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Abstract
In this work, we construct the genuine Durrmeyer–Stancu type operators depending
on parameter α in [0, 1] as well as ρ > 0 and study some useful basic properties of the
operators. We also obtain Grüss–Voronovskaja and quantitative Voronovskaja types
approximation theorems for the aforesaid operators. Further, we present numerical
and geometrical approaches to illustrate the significance of our new operators.
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1 Introduction
Let LB[0, 1] denote the space of bounded Lebesgue integrable functions on [0, 1] and N

the set of natural numbers. We use the symbol �m (m ∈ N) to denote the space of polyno-
mials of degree at most m. By taking Bernstein polynomials into account, Chen [14] and
Goodman and Sharma [21] independently introduced the operators Um (we can also call
them genuine Bernstein–Durrmeyer operators) acting from LB[0, 1] into �m, defined by

Um(f , y) = (m – 1)
m–1∑

i=1

(∫ 1

0
f (t)pm–2,i–1(t) dt

)
pm,i(y) + ymf (1)

+ (1 – y)mf (0)

for all f ∈ LB[0, 1], where pm,i(y) (m, i ∈ N) is considered by

pm,i(y) =
(

m
i

)
yi(1 – y)m–i (0 ≤ y ≤ 1, 0 ≤ i ≤ m).

The above operators are limits of the Bernstein–Durrmeyer operators with Jacobi weights,
Mc,d

m for c, d > –1, which was studied by Păltănea [40], that is,

Um(f ) = lim
c→–1,d→–1

Mc,d
m (f )

(
f ∈ C[0, 1]

)
,
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where C[0, 1] denotes the space of functions which are continuous on [0, 1] and

Mc,d
m (f , y) =

m∑

i=0

∫ 1
0 f (t)tc(1 – t)dpm,i(t) dt
∫ 1

0 tc(1 – t)dpm,i(t) dt
pm,i(y).

Păltănea [41] presented a generalization of the operators Um with the help of ρ > 0, namely
genuine ρ-Bernstein–Durrmeyer operators, and denoted them by Uρ

m. For any f ∈ C[0, 1],
in the same paper, he showed that the classical Bernstein operators are the limits of the
operators Uρ

m and also obtained a Voronovskaja-type result. Gonska and Păltănea [17]
proved that the operators Uρ

m preserve convexity of all orders and also obtained the degree
of simultaneous approximation.

It is well known that Bernstein polynomials are one of the most widely-investigated poly-
nomials in the theory of approximation, and so, to obtain another generalization of classi-
cal Bernstein operators, Cai et al. [13] considered the Bézier bases with shape parameter λ

in [–1, 1] and introduced λ-Bernstein operators. Later, Kantorovich, Schurer, and Stancu
variants of λ-Bernstein operators were discussed by Cai [11], Özger [36–38], and Srivas-
tava et al. [43]. By taking λ-Bernstein polynomials into account, in a very recent past, Acu
et al. [4] defined a new family of modified Uρ

m operators and denoted the new operators
by Uρ

m,λ.
Chen et al. [15] recently presented a generalization of classical Bernstein operators with

the help of any fixed α in R, which they called α-Bernstein operators (linear and pos-
itive for α ∈ [0, 1]), and discussed the rate of convergence, Voronovskaja-type formula,
and shape preserving properties of these positive linear operators. Mohiuddine et al. [26]
constructed the Kantorovich variant of α-Bernstein operators. The bivariate version of α-
Bernstein–Durrmeyer operators was constructed and studied by Kajla and Miclăuş [23]
(also see [25] for recent work), in which they also discussed GBS operator (or generalized
boolean sum operators) of α-Bernstein–Durrmeyer, while the two interesting forms of
α-Baskakov–Durrmeyer were introduced by Kajla et al. [24] and Mohiuddine et al. [31].
For the classical Bernstein–Durrmeyer operators, we refer the interested reader to [16].
We also refer to [2, 3, 7, 8, 10, 12, 18, 19, 22, 27–30, 32–35, 39, 42, 45, 46] for some recent
work on various Bernstein, Durrmeyer, and genuine type operators as well as statistical
approximation.

