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Abstract
In this paper, we consider a diffusive predator–prey model with a time delay and prey
toxicity. The effect of time delay on the stability of the positive equilibrium is studied
by analyzing the eigenvalue spectrum. Delay-induced Hopf bifurcation is also
investigated. By utilizing the normal form method and center manifold reduction for
partial functional differential equations, the formulas for determining the property of
Hopf bifurcation are given.

MSC: 34K18; 35B32

Keywords: Predator–prey; Delay; Stability; Hopf bifurcation

1 Introduction
Since the relationship of different biological species is very common in nature, many schol-
ars have done a lot of works in this field [1–4]. In the real world, some biological species
can release toxic substances that can affect the growth of other species. These toxic sub-
stances can even affect the living environment of human beings, so it is important to study
the dynamics of the population models. In [5], Chattopadhyay studied the local and global
stability of the interior equilibrium of a two-species competitive system with toxic sub-
stances. This work suggests that the toxic substance has the stabilizing effect on the model.
In [6], Kar and Chaudhuri considered a two-species competing fish model with harvesting
effect and toxic substances. They mainly studied the stability of the interior equilibrium.
In addition, reaction–diffusion models arise in a variety of real world problems, such as in
physical [7], chemical [8] and biological [9] applications. In [9], Zhang and Zhao proposed
a diffusive predator–prey model with the toxic substance of the following form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u(t,x)
∂t = D1�u + ru(1 – u

K ) – muv
α+u , x ∈ �, t > 0,

∂v(t,x)
∂t = D2�v + εv(1 – hv

u ) – βuv2, x ∈ �, t > 0,
∂u(x,t)

∂ν
= ∂v(x,t)

∂ν
= 0, x ∈ ∂�, t > 0,

u(0, x) = u0(x) ≥ 0, v(0, x) = v0(x) ≥ 0, x ∈ �.

(1.1)

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-03161-3
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-03161-3&domain=pdf
http://orcid.org/0000-0002-5052-1416
mailto:yangruizhi529@163.com


Yang et al. Advances in Difference Equations         (2021) 2021:47 Page 2 of 17

All parameters are positive; u and v denote the densities of prey and predator, respectively;
r and ε denote the growth rates of prey and predator, respectively; D1 and D2 are diffusion
coefficients of prey and predator, respectively; K is the environmental capacity of prey.
The functional response is of Holling II-type; β represents the efficiency toxic substance
released by prey. They mainly studied the stability of the constant positive steady states
and existence of the nonconstant positive steady states.

In the real world, time delay and asymptotic behaviors are widely studied toward the
comprehension of growth process for biological species [10–13], such as gestation delay,
maturation time, capturing time, and so on. Additionally, related analysis of characteristic
equations also appear in the description of equilibrium models for other sciences, as, for
instance, in civil engineering; see [14]. Differential equations with time delay often cause
periodic oscillations, and show more abundant dynamic properties [15, 16]. In [17], the
authors studied the Hopf–Hopf bifurcation in a predator–prey with predator cannibal-
ism and time delay. In [18], the authors studied the Hopf–zero bifurcation in a delayed
predator–prey model with dormancy of predators. These results all suggest that the time
delay can enrich the dynamic properties of the predator–prey models.

Using the following parameters transformation:

rt = t,
u
K

= u,
hv
K

= v, d1 =
D1

r
, d2 =

D2

r
,

a =
K
α

, b =
mK
αhr

, c =
ε

rK
, s =

βK3

hε
,

the model (1.1) becomes

⎧
⎨

⎩

∂u
∂t = d1�u + u(1 – u) – buv

1+au ,
∂v
∂t = d2�v + cv(1 – v

u – suv).
(1.2)

Based on the model (1.2), we consider the following delay model:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u(x,t)
∂t = d1�u + u(1 – u(t – τ )) – buv

1+au , x ∈ �, t > 0,
∂v(x,t)

∂t = d2�v + cv(1 – v
u – suv), x ∈ �, t > 0,

∂u(x,t)
∂ν

= ∂v(x,t)
∂ν

= 0, x ∈ ∂�, t > 0,

u(x, t) = u1(x, t) ≥ 0, v(x, t) = v1(x, t) ≥ 0, x ∈ �, t ∈ [–τ , 0].

