > 0 :
∫ 1

0 Gα(x, y)h(y)q(y) dy ≤ ah(x), x ∈ [0, 1]} (we will see that E �= ∅).

•M := inf E. (1.5)

We will prove that M is a positive constant satisfying the following range estimation:

Mq,α+1 ≤ M ≤ Mq,α . (1.6)

• For a ∈R, a+ := max(a, 0).
• Ch([0, 1]) := {v ∈ C([0, 1]) : there is σ > 0 such that |v(x)| ≤ σh(x), x ∈ [0, 1]}.
In the next remark, we list some properties of elements of Ch([0, 1]).

Remark 1.3
(i) Ch([0, 1]) is a Banach space equipped with the following h-norm:

‖v‖h := inf
{
σ > 0 :

∣∣v(x)
∣∣ ≤ σh(x), x ∈ [0, 1]

}
= sup

x∈(0,1)

|v(x)|
h(x)

. (1.7)

(ii) v ∈ Ch([0, 1]) if and only if v = hϕ, where ϕ is a bounded continuous function in
(0, 1).

Our main result is the following:

Theorem 1.4 Assume that (A1) and (A2) hold. If M < 1, then problem (1.1) has a unique
solution v in Ch([0, 1]). In addition, for any v0 ∈ Ch([0, 1]), the iterative sequence vk(x) :=∫ 1

0 Gα(x, y)f (y, vk–1(y)) dy converges to v with respect to the h-norm, and we have

‖vk – v‖h ≤ Mk

1 – M
‖v1 – v0‖h. (1.8)

Our paper is organized as follows. In Sect. 2, we improve the estimates on Green’s func-
tion Gα obtained in [1, Lemma 2.2]. This allows us to obtain the range estimation (1.6).
Our main result is proved in Sect. 3. Some examples and approximations are given at the
end.

2 Preliminaries
Definition 2.1 ([3]) Let f : (0,∞) →R be a measurable function.

(i) The Riemann–Liouville fractional integral of order γ > 0 for f is defined as

Iγ f (x) :=
1

�(γ )

∫ x

0
(x – y)γ –1f (y) dy,

where � is the Euler gamma function.
(ii) The Riemann–Liouville fractional derivative of order γ > 0 for f is defined as

Dγ f (x) :=
1

�(n – γ )

(
d

dx

)n ∫ x

0
(x – y)n–γ –1f (y) dy,

where n = [γ ] + 1, and [γ ] is the integer part of γ .
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By [10, Lemma 2.2] the Green’s function associated with problem (1.1) is given by

Gα(x, y) =
1

�(α)

⎧⎨
⎩xα–1(1 – y)α–1 – (x – y)α–1 for 0 ≤ y ≤ x ≤ 1,

xα–1(1 – y)α–1 for 0 ≤ x ≤ y ≤ 1.
(2.1)

Lemma 2.2 The Green’s function Gα(x, y) has the following properties:
(i) Gα(x, y) is a nonnegative continuous function on [0, 1] × [0, 1].

(ii) For all x, y ∈ [0, 1], we have

Hα(x, y) ≤ Gα(x, y) ≤ (α – 1)Hα(x, y), (2.2)

where Hα(x, y) := 1
�(α) xα–2(1 – y)α–2 min(x, y)(1 – max(x, y)).

Proof It is obvious that (i) holds. Now we prove (ii). From (2.1), for all x, y ∈ (0, 1), we have

�(α)Gα(x, y) = xα–1(1 – y)α–1 –
(
(x – y)+)α–1 (2.3)

= xα–1(1 – y)α–1
(

1 –
(

(x – y)+

x(1 – y)

)α–1)
. (2.4)

Since for λ > 0 and t ∈ [0, 1],

min(1,λ)(1 – t) ≤ 1 – tλ ≤ max(1,λ)(1 – t),

we deduce that

1 –
(x – y)+

x(1 – y)
≤ 1 –

(
(x – y)+

x(1 – y)

)α–1

≤ (α – 1)
(

1 –
(x – y)+

x(1 – y)

)
.

Using this fact and (2.4), we obtain

x(1 – y) – (x – y)+ ≤ �(α)Gα(x, y)
xα–2(1 – y)α–2 ≤ (α – 1)

(
x(1 – y) – (x – y)+)

.