We will now recall the α-Bernstein operators due to Chen et al. [15] as follows: For
g ∈ C[0, 1], α ∈ [0, 1] is fixed, and m ∈N, the α-Bernstein operators are defined by

Tm,α(g; y) =
m∑

i=0

g(i/m)p(α)
m,i(y)

(
y ∈ [0, 1]

)
, (1.1)

where

p(α)
1,0(y) = 1 – y, p(α)

1,1(y) = y

and

p(α)
m,i(y) =

[
(1 – α)y

(
m – 2

i

)
+ (1 – α)(1 – y)

(
m – 2
i – 2

)

+ αy(1 – y)
(

m
i

)]
yi–1(1 – y)m–i–1 (m ≥ 2).
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Note that p(α)
m,i in relation (1.1) is called α-Bernstein polynomials of order m and the bino-

mial coefficients

(
a
b

)
=

⎧
⎨

⎩

a!
b!(a–b)! (0 ≤ b ≤ a),

0̄ (otherwise).

For α = 1, (1.1) is reduced to the classical Bernstein operators [9].

2 Generalized Uρ
m operators and approximation properties

For m ∈N and ρ > 0, the functional (see [41])

Fρ
m,i : C[0, 1] →R

is defined by

Fρ
m,i(g) =

∫ 1

0
μ

ρ
m,i(t)g(t) dt (i = 1, 2, . . . , m – 1), (2.1)

Fρ
m,0(g) = g(0), Fρ

m,m(g) = g(1),

where μ
ρ
m,i(t) in (2.1) is given by the formula

μ
ρ
m,i(t) =

tiρ–1(1 – t)(m–i)ρ–1

B(iρ, (m – i)ρ)

and Euler’s beta function in the last equality is defined by

B(a, b) =
∫ 1

0
ta–1(1 – t)b–1 dt (a, b > 0).

Assume that θ and β are two real parameters satisfying 0 ≤ θ ≤ β . In view of α-Bernstein
operators, for m ∈N, α ∈R is fixed, and given a function g ∈ C[0, 1], we define the opera-
tors Uβ ,θ ,ρ

m,α (or genuine (α,ρ)-Durrmeyer–Stancu operators) by

Uβ ,θ ,ρ
m,α (g; y) =

m∑

i=0

Fβ ,θ ,ρ
m,i (g)p(α)

m,i(y), (2.2)

where

Fβ ,θ ,ρ
m,i (g) =

∫ 1

0
μ

ρ
m,i(t)g

(
mt + θ

m + β

)
dt

for i = 1, 2, . . . , m – 1, Fβ ,θ ,ρ
m,0 (g) = g( θ

m+β
) and Fβ ,θ ,ρ

m,1 (g) = g( m+θ
m+β

). Consequently, we can re-
write our operators Uβ ,θ ,ρ

m,α as follows:

Uβ ,θ ,ρ
m,α (g; y) =

m–1∑

i=1

∫ 1

0

[
tiρ–1(1 – t)(m–i)ρ–1

B(iρ, (m – i)ρ)
g
(

mt + θ

m + β

)
dt

]
p(α)

m,i(y)

+ g
(

θ

m + β

)
p(α)

m,0(y) + g
(

m + θ

m + β

)
p(α)

m,m(y). (2.3)



Alotaibi et al. Advances in Difference Equations         (2021) 2021:13 Page 4 of 14

For the choice of θ = 0 and β = 0, the operators defined by (2.3) reduce to the opera-
tors Uρ

m,α(g; y) which were studied in [6]. In addition, if ρ = 1, then we get the genuine
α-Bernstein–Durrmeyer operators Um,α defined in [1]. If we take ρ = 1, α = 1, θ = 0, and
β = 0, then we obtain genuine Bernstein–Durrmeyer operators. Throughout the paper,
we assume that α ∈ [0, 1] for which our new operators Uβ ,θ ,ρ

m,α are linear and positive. For
interested readers who want to see the details of Stancu operators, we refer to [44].