(1.3)

All parameters are positive; τ is the resource limitation of the prey logistic equation. For
convenience, we denote � = (0, lπ ). The aim of this paper is to study the effect of time
delay on the model (1.3). Compare with the model (1.1), whether some new dynamical
phenomena occurs.

The organization of this paper is as follows. In Sect. 2, we study the existence of equi-
libria. In Sect. 3, we analyze the stability of the positive equilibrium, the existence of Hopf
bifurcation, and the property of bifurcating periodic solutions. In Sect. 4, we give a nu-
merical simulation. At last, we give a brief conclusion.
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2 Existence of equilibria
The equilibria of model (1.3) are the roots of the following equations:

⎧
⎨

⎩

u(1 – u) – buv
1+au = 0,

cv(1 – v
u – suv) = 0.

(2.1)

Lemma 2.1 For the model (1.3), the following statements are true:
(1) The model (1.3) has a boundary equilibrium (1, 0).
(2) The model (1.3) has at least one positive equilibrium.
(3) Under hypothesis (H0), 0 < s < a < 1, the model (1.3) has a unique positive

equilibrium.

Proof Obviously, the model (1.3) has a boundary equilibrium (1, 0). Now, we consider the
existence of positive equilibrium denoted as (u∗, v∗). From the first equation in (2.1), we
have v∗ = (1–u∗)(au∗+1)

b . From the second equation in (2.1), we have v∗ = u∗
su2∗+1 > 0. Then we

can obtain that u∗ is the positive root of the following equation:

h(u) = asu4 + (1 – a)su3 + (a – s)u2 + (1 + b – a)u – 1 = 0. (2.2)

It is not difficult to obtain that h(0) = –1, limx→∞h(u) = +∞. Thus Eq. (2.2) has at least one
positive root, which means that the model (1.3) has at least one positive equilibrium. In ad-
dition, by the Descartes’s rule of signs, Eq. (2.2) has a unique positive root under condition
0 < s < a < 1, which means that the model (1.3) has a unique positive equilibrium. �

In the rest of this paper, we denote the positive equilibrium as (u∗, v∗), where v∗ = u∗
su2∗+1 .

3 Stability analysis
Linearize system (1.3) at (u∗, v∗) as follows:

(
∂u
∂t
∂v
∂t

)

= d�

(
u(t)
v(t)

)

+ L1

(
u(t)
v(t)

)

+ L2

(
u(t – τ )
v(t – τ )

)

, (3.1)

where

L1 =

(
a1 –a2

ca3 c

)

, L2 =

(
–u∗ 0

0 0

)

,

and

a1 =
abu2∗

(au∗ + 1)2(su2∗ + 1)
> 0, a2 =

bu∗
au∗ + 1

> 0, a3 =
1 – su2∗

(su2∗ + 1)2 . (3.2)

The characteristic equation of (3.1) is

det
(
λI – Mn – L1 – L2e–λτ

)
= 0, (3.3)

where I = diag{1, 1} and Mn = –n2/l2 diag{d1, d2}, n ∈N0. Then, we have

λ2 + λAn + Bn + (Cn + λu∗)e–λτ = 0, n ∈ N0 � {0} ∪N, (3.4)
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where

An = (d1 + d2)
n2

l2 – (a1 + c),

Bn = d1d2
n4

l4 – (a1d2 + cd1)
n2

l2 + c(a1 + a2a3),

Cn = d2u∗
n2

l2 – cu∗.