Hence estimates (2.2) follow from

x(1 – y) – (x – y)+ = min(x, y)
(
1 – max(x, y)

)
. �

Remark 2.3 In [1, Lemma 2.2], the authors stated that for all x, y ∈ [0, 1],
(i) xα–1(1 – x)y(1 – y)α–1 ≤ �(α)Gα(x, y) ≤ (α – 1)y(1 – y)α–1,

(ii) xα–1(1 – x)y(1 – y)α–1 ≤ �(α)Gα(x, y) ≤ (α – 1)xα–1(1 – x).
Note that since for all x, y ∈ [0, 1],

xy ≤ min(x, y) and (1 – x)(1 – y) ≤ (
1 – max(x, y)

)
,

we get

xα–1(1 – x)y(1 – y)α–1 ≤ �(α)Hα(x, y) ≤ min
(
xα–1(1 – x), y(1 – y)α–1).

Combining this fact with (2.2), we immediately obtain inequalities (i) and (ii).
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Therefore estimates (2.2) improve those stated in [1, Lemma 2.2].

Lemma 2.4 Let q ∈ C((0, 1), [0,∞)) and assume that 0 < Mq,α < ∞. Then

Mq,α+1 ≤ M ≤ Mq,α ,

where M is the constant defined by (1.5).

Proof Let

E =
{

a > 0 :
∫ 1

0
Gα(x, y)h(y)q(y) dy ≤ ah(x), x ∈ [0, 1]

}
,

where h(x) := xα–1(1 – x), x ∈ [0, 1].
By (2.2) we obtain

∫ 1

0
Gα(x, y)h(y)q(y) dy

≤ 1
�(α – 1)

xα–2
∫ 1

0
yα–1(1 – y)α–1 min(x, y)

(
1 – max(x, y)

)
q(y) dy

≤ Mq,αh(x).

It follows that E �= ∅ and M ≤ Mq,α , where M := inf E.
On the other hand, using again (2.2) and that
min(x, y)(1 – max(x, y)) ≥ xy(1 – x)(1 – y) for x, y ∈ [0, 1], we deduce that for any a ∈ E,

ah(x) ≥ 1
�(α)

xα–2
∫ 1

0
yα–1(1 – y)α–1 min(x, y)

(
1 – max(x, y)

)
q(y) dy

≥ 1
�(α)

xα–2
∫ 1

0
yα–1(1 – y)α–1xy(1 – x)(1 – y)q(y) dy

= h(x)Mq,α+1.

Hence for each a ∈ E,

a ≥ Mq,α+1.

Therefore M ≥ Mq,α+1, that is, M ∈ [Mq,α+1, Mq,α]. �

Remark 2.5 From Lemma 2.4 it is obvious that if Mq,α < 1, then
M := inf E < 1. Note that the inequality Mq,α < 1 can be verified for a large class of func-

tions q, including the singular cases. For example, let
B(a, b) :=

∫ 1
0 ta–1(1 – t)b–1 dt for a > 0 and b > 0.

Then by using MATLAB we obtain
(i) If q ∈ C((0, 1)) with q > 0 and ‖q‖∞ ≤ 1, then

Mq,α ≤ B(α,α)
�(α – 1)

< 1.
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(ii) If q(x) := (1 – x)– α
2 , then

Mq,α =
B(α, α

2 )
�(α – 1)

< 1.

(iii) If q(x) := x– α
3 (1 – x)– α

2 , then

Mq,α =
B( 2α

3 , α
2 )

�(α – 1)
< 1.

3 Existence and uniqueness
We need the following useful lemma.

Lemma 3.1 Let 2 < α < 3, and let ϕ be a function such that x → (1 – x)α–1ϕ(x) ∈ C((0, 1))∩
L1((0, 1)). Then the unique continuous solution of the problem

⎧⎨
⎩Dαv(x) = –ϕ(x), x ∈ (0, 1),

v(0) = v′(0) = v(1) = 0,
(3.1)

is given by

Vϕ(x) :=
∫ 1

0
Gα(x, y)ϕ(y) dy.

Proof Let ϕ be a function such that x → (1 – x)α–1ϕ(x) ∈ C((0, 1)) ∩ L1((0, 1)). Since by
Lemma 2.2, Gα(x, y) belongs to C([0, 1] × [0, 1]) with

0 ≤ Gα(x, y) ≤ 1
�(α – 1)

(1 – y)α–1,

we deduce by the dominated convergence theorem that Vϕ ∈ C([0, 1])
and Vϕ(0) = Vϕ(1) = 0. Therefore I3–α(V |ϕ|) is bounded on [0, 1]. By Fubini’s theorem

we obtain

I3–α(Vϕ)(x) =
1

�(3 – α)

∫ x

0
(x – y)2–αVϕ(y) dy

=
∫ 1

0
K(x, r)ϕ(r) dr,

where K(x, r) := 1
�(3–α)

∫ x
0 (x – y)2–αGα(y, r) dy.

Simple calculation gives

K(x, r) =
1
2

x2(1 – r)α–1 –
1
2
(
(x – r)+)2.