The moments of our newly constructed operators Uβ ,θ ,ρ
m,α are given in the following

lemma.

Lemma 1 Let ei(y) = yi, (i = 0, 1, 2, 3, 4). Then the operators Uβ ,θ ,ρ
m,α satisfy

Uβ ,θ ,ρ
m,α (e0; y) = 1,

Uβ ,θ ,ρ
m,α (e1; y) =

my + θ

m + β
,

Uβ ,θ ,ρ
m,α (e2; y) =

m2y2 + 2mθy + θ2

(m + β)2 +
(y – y2)m(m(1 + ρ) + 2ρ(1 – α))

(m + β)2(mρ + 1)
,

Uβ ,θ ,ρ
m,α (e3; y) =

m3y3 + 3mθy(my + θ ) + θ3

(m + β)3 +
3m(y2 – y)θ (2ρm2 + 2mρ(1 – α))

(m + β)3(mρ + 1)

+
6(y2 – y)ρ(1 – α)(1 + ρ – 2ρy)
(m + β)3(mρ + 1)(mρ + 2)m

+
(y2 – y)

(m + β)3(mρ + 1)(mρ + 2)
{

2y

– 2ρ + 3mρy(ρ + 1) + 4ρ2y + ρ2 + 3 – 6ρ2αy
}

,

Uβ ,θ ,ρ
m,α (e4; y) =

m4y4 + 4mθy(m2y2 + θ2) + θ2(6m2y2 + θ2)
(m + β)4

+
y – y2

(m + β)4(mρ + 1)(mρ + 2)(mρ + 3)
{

6ρ2(ρ + 1)y2m6

– ρy
(
12αρ2 – y – ρ2y – 7ρ2 – 18ρ – 11y – 11

)
m5 +

(
60αρ3y2 – 36αρ3y

– 54ρ3y2 + 6ρ2(4y – 6α + 1) + y + 30ρ3y + ρ3 + 6y2 + 11ρ + 6y + 6
)
m4

+ 2ρ(1 – α)
(
36ρ2(y2 – y

)
+ 7ρ2 – 36ρy + 18ρ + 11

)
m3}

+
y – y2

(m + β)4(mρ + 1)(mρ + 2)
{

12θρ(ρ + 1)ym4 + 4θ
(
ρ2(4y + 1) + 3ρ

+ 2y + 2 – 6αρ2)m3 + 24θρ(1 – α)(1 + ρ – 2ρy)m2}

+
(y – y2)(6θ2(ρ + 1)m2 + 12θ2ρ(1 – α)m)

(m + β)4(mρ + 1)
.

Proof We give a short proof for the first three parts, one can prove the rest using the same
idea.

Uβ ,θ ,ρ
m,α (e0; y) =

m∑

i=0

p(α)
m,i(y)

B(iρ, (m – i)ρ)

∫ 1

0
tiρ–1(1 – t)(m–i)ρ–1 dt

=
m∑

i=0

p(α)
m,i(y) = 1.
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Uβ ,θ ,ρ
m,α (e1; y) =

m∑

i=0

p(α)
m,i(y)

∫ 1

0

mt + θ

m + β
μ

ρ
m,i(t) dt

=
m

m + β

m∑

i=0

p(α)
m,i(y)

�(mρ)
�(iρ)�((m – i)ρ)

�(iρ + 1)�((m – i)ρ)
�(mρ + 1)

+
θ

m + β

m∑

i=0

p(α)
m,i(y)

∫ 1

0
μ

ρ
m,i(t) dt

=
my + θ

m + β
.