3.1 The case of τ = 0
When τ = 0, the characteristic Eq. (1.3) reduces to the following equation:

λ2 – Tnλ + Dn = 0, n ∈ N0, (3.5)

where

Tn = –An – u∗ = –(d1 + d2)
n2

l2 + c – c̃,

Dn = Bn + Cn = d1d2
n4

l4 – (cd1 – c̃d2)
n2

l2 + c(a2a3 – c̃),

c̃ � u∗ – a1 =
u∗(2au∗ + 1 – a)

au∗ + 1

(3.6)

for n ∈N0. The eigenvalues are given by

λ
(n)
1,2 =

Tn ± √
T2

n – 4Dn

2
, n ∈N0. (3.7)

We consider the following hypotheses:

(H1) 0 < c < c̃,

(H2) 0 < c ≤ d2

d1
c̃, 0 < b <

2(1 – u∗)2(au∗ + 1)2

u∗(au2∗ + 1)
.

(3.8)

By direct calculation, we can get the following remark.

Remark 3.1 Hypothesis (H0) is a sufficient condition for c̃ > 0. If Hypothesis (H1) holds,
then Tn < 0 for n ∈ N0. If Hypothesis (H2) holds, then Dn > 0 for n ∈N0.

Theorem 3.1 When τ = 0, the equilibrium (u∗, v∗) is locally asymptotically stable under
Hypotheses (H1) and (H2).

Proof When τ = 0, by Remark 3.1, we have Tn < 0 and Dn > 0 for n ∈N0 under Hypotheses
(H1) and (H2). Then the eigenvalues (3.7) all have negative real parts, which can guarantee
the statement in Theorem 3.1. �



Yang et al. Advances in Difference Equations         (2021) 2021:47 Page 5 of 17

3.2 The case of τ > 0
To study the stability of E∗(u∗, v∗) when τ > 0, we suppose (H1) and (H2) hold. Let iω
(ω > 0) be a solution of Eq. (3.4). We have

–ω2 + iωAn + Bn + (Cn + iωu∗)(cosωτ – i sinωτ ) = 0.

Then we have
⎧
⎨

⎩

–ω2 + Bn + Cn cosωτ + ωu∗ sinωτ = 0,

Anω – Cn sinωτ + ωu∗ cosωτ = 0,
(3.9)

leading to

ω4 +
(
A2

n – 2Bn – u2
∗
)
ω2 + B2

n – C2
n = 0. (3.10)

Denote z = ω2. Then (3.10) can be changed into

z2 +
(
A2

n – 2Bn – u2
∗
)
z + B2

n – C2
n = 0, (3.11)

and the roots of (3.11) are

z±
n =

1
2
[
–
(
A2

n – 2Bn – u2
∗
) ±

√
(
A2

n – 2Bn – u2∗
)2 – 4

(
B2

n – C2
n
)]

.

By direct computation,

A2
n – 2Bn – u2

∗ =
(
d2

1 + d2
2
)n4

l4 – 2(a1d1 + cd2)
n2

l2 – c(2a2a3 – c) –
(
u2

∗ – a2
1
)
,

Bn – Cn = d1d2
n4

l4 –
[
cd1 +

(
d2(a1 + u∗)

)]n2

l2 + c(a1 + a2a3 + u∗),

Bn + Cn = d1d2
n4

l4 – (cd1 – c̃d2)
n2

l2 + c(a2a3 – c̃) = Dn > 0.

Fix parameters a, b, c, s, define

D = {k ∈N0 | Eq. (3.11) has positive roots with n = k}. (3.12)

Under (H1) and (H2), we can obtain

A2
0 – 2B0 – u2

∗ < 0, B0 – C0 > 0,

and

(
A2

0 –2B0 –u2
∗
)2 –4

(
B2

0 –C2
0
)

= 2c2(u2
∗ –a2

1
)

+
(
a2

1 –u2
∗
)2 +4a2a3c

(
u2

∗ –(a1 +c)2)+c4 > 0.

This means that Eq. (3.11) has at least a pair of positive roots z±
0 . Then D 	= ∅.



Yang et al. Advances in Difference Equations         (2021) 2021:47 Page 6 of 17

For n ∈D, if z+ > 0, then Eq. (3.4) has a pair of purely imaginary roots ±iω+
n at τ

j,+
n , j ∈N0.