Hence, for x ∈ (0, 1), we have

I3–α(Vϕ)(x) =
x2

2

∫ 1

0
(1 – r)α–1ϕ(r) dr –

1
2

∫ x

0
(x – r)2ϕ(r) dr.
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This implies that

d3

dx3

(
I3–α(Vϕ)

)
(x) = –ϕ(x).

Now, since for each y ∈ (0, 1),

lim
x→0

Gα(x, y)
x

= 0 and 0 ≤ Gα(x, y)
x

≤ 1
�(α – 1)

(1 – y)α–1,

by the dominated convergence theorem we obtain (Vϕ)′(0) = 0.
To prove the uniqueness, let v, w ∈ C([0, 1]) be two solutions of problem (3.1) and set

θ := v – w. Then θ ∈ C([0, 1]), and we have

⎧⎨
⎩Dαθ (x) = 0, x ∈ (0, 1),

θ (0) = θ ′(0) = θ (1) = 0.

By [3, Corollary 2.1] there exist c1, c2, c3 ∈R such that

θ (x) = c1xα–1 + c2xα–2 + c3xα–3.

Applying the boundary conditions, we obtain c3 = c2 = c1 = 0, that is, v = w. �

Remark 3.2 The conclusion of Lemma 3.1 remains true for α = 3.

Proof of Theorem 1.4 Assume that (A1) and (A2) hold and M < 1, where M is given by
(1.5). Let us prove that problem (1.1) has a unique solution v in Ch([0, 1]). In addition, for
any v0 ∈ Ch([0, 1]), the iterative sequence vk(x) :=

∫ 1
0 Gα(x, y)f (y, vk–1(y)) dy converges to v

with respect to the h-norm, and we have

‖vk – v‖h ≤ Mk

1 – M
‖v1 – v0‖h.

To this end, define the operator T by

Tv(x) =
∫ 1

0
Gα(x, y)f

(
y, v(y)

)
dy, x ∈ [0, 1], v ∈ Ch

(
[0, 1]

)
. (3.2)

We claim that T is a contraction operator from (Ch([0, 1]),‖ · ‖h) into itself.
Let v ∈ Ch([0, 1]), and let σ > 0 be such that |v(x)| ≤ σh(x) for all x ∈ [0, 1].
Since by Lemma 2.2(ii), 0 ≤ Gα(x, y) ≤ 1

�(α–1) (1 – y)α–2, it follows from (A2) that

∣∣Gα(x, y)f
(
y, v(y)

)∣∣ ≤ 1
�(α – 1)

(1 – y)α–2(∣∣f (y, v(y)
)

– f (y, 0)
∣∣ +

∣∣f (y, 0)
∣∣)

≤ 1
�(α – 1)

(1 – y)α–2(q(y)
∣∣v(y)

∣∣ +
∣∣f (y, 0)

∣∣)

≤ 1
�(α – 1)

(
σyα–1(1 – y)α–1q(y) + (1 – y)α–2∣∣f (y, 0)

∣∣).
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Since Gα(x, y) is continuous on [0, 1]×[0, 1], by (A1)–(A2) and the dominated convergence
theorem we deduce that Tv ∈ C([0, 1]).

Furthermore, from Lemma 2.2(ii) we have

0 ≤ Gα(x, y) ≤ 1
�(α – 1)

h(x)(1 – y)α–2. (3.3)

Hence by using (3.3) and similar arguments as before we obtain

∣∣Tv(x)
∣∣ ≤

[
σMq,α +

1
�(α – 1)

∫ 1

0
(1 – y)α–2∣∣f (y, 0)

∣∣dy
]

h(x),

and thus T(Ch([0, 1])) ⊂ Ch([0, 1]).
Next, for any v, w ∈ Ch([0, 1]), by using (A2) we obtain that for x ∈ [0, 1],

∣∣Tv(x) – Tw(x)
∣∣ ≤

∫ 1

0
Gα(x, y)

∣∣f (y, v(y)
)

– f
(
y, w(y)

)∣∣dy

≤
∫ 1

0
Gα(x, y)q(y)

∣∣v(y) – w(y)
∣∣dy

≤ ‖v – w‖h

∫ 1

0
Gα(x, y)q(y)h(y) dy

≤ M‖v – w‖hh(x).

Hence

‖Tv – Tw‖h ≤ M‖v – w‖h.