Using the properties of Euler beta function, we have

Uβ ,θ ,ρ
m,α (e2; y) =

m∑

i=0

p(α)
m,i(y)

∫ 1

0

(
mt + θ

m + β

)2

μ
ρ
m,i(t) dt

=
m2

(m + β)2

m∑

i=0

p(α)
m,i(y)

∫ 1

0
t2μ

ρ
m,i(t) dt +

2mθ

(m + β)2

m∑

i=0

p(α)
m,i(y)

∫ 1

0
tμρ

m,i(t) dt

+
θ2

(m + β)2

m∑

i=0

p(α)
m,i(y)

∫ 1

0
μ

ρ
m,i(t) dt

=
m2y2 + 2mθy + θ2

(m + β)2 +
(y – y2)m(m(1 + ρ) + 2ρ(1 – α))

(m + β)2(mρ + 1)
. �

Corollary 1 The central moments of (2.3) are as follows:

Uβ ,θ ,ρ
m,α (e1 – y; y) =

θ – βy
m + β

,

Uβ ,θ ,ρ
m,α

(
(e1 – y)2; y

)

=
1

(m + β)2(mρ + 1)
{

m2(y – y2)(ρ + 1)

+ m
(
2(ρ – α)

(
y – y2) + ρβθy(βy – 2θ ) + ρθ2) + θ2 + β2y2 – 2βθy

}
.

Theorem 1 If g is continuous on [0, 1] for any α ∈ [0, 1], then Uβ ,θ ,ρ
m,α (g) converge uniformly

to g on [0, 1], that is,

lim
m→∞

∥∥Uβ ,θ ,ρ
m,α (g) – g

∥∥ = 0.

Proof We obtain by Lemma 1 that

lim
m→∞ Uβ ,θ ,ρ

m,α (e0) = e0, lim
m→∞ Uβ ,θ ,ρ

m,α (e1; y) = e1

and similarly limm→∞ ‖Uβ ,θ ,ρ
m,α (e2) – e2‖ = 0. Consequently, the Korovkin theorem gives

lim
m→∞

∥∥Uβ ,θ ,ρ
m,α (g) – g

∥∥ = 0. �

Lemma 2 Let g ∈ C[0, 1], and let ‖ · ‖ be a uniform norm on [0, 1]. Then

∥∥Uβ ,θ ,ρ
m,α (g)

∥∥ ≤ ‖g‖ (m ∈N).
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Proof With a view of last lemma, we have |Uβ ,θ ,ρ
m,α (g; y)| ≤ Uβ ,θ ,ρ

m,α (e0; y)‖g‖ = ‖g‖. �

Recall that the usual modulus of continuity for g is defined by

ω(g;
√

ε) = sup
0<λ≤ε

sup
y,y+λ∈[0,1]

∣∣g(y + λ) – g(y)
∣∣.

Theorem 2 Assume that g ∈ C[0, 1] and α ∈ [0, 1]. Then

∣∣Uβ ,θ ,ρ
m,α (g; y) – g(y)

∣∣ ≤ 2ω
(

g;
√

τ
β ,θ ,ρ
m,α

) (
y ∈ [0, 1]

)
,

where τ
β ,θ ,ρ
m,α = Uβ ,θ ,ρ

m,α ((e1 – y)2; y).

Proof From the monotonicity of the operators Uβ ,θ ,ρ
m,α and taking Lemma 1 into our ac-

count, we write

∣∣Uβ ,θ ,ρ
m,α (g; y) – g(y)

∣∣ =
∣∣Uβ ,θ ,ρ

m,α
(
g(t) – g(y); y

)∣∣ ≤ Uβ ,θ ,ρ
m,α

(∣∣g(t) – g(y)
∣∣; y

)
.

Since

∣∣g(t) – g(y)
∣∣ ≤

(
1 +

(
t – y
ε

)2)
ω(g; ε)

(
y, t ∈ [0, 1], ε > 0

)
,

we fairly obtain

∣∣Uβ ,θ ,ρ
m,α (g; y) – g(y)

∣∣ ≤
(

1 +
Uβ ,θ ,ρ

m,α ((e1 – y)2; y)
ε2

)
ω(g; ε).