If z– > 0, then Eq. (3.4) has a pair of purely imaginary roots ±iω–
n at τ

j,–
n , j ∈ N0, where

ω±
n =

√
z±

n , τ j,±
n = τ 0,±

n +
2jπ
ω±

n
(j = 0, 1, 2, . . . ),

τ 0,±
n =

⎧
⎨

⎩

1
ω±

n
arccos(Vcos), Vsin ≥ 0,

1
ω±

n
[2π – arccos(Vcos)], Vsin < 0,

Vcos =
(Cn – u∗An)(ω±

n )2 – BnCn

C2
n + u2∗(ω±

n )2 , Vsin =
ω±

n [AnCn – Bnu∗ + u∗(ω±
n )2]

C2
n + u2∗(ω±

n )2 .

(3.13)

From (3.13), we have τ 0,±
n < τ

j,±
n (j ∈N). For k ∈D, define the smallest τ so that the stability

will change, τ∗ = min{τ 0,±
k or τ

0,+
k | k ∈D}.

Lemma 3.1 Suppose (H1) (or (H2)) holds. If (A2
n – 2Bn – u2∗)2 – 4(B2

n – C2
n) > 0, then

Re( dλ
dτ

)|
τ=τ

j,+
n

> 0, Re( dλ
dτ

)|
τ=τ

j,–
n

< 0 for τ ∈D and j ∈ N0.

Proof Differentiating two sides of (3.4) with respect τ , we have

(
dλ

dτ

)–1

=
2λ + An + u∗e–λτ

λ(Cn + λu∗)e–λτ
–

τ

λ
.

Then

[

Re

(
dλ

dτ

)–1]

τ=τ
j,±
n

= Re

[
2λ + An + u∗e–λτ

λ(Cn + λu∗)e–λτ
–

τ

λ

]

τ=τ
j,±
n

=
[

1



(
2ω2 + A2

n – 2Bn – u2
∗
)
]

τ=τ
j,±
n

= ±
[

1



√
(
A2

n – 2Bn – u2∗
)2 – 4

(
B2

n – C2
n
)
]

τ=τ
j,±
n

,

where 
 = ω2u2∗ + C2
n > 0. Therefore Re( dλ

dτ
)|

τ=τ
j,+
n

> 0, Re( dλ
dτ

)|
τ=τ

j,–
n

< 0. �

Theorem 3.2 Suppose (H1) and (H2) hold. For system (1.3), the following statements are
true:

(1) E∗(u∗, v∗) is locally asymptotically stable for τ ∈ [0, τ∗), and unstable for
τ ∈ [τ∗, τ∗ + ε) with some ε.

(2) System (1.3) undergoes a Hopf bifurcation at the equilibrium E∗(u∗, v∗) when τ = τ
j,+
n

(or τ = τ
j,–
n ), j ∈N0, n ∈D, where τ

j,±
n is defined in (3.13).

Remark 3.2 From Lemma (3.1), we obtain Re( dλ
dτ

)|
τ=τ

j,+
n

> 0, Re( dλ
dτ

)|
τ=τ

j,–
n

< 0 for τ ∈D and
j ∈ N0, then the stability switch may exist.

3.3 Properties of Hopf bifurcation
Now, we will study the property of Hopf bifurcation by the method exploited in [19, 20].
For a critical value τ

j,+
n (or τ

j,–
n ), we denote it as τ̃ . Let ũ(x, t) = u(x, τ t) – u∗ and ṽ(x, t) =
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v(x, τ t) – v∗. Then the system (1.3) is (dropping the tilde)

⎧
⎨

⎩

∂u
∂t = τ [d1�u + (u + u∗)(1 – u(t – 1) – u∗ – b(u+u∗)(v+v∗)

1+a(u+u∗) )],
∂v
∂t = τ [d2�v + c(v + v∗)(1 – v+v∗

u+u∗ – s(u + u∗)(v + v∗))].
(3.14)