Since M < 1, T becomes a contraction operator in Ch([0, 1]). So there exists a unique
v ∈ Ch([0, 1]) satisfying

v(x) =
∫ 1

0
Gα(x, y)f

(
y, v(y)

)
dy, x ∈ (0, 1). (3.4)

It remains to prove that v is a solution of problem (1.1). Indeed, it is clear that
x → (1 – x)α–1f (x, v(x)) ∈ C((0, 1)). Next, by using (A2) and v ∈ Ch([0, 1]) we obtain

∣∣(1 – x)α–1f
(
x, v(x)

)∣∣ ≤ (1 – x)α–1(∣∣f (x, v(x)
)

– f (x, 0)
∣∣ +

∣∣f (x, 0)
∣∣)

≤ (1 – x)α–1(q(x)
∣∣v(x)

∣∣ +
∣∣f (x, 0)

∣∣)
≤ σxα–1(1 – x)α–1q(x) + (1 – x)α–2∣∣f (x, 0)

∣∣.
Therefore by (A1) and (A2) it follows that x → (1 – x)α–1f (x, v(x)) ∈ L1((0, 1)). Hence from
Lemma 3.1 we derive that v is a solution of problem (1.1).

Finally, it is well known that for any v0 ∈ Ch([0, 1]), the iterative sequence
vk(x) :=

∫ 1
0 Gα(x, y)f (y, vk–1(y)) dy converges to v, and we have

‖vk – v‖h ≤ Mk

1 – M
‖v1 – v0‖h. �
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Example 3.3 Let 2 < α ≤ 3. Consider the problem

⎧⎨
⎩Dαv(x) + q(x) cos v = 0, x ∈ (0, 1),

v(0) = v′(0) = v(1) = 0,
(3.5)

where q ∈ C((0, 1)) with q > 0 and ‖q‖∞ ≤ 1. Let f (x, v) := q(x) cos v for (x, v) ∈ (0, 1) × R.
We have f ∈ C((0, 1) ×R,R) and

∫ 1

0
(1 – x)α–2∣∣f (x, 0)

∣∣dx ≤ ‖q‖∞
∫ 1

0
(1 – x)α–2 dx < ∞.

So assumption (A1) is verified.
On the other hand, since v → cos v is a Lipschitz function, we obtain

∣∣f (x, v) – f (x, w)
∣∣ ≤ q(x)|v – w|, x ∈ (0, 1), v, w ∈R.

By Lemma 2.4 and Remark 2.5(i) we have

0 < M ≤ Mq,α ≤ ‖q‖∞
�(α – 1)

∫ 1

0
xα–1(1 – x)α–1 dx < 1.

Hence by Theorem 1.4 problem (3.5) has a unique solution v ∈ Ch([0, 1]).

Example 3.4 Let 2 < α ≤ 3 and consider the singular problem

⎧⎨
⎩Dαv(x) + (1 – x)– α

2 (1 + sin v) = 0, x ∈ (0, 1),

v(0) = v′(0) = v(1) = 0.
(3.6)

In this case, we have f (x, v) = (1 – x)– α
2 (1 + sin v) for (x, v) ∈ (0, 1) ×R.

So f ∈ C((0, 1)×R,R) and
∫ 1

0 (1 – x)α–2|f (x, 0)|dx =
∫ 1

0 (1 – x) α
2 –2 dx < ∞, that is, assump-

tion (A1) is satisfied.
On the other hand, we clearly have

∣∣f (x, v) – f (x, w)
∣∣ ≤ q(x)|v – w|, x ∈ (0, 1), v, w ∈R,

where q(x) := (1 – x)– α
2 .

From Lemma 2.4 and Remark 2.5(ii) we deduce that

0 < M ≤ Mq,α =
1

�(α – 1)

∫ 1

0
xα–1(1 – x)

α
2 –1 dx < 1.

Hence by Theorem 1.4 this problem has a unique solution v ∈ Ch([0, 1]). In particular, for
α = 5

2 , the unique solution is approximated (see Fig. 1) by the iterative sequence vk(x) :=∫ 1
0 G 5

2
(x, y)(1 – y)– 5

4 (1 + sin(vk–1(y))) dy with v0(x) = x 3
2 (1 – x), x ∈ [0, 1].
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Figure 1 The approximation of the solution of problem (3.6)

Figure 2 The approximation of the solution of problem (3.7)

Example 3.5 Consider the problem

⎧⎨
⎩D 5

2 v(x) + x– 5
6 (1 – x)– 5

4 (1 + v) = 0, x ∈ (0, 1),

v(0) = v′(0) = v(1) = 0.
(3.7)

As in Example 3.4, we verify that assumptions (A1) and (A2) are satisfied. Therefore by
Theorem 1.4 problem (3.7) has a unique solution v ∈ Ch([0, 1]), and the iterative sequence
defined by v0(x) := x 3

2 (1 – x), x ∈ [0, 1], and

vk(x) :=
∫ 1

0
G 5

2
(x, y)y– 5

6 (1 – y)– 5
4
(
1 + vk–1(y)

)
dy

converges to v (see Fig. 2).
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