Here, the assertion of Theorem 2 is acquired by taking into account ε =√
Uβ ,θ ,ρ

m,α ((e1 – y)2; y). �

Theorem 3 Let g ∈ C1[0, 1]. For any y ∈ [0, 1], the following inequality holds:

∣∣Uβ ,θ ,ρ
m,α (g; y) – g(y)

∣∣ ≤ 2
√

τ
β ,θ ,ρ
m,α w

(
g ′,

√
τ

β ,θ ,ρ
m,α

)
+

∣∣g ′(y)
∣∣∣∣νβ ,θ

m
∣∣, (2.4)

where ν
β ,θ
m = Uβ ,θ ,ρ

m,α (e1 – y; y) and τ
β ,θ ,ρ
m,α = Uβ ,θ ,ρ

m,α ((e1 – y)2; y).

Proof One writes

g(t) – g(y) = (t – y)g ′(y) +
∫ t

y

(
g ′(u) – g ′(y)

)
du

for any t ∈ [0, 1] and y ∈ [0, 1]. Operating Uβ ,θ ,ρ
m,α (g; y) on both sides of the above relation,

we obtain

Uβ ,θ ,ρ
m,α

(
g(t) – g(y); y

)
= g ′(y)Uβ ,θ ,ρ

m,α (t – y; y) + Uβ ,θ ,ρ
m,α

(∫ t

y

(
g ′(u) – g ′(y)

)
du; y

)
.
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We know that

∣∣g(u) – g(y)
∣∣ ≤ w(g, ε)

( |u – y|
ε

+ 1
) (

g ∈ C[0, 1]
)

(2.5)

for any ε > 0 and each u ∈ [0, 1]. By taking (2.5) into our consideration, we obtain

∣∣∣∣
∫ t

y

(
g ′(u) – g ′(y)

)
du

∣∣∣∣ ≤ w
(
g ′, ε

)( (t – y)2

ε
+ |t – y|

)
.

Thus,

∣∣Uβ ,θ ,ρ
m,α (g; y) – g(y)

∣∣ ≤ ∣∣g ′(y)
∣∣∣∣Uβ ,θ ,ρ

m,α (t – y; y)
∣∣

+ w
(
g ′, ε

){1
ε

Uβ ,θ ,ρ
m,α

(
(t – y)2; y

)
+ Uβ ,θ ,ρ

m,α (t – y; y)
}

.

Consequently, (2.4) follows by choosing ε = Uβ ,θ ,ρ
m,α ((t – y)2; y) =

√
τ

β ,θ ,ρ
m,α , which proves our

result. �

3 Voronovskaja-type theorems
We obtain some Voronovskaja-type theorems including a Grüss–Voronovskaja-type the-
orem and a quantitative Voronovskaja-type theorem for Uβ ,θ ,ρ

m,α . We first obtain a quantita-
tive Voronovskaja-type theorem for our operators Uβ ,θ ,ρ

m,α using the Ditzian–Totik modulus
of smoothness. To do this, we need the following definitions.

We first recall the Ditzian–Totik modulus of smoothness defined as follows:

ωφ(g, δ) := sup
0<|λ|≤δ

{∣∣∣∣g
(

y +
λφ(y)

2

)
– g

(
y –

λφ(y)
2

)∣∣∣∣, y ± λφ(y)
2

∈ [0, 1]
}

,

where g ∈ C[0, 1] and φ(y) =
√

y(1 – y). The corresponding Peetre’s K-functional is defined
by

Kφ(g, δ) = inf
h∈Wφ [0,1]

{‖g – h‖ + δ
∥∥φh′∥∥ : h ∈ C1[0, 1], δ > 0

}
,

where

Wφ[0, 1] =
{

h : h ∈ ACloc[0, 1],
∥∥φh′∥∥ < ∞}

,

and ACloc[0, 1] in the last equality denotes the class of all absolutely continuous functions
defined on the closed interval [a, b] ⊂ [0, 1]. Then ∃ a constant M > 0 such that

Kφ(g, δ) ≤ Mωφ(g, δ).