Denote τ = τ̃ + ε, and U = (u(x, t), v(x, t))T . In the phase space C1 := C([–1, 0], X), (3.14)
can be rewritten as

dU(t)
dt

= τ̃D�U(t) + Lτ̃ (Ut) + F(Ut , ε), (3.15)

where Lε(ϕ) and F(ϕ, ε) are

Lε(φ) = ε

(
a1φ1(0) – a2φ2(0) – u∗φ1(–1)

ca3φ1(0) + cφ2(0)

)

, (3.16)

F(φ, ε) = εD�φ + Lε(φ) + f (φ, ε), (3.17)

with

f (φ, ε) = (τ̃ + ε)
(
F1(φ, ε), F2(φ, ε)

)T ,

F1(φ, ε) =
(
φ1(0) + u∗

)
(

1 – φ1(–1) – u∗ –
b(φ1(0) + u∗)(φ2(0) + v∗)

1 + a(φ1(0) + u∗)

)

– a1φ1(0) + a2φ2(0) + u∗φ1(–1),

F2(φ, ε) = c
(
φ2(0) + v∗

)
(

1 –
φ2(0) + v∗
φ1(0) + u∗

– s
(
φ1(0) + u∗

)(
φ2(0) + v∗

)
)

– ca3φ1(0) – cφ2(0).

respectively, for φ = (φ1,φ2)T ∈ C1.
Consider the linear equation

dU(t)
dt

= τ̃D�U(t) + Lτ̃ (Ut). (3.18)

We know that 
n := {iωnτ̃ , –iωnτ̃ } are characteristic roots of

dz(t)
dt

= –τ̃D
n2

l2 z(t) + Lτ̃ (zt). (3.19)

Choose

ηn(σ , τ ) =

⎧
⎪⎪⎨

⎪⎪⎩

τE, σ = 0,

0, σ ∈ (–1, 0),

–τF , σ = –1,

(3.20)

where

E =

(
a1 – d1

n2

l2 –a2

ca3 c – d2
n2

l2

)

, F =

(
–u∗ 0

0 0

)

. (3.21)
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Then

–τ̃D
n2

l2 φ(0) + Lτ̃ (φ) =
∫ 0

–1
dηn(σ , τ )φ(σ )

for φ ∈ C([–1, 0],R2).
Define the bilinear paring

(ψ ,ϕ)0 = ψ(0)ϕ(0) –
∫ 0

–1

∫ σ

ξ=0
ψ(ξ – σ ) dηn(σ , τ̃ )ϕ(ξ ) dξ

= ψ(0)ϕ(0) + τ̃

∫ 0

–1
ψ(ξ + 1)Fϕ(ξ ) dξ

(3.22)

for ϕ ∈ C([–1, 0],R2), ψ ∈ C([0, 1],R2); A(τ̃ ) has a pair of simple purely imaginary eigen-
values ±iωnτ̃ , and they are also eigenvalues of A∗.

Define p1(σ ) = (1, ξ )T eiωn τ̃ σ (σ ∈ [–1, 0]), q1(r) = (1,η)e–iωn τ̃ r (r ∈ [0, 1]), where

ξ =
ca3

–c + d2n2/l2 + iω
, η =

a2

c – d2n2/l2 + iω
.

Let � = (�1,�2) and �∗ = (�∗
1 ,�∗

2 )T with

�1(σ ) =
p1(σ ) + p2(σ )

2
=

(
Re(eiωn τ̃ σ )

Re(ξeiωn τ̃ σ )

)

,

�2(σ ) =
p1(σ ) – p2(σ )

2i
=

(
Im(eiωn τ̃ σ )

Im(ξeiωn τ̃ σ )

)

for σ ∈ [–1, 0], and

�∗
1 (r) =

q1(r) + q2(r)
2

=

(
Re(e–iωn τ̃ r)

Re(ηe–iωn τ̃ r)

)

,

�∗
2 (r) =

q1(r) – q2(r)
2i

=

(
Im(e–iωn τ̃ r)

Im(ηe–iωn τ̃ r)

)

for r ∈ [0, 1]. Then we can compute by (3.22)

D∗
1 :=

(
�∗

1 ,�1
)

0, D∗
2 :=

(
�∗

1 ,�2
)

0, D∗
3 :=

(
�∗

2 ,�1
)

0, D∗
4 :=

(
�∗

2 ,�2
)

0.