Theorem 4 Suppose that g, g ′, g ′′ ∈ C[0, 1] and y ∈ [0, 1]. Suppose also that ρ is a positive
number. Then we have

∣∣Uβ ,θ ,ρ
m,α (g; y) – g ′′(y)χρ,α

m,β ,θ – g(y)
∣∣ ≤ M

m
φ2(y)ωφ

(
g ′′,

1
m1/2

)
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for sufficiently large m, where

χ
ρ,α
m,β ,θ =

m2y2 + 2mθy + θ2

2(m + β)2 +
(y – y2)m(m(1 + ρ) + 2ρ(1 – α))

2(m + β)2(mρ + 1)
.

Proof The following equality

g(t) – g(y) – (t – y)g ′(y) =
∫ t

y
(t – u)g ′′(u) du

is satisfied for g ∈ C[0, 1]. This equality implies

g(t) – g(y) – (t – y)g ′(y) –
g ′′(y)

2
(t – y)2 ≤

∫ t

y
(t – u)

[
g ′′(u) – g ′′(y)

]
du. (3.1)

If we apply the operators Uβ ,θ ,ρ
m,α to each side of (3.1), we get

∣∣∣∣U
β ,θ ,ρ
m,α (g; y) – g(y) – Uβ ,θ ,ρ

m,α
(
(t – y); y

)
g ′(y) –

g ′′(y)
2

Uβ ,θ ,ρ
m,α

(
(t – y)2; y

)∣∣∣∣

≤ Uβ ,θ ,ρ
m,α

(∣∣∣∣
∫ t

y
|t – u|∣∣g ′′(u) – g ′′(y)

∣∣du
∣∣∣∣; y

)
. (3.2)

Let us estimate the right-hand side of (3.2) as follows:
∣∣∣∣
∫ t

y
|t – u|∣∣g ′′(u) – g ′′(y)

∣∣du
∣∣∣∣ ≤ 2

∥∥g ′′ – g
∥∥(t – y)2 + 2

∥∥φg ′∥∥φ–1(y)|t – y|3

for g ∈ Wφ[0, 1]. Then there is a constant M > 0 such that

Uβ ,θ ,ρ
m,α ((t – y)2; y) ≤ (ρ+1)My2(1–y)2

ρm and
Uβ ,θ ,ρ

m,α ((t – y)4; y) ≤ (ρ+1)2My4(1–y)4

ρ2m2

}
(3.3)

hold for sufficiently large m. Using the Cauchy–Schwarz inequality, one obtains
∣∣∣∣U

β ,θ ,ρ
m,α (g; y) – g(y) – Uβ ,θ ,ρ

m,α
(
(t – y); y

)
g ′(y) –

g ′′(y)
2

(
Uβ ,θ ,ρ

m,α
(
(t – y)2; y

)
+ Uβ ,θ ,ρ

m,α (1; y)
)∣∣∣∣

≤ 2
∥∥g ′′ – g

∥∥Uβ ,θ ,ρ
m,α

(
(t – y)2; y

)
+ 2

∥∥φg ′∥∥φ–1(y)Uβ ,θ ,ρ
m,α

(|t – y|3; y
)

≤ M
m

y(1 – y)
∥∥g ′′ – g

∥∥ + 2
∥∥φg ′∥∥φ–1(y)

{
Uβ ,θ ,ρ

m,α
(
(t – y)2; y

)}1/2{Uβ ,θ ,ρ
m,α

(
(t – y)4; y

)}1/2

≤ M
m

φ2(y)
{∥∥g ′′ – g

∥∥ + m–1/2∥∥φg ′∥∥}

by (3.2)–(3.3). Considering infg∈Wφ [0,1] on the right-hand side of the last inequality, we
deduce the desired result. �

The following corollary can be obtained from Theorem 4.

Corollary 2 Let g, g ′, g ′′ ∈ C[0, 1], then

lim
m→∞ m

{
Uβ ,θ ,ρ

m,α (g; y) – g(y) – g ′′(y)χρ,α
m,β ,θ

}
= 0.
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The Grüss-type inequalities were defined and studied by Acu et al. [5], and Gonska
and Tachev [20] for a class of sequences of positive linear operators. To obtain a Grüss–
Voronovskaja-type theorem for our operators Uβ ,θ ,ρ

m,α , we write

Mρ
m,α(g, h; y) = Uβ ,θ ,ρ

m,α (gh; y) – Uβ ,θ ,ρ
m,α (h; y)Uβ ,θ ,ρ

m,α (g; y).

Theorem 5 Assume that ρ > 0 and g, h ∈ C2[0, 1]. Then we have

lim
m→∞ mMρ

m,α(g, h; y) =
(ρ + 1)y(1 – y)

ρ
g ′(y)h′(y)

for each y ∈ [0, 1].

Proof We write

Mρ
m,α(g, h; y) = Uβ ,θ ,ρ

m,α (gh; y) – g(y)h(y) –
(
g(y)h(y)

)′Uβ ,θ ,ρ
m,α (e1 – y; y)

–
(g(y)h(y))′′

2!
Uβ ,θ ,ρ

m,α
(
(e1 – y)2; y

)
– h(y)

{
Uβ ,θ ,ρ

m,α (g; y) – g(y)

– g ′(y)Uβ ,θ ,ρ
m,α (e1 – y; y) –

g ′′(y)
2!

Uβ ,θ ,ρ
m,α

(
(e1 – y)2; y

)}

– Uβ ,θ ,ρ
m,α (g; y)

{
Uβ ,θ ,ρ

m,α (h; y) – h(y) – h′(y)Uβ ,θ ,ρ
m,α (e1 – y; y)

–
h′′(y)

2!
Uβ ,θ ,ρ

m,α
(
(e1 – y)2; y

)}

+
1
2!

Uβ ,θ ,ρ
m,α

(
(e1 – y)2; y

){
g(y)h′′(y) + 2g ′(y)h′(y) – h′′(y)Uβ ,θ ,ρ

m,α (g; y)
}

+ Uβ ,θ ,ρ
m,α (e1 – y; y)

{
g(y)h′(y) – h′(y)Uβ ,θ ,ρ

m,α (g; y)
}

.

Since the operators Uβ ,θ ,ρ
m,α converge uniformly to the function g(y), we have

mMρ
m,α(g, h; y) = m

{
Uβ ,θ ,ρ

m,α (gh; y) – Uβ ,θ ,ρ
m,α (g; y)Uβ ,θ ,ρ

m,α (h; y)
}

= mg ′(y)h′(y)Uβ ,θ ,ρ
m,α

(
(e1 – y)2; y

)
+

m
2!

h′′(y)
{

g(y) – Uβ ,θ ,ρ
m,α (g; y)

}

×Uβ ,θ ,ρ
m,α

(
(e1 – y)2; y

)
+ mh′(y)

{
g(y) – Uβ ,θ ,ρ

m,α (g; y)
}

Uβ ,θ ,ρ
m,α (e1 – y; y)

by Theorem 1. We immediately prove the theorem if we pass to the limit because limits
of mUβ ,θ ,ρ

m,α (e1 – y; y) and mUβ ,θ ,ρ
m,α ((e1 – y)2; y) are finite by Corollary 1. �

Theorem 6 For every g in CB[0, 1] (the set of all real-valued bounded and continuous
functions defined on [0, 1]) such that g ′, g ′′ ∈ CB[0, 1]. Then, for each y ∈ [0, 1] and ρ > 0, we
have

lim
m→∞ m

{
Uβ ,θ ,ρ

m,α (g; y) – g(y)
}

= (θ – βy)g ′(y) +
ρ + 1

2ρ
y(1 – y)g ′′(y)

uniformly on [0, 1].