Define (�∗,�) = (�∗
j ,�k) =

( D∗
1 D∗

2
D∗

3 D∗
4

)
and � = (�1,�2)T = (�∗,�)–1�∗. Then (� ,�)0 = I2.

In addition, define fn := (β1
n ,β2

n), where

β1
n =

(
cos n

l x
0

)

, β2
n =

(
0

cos n
l x

)

.

We also define

c · fn = c1β
1
n + c2β

2
n , for c = (c1, c2)T ∈ C1
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and

〈u, v〉 :=
1

lπ

∫ lπ

0
u1v1 dx +

1
lπ

∫ lπ

0
u2v2 dx

for u = (u1, u2)T , v = (v1, v2)T , u, v ∈ X and 〈ϕ, f0〉 = (〈ϕ, f 1
0 〉, 〈ϕ, f 2

0 〉)T .
Rewrite Eq. (3.14) as

dU(t)
dt

= Aτ̃ Ut + R(Ut , ε), (3.23)

where

R(Ut , ε) =

⎧
⎨

⎩

0, θ ∈ [–1, 0);

F(Ut , ε), θ = 0.
(3.24)

The solution is

Ut = �

(
x1

x2

)

fn + h(x1, x2, ε), (3.25)

where
( x1

x2

)
= (� , 〈Ut , fn〉), and h(x1, x2, ε) ∈ PSC1, h(0, 0, 0) = 0, Dh(0, 0, 0) = 0. Then

Ut = �

(
x1(t)
x2(t)

)

fn + h(x1, x2, 0). (3.26)

Let z = x1 – ix2. Then

�

(
x1

x2

)

fn = (�1,�2)

(
z+z

2
i(z–z)

2

)

fn =
1
2

(p1z + p1z)fn,

and

h(x1, x2, 0) = h
(

z + z
2

,
i(z – z)

2
, 0

)

.

Equation (3.26) is

Ut =
1
2

(p1z + p1z)fn + h
(

z + z
2

,
i(z – z)

2
, 0

)

=
1
2

(p1z + p1z)fn + W (z, z),
(3.27)

where

W (z, z) = h
(

z + z
2

,
i(z – z)

2
, 0

)

.

From [19], z satisfies

ż = iωnτ̃z + g(z, z), (3.28)
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where

g(z, z) =
(
�1(0) – i�2(0)

)〈
F(Ut , 0), fn

〉
. (3.29)

Let

W (z, z) = W20
z2

2
+ W11zz + W02

z2

2
+ · · · , (3.30)

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z
2

+ · · · , (3.31)

then

ut(0) =
1
2

(z + z) cos

(
nx
l

)

+ W (1)
20 (0)

z2

2
+ W (1)

11 (0)zz + W (1)
02 (0)

z2

2
+ · · · ,

vt(0) =
1
2

(ξ + ξz) cos

(
nx
l

)

+ W (2)
20 (0)

z2

2
+ W (2)

11 (0)zz + W (2)
02 (0)

z2

2
+ · · · ,

ut(–1) =
1
2
(
ze–iωn τ̃ + zeiωn τ̃

)
cos

(
nx
l

)

+ W (1)
20 (–1)

z2

2
+ W (1)

11 (–1)zz

+ W (1)
02 (–1)

z2

2
+ · · · ,

and

F1(Ut , 0) =
1
τ̃

F1 = –ut(0)ut(–1) + α1u2
t (0) + α2ut(0)vt(0) + α3u3

t (0)

+ α4u2
t (0)vt(0) + O(4),

(3.32)

F2(Ut , 0) =
1
τ̃

F2 = β1u2
t (0) + β2ut(0)vt(0) + β3v2

t (0) + β4u3
t (0) + β5u2

t (0)vt(0)

+ β6ut(0)v2
t (0) + O(4),

(3.33)

with

α1 =
abv∗

(au∗ + 1)3 , α2 = –
b

(au∗ + 1)2 ,

α3 = –
a2bv∗

(au∗ + 1)4 , α4 =
ab

(au∗ + 1)3 ,

β1 = –
cv2∗
u3∗

, β2 = –
2cv∗(su2∗ – 1)

u2∗
, β3 = –

c(su2∗ + 1)
u∗

,

β4 =
cv2∗
u4∗

, β5 = –
2cv∗
u3∗

, β6 = –
c(su2∗ – 1)

u2∗
.

(3.34)
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Hence,

F1(Ut , 0) = cos2
(

nx
l

)(
z2

2
χ20 + zzχ11 +

z2

2
χ20

)

+
z2z
2

(

χ1 cos
nx
l

+ χ2 cos3 nx
l

)

+ · · · ,

F2(Ut , 0) = cos2
(

nx
l

)(
z2

2
ς20 + zzς11 +

z2

2
ς20

)

+
z2z
2

(

ς1 cos
nx
l

+ ς2 cos3 nx
l

)

+ · · · ,

(3.35)

〈
F(Ut , 0), fn

〉
= τ̃

(〈
F1(Ut , 0), f 1

n
〉
,
〈
F2(Ut , 0), f 2

n
〉)T

=
z2

2
τ̃

(
χ20

ς20

)

� + zzτ̃

(
χ11

ς11

)

� +
z2

2
τ̃

(
χ20

ς20

)

� +
z2z
2

τ̃

(
κ1

κ2

)

+ · · ·
(3.36)

with

� =
1

lπ

∫ lπ

0
cos3

(
nx
l

)

dx,

κ1 =
χ1

lπ

∫ lπ

0
cos2

(
nx
l

)

dx +
χ2

lπ

∫ lπ

0
cos4

(
nx
l

)

dx,

κ2 =
ς1

lπ

∫ lπ

0
cos2

(
nx
l

)

dx +
ς2

lπ

∫ lπ

0
cos4

(
nx
l

)

dx,

and

χ20 =
1
2
(
α1 + ξα2 – e–iτ̃ωn

)
, χ11 = –

1
4
(
e–iτ̃ωn + eiτ̃ωn –

(
2α1 + α2(ξ + ξ )

))
,

χ1 = W (1)
11 (0)

(
2α1 + α2ξ – e–iτ̃ωn

)
+ W (2)

11 (0)α2 – W (1)
11 (–1) –

1
2

W (1)
20 (–1)

+ W (1)
20 (0)

(
1
2
(
2α1 + α2ξ – eiτ̃ωn

)
)

+ W (2)
20 (0)

α2

2
,

χ2 =
1
4
(
3α3 + α4(ξ + 2ξ )

)
, ς20 =

1
2
(
β1 + ξ (β2 + β3ξ )

)
,

ς11 =
1
4
(
2β1 + β2

(
W (1)

11 (0) + ξ
)

+ 2β3W (1)
11 (0)ξ

)
,

ς2 =
1
4
(
3β4 + β5(ξ + 2ξ ) + β6ξ (2ξ + ξ )

)
,

ς1 = W (1)
11 (0)(2β1 + β2ξ ) + W (2)

11 (0)(β2 + 2β3ξ )

+ W (1)
20 (0)

(

β1 +
β2ξ

2

)

+ W (2)
20 (0)

(
β2

2
+ β3ξ

)

.

Denote

�1(0) – i�2(0) := (γ1γ2).
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Notice that

� =
1

lπ

∫ lπ

0
cos3 nx

l
dx = 0, n = 1, 2, 3, . . . ,

and we have
(
�1(0) – i�2(0)

)〈
F(Ut , 0), fn

〉

=
z2

2
(γ1χ20 + γ2ς20)�τ̃ + zz(γ1χ11 + γ2ς11)�τ̃ +

z2

2
(γ1χ20 + γ2ς20)�τ̃

+
z2z
2

τ̃ [γ1κ1 + γ2κ2] + · · · .

(3.37)

Then by (3.29), (3.31) and (3.37), we have g20 = g11 = g02 = 0, for n = 1, 2, 3, . . . .
If n = 0, � = 1

lπ
∫ lπ

0 cos3 nx
l dx = 1, then we have

g20 = γ1τ̃χ20 + γ2τ̃ ς20, g11 = γ1τ̃χ11 + γ2τ̃ ς11, g02 = γ1τ̃χ20 + γ2τ̃ ς20.

And for n ∈ N0, g21 = τ̃ (γ1κ1 + γ2κ2). Next, we just need to compute W11(θ ) := (W (1)
11 (θ ),

W (2)
11 (θ ))T and W20(θ ) := (W (1)

20 (θ ), W (2)
20 (θ ))T .

By (3.30), we can obtain

Ẇ (z, z) = W20zż + W11żz + W11zż + W02zż + · · · ,

Aτ̃ W (z, z) = Aτ̃ W20
z2

2
+ Aτ̃ W11zz + Aτ̃ W02

z2

2
+ · · · .

From [19], we have

Ẇ (z, z) = Aτ̃ W + H(z, z),

where

H(z, z) = H20
z2

2
+ H11zz + H02

z2

2
+ · · ·

= F(Ut , 0) – �
(
� ,

〈
F(Ut , 0), fn

〉)

0 · fn.
(3.38)

Hence, we have

(2iωnτ̃ – Aτ̃ )W20 = H20, –Aτ̃ W11 = H11, (–2iωnτ̃ – Aτ̃ )W02 = H02, (3.39)

that is,

W20 = (2iωnτ̃ –Aτ̃ )–1H20, W11 = –A–1
τ̃ H11, W02 = (–2iωnτ̃ –Aτ̃ )–1H02. (3.40)

For –1 ≤ θ < 0, we have

H(z, z) = –�(θ )�(θ )
〈
F(Ut , θ ), fn

〉 · fn

= –
(

p1(θ ) + p2(θ )
2

,
p1(θ ) – p2(θ )

2i

)(
�1(θ )
�2(θ )

)
〈
F(Ut , θ ), fn

〉 · fn
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= –
1
2
[
p1(θ )

(
�1(θ ) – i�2(θ )

)
+ p2(θ )

(
�1(θ ) + i�2(θ )

)]〈
F(Ut , θ ), fn

〉 · fn

= –
1
2

[
(
p1(θ )g20 + p2(θ )g02

)z2

2
+

(
p1(θ )g11 + p2(θ )g11

)
zz

+
(
p1(θ )g02 + p2(θ )g20

)z2

2

]

+ · · · .

Therefore,

H20(θ ) =

⎧
⎨

⎩

0, n ∈N,

– 1
2 (p1(θ )g20 + p2(θ )g02) · f0, n = 0,

H11(θ ) =

⎧
⎨

⎩

0, n ∈N,

– 1
2 (p1(θ )g11 + p2(θ )g11) · f0, n = 0,

H02(θ ) =

⎧
⎨

⎩

0, n ∈N,

– 1
2 (p1(θ )g02 + p2(θ )g20) · f0, n = 0,

and

H(z, z)(0) = F(Ut , 0) – �
(
� ,

〈
F(Ut , 0), fn

〉)

0 · fn,

where

H20(0) =

⎧
⎨

⎩

τ̃
( χ20

ς20

)
cos2( nx

l ), n ∈N,

τ̃
( χ20

ς20

)
– 1

2 (p1(0)g20 + p2(0)g02) · f0, n = 0,

H11(0) =

⎧
⎨

⎩

τ̃
( χ11

ς11

)
cos2( nx

l ), n ∈N,

τ