Alotaibi et al. Advances in Difference Equations         (2021) 2021:13 Page 10 of 14

Proof Let y ∈ [0, 1] and ρ > 0. For any g in CB[0, 1], it follows from Taylor’s theorem that

g(t) = g(y) + (t – y)g ′(y) +
1
2

(t – y)2g ′′(y) + (t – y)2ry(t). (3.4)

Here, ry(t) stands for the Peano form of the remainder. Note that ry ∈ C[0, 1] and ry(t) → 0
as t → y. By applying Uβ ,θ ,ρ

m,α (g; y) to identity (3.4), we get

Uβ ,θ ,ρ
m,α (g; y) – g(y)

= g ′(y)Uβ ,θ ,ρ
m,α (t – y; y) +

g ′′(y)
2

Uβ ,θ ,ρ
m,α

(
(t – y)2; y

)
+ Uβ ,θ ,ρ

m,α
(
(t – y)2ry(t); y

)
. (3.5)

Using the Cauchy–Schwarz inequality, we have

Uβ ,θ ,ρ
m,α

(
(t – y)2ry(t); y

) ≤
√

Uβ ,θ ,ρ
m,α

(
(t – y)4; y

)√
Uβ ,θ ,ρ

m,α
(
r2

y (t); y
)
. (3.6)

Since

lim
m→∞ m

{
Uβ ,θ ,ρ

m,α
(
(t – y)4; y

)}
=

6(ρ + 1)
ρ

[(
y2 – y

)(
2θ – y3)] + 4θ

(
y3 – y2) – 12βy4 + 4y

from Lemma 1 and limm→∞ Uβ ,θ ,ρ
m,α (r2

y (t); y) = 0, it means

lim
m→∞ m

{
Uβ ,θ ,ρ

m,α
(
(t – y)2ry(t); y

)}
= 0.

Thus we immediately obtain the desired result by applying limit to (3.5) and by considering
Corollary 1. �

4 Numerical analysis
With the help of MATHEMATICA, we numerically examine our theoretical results with
a view of convergence and error of approximation of our newly constructed operators
(2.3). We first choose the parameters β , θ , ρ , α as β = 0.2, θ = 0.1, ρ = 1.5, α = 0.9 and the
function

g(y) = cos(2πy).

In Fig. 1, we examine the convergence of (2.3) for different m values, and in Fig. 2, we
compare the convergence of our operators with Uρ

m,α .
We also study the approximation properties of (2.3) by considering the following func-

tion:

g(y) =
y|y – y

3 |
y3 + 1

2

(
y ∈ [0, 1]

)
.

We take m = 20, α = 0.9, β = 1, θ = 1 ρ = 2 to obtain Fig. 3 to see the approximation
of our operators. In Fig. 4, we give the approximations of our operators for α = 0.9,
β = θ = 1, ρ = 2 and for different values of m. We give a table to compare the approxi-
mations.
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Figure 1 Convergence of operators for somem values

Figure 2 Comparison of operators

Figure 3 Approximation of operators
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Figure 4 Convergence of operators for somem values

Table 1 Comparison of operators with maximum errors

m = 4 m = 8 m = 12 m = 16

‖g – U0.2,0.1,1.5
m,0.9 (g; y)‖∞ 0.972 0.645 0.488 0.393

‖g – U1.5
m,0.9(g; y)‖∞ 1.015 0.666 0.5 0.401

‖g – U0.3,0.1,2.5
m,0.9 (g; y)‖∞ 0.869 0.569 0.426 0.341

‖g – U2.5
m,0.9(g; y)‖∞ 0.932 0.598 0.443 0.352

Table 2 Maximum error of approximation: ‖g – Uβ ,θ ,ρ
m,α (g; y)‖∞

m = 10 α = 0.9, ρ = 1 α = 0.9, ρ = 2 α = 0.1, ρ = 1 α = 0.1, ρ = 2

β = θ = 1 0.057 0.055 0.057 0.056
β = 2, θ = 1 0.042 0.040 0.043 0.041

It is clear from the Tables 1–2 and Figures 1–4 that our new operators are the generaliza-
tion of the operators presented in the literature. They have fewer errors of approximation
if we change the parameters α, β , θ , and ρ . Finally they have better approximations if we
increase the values of m.
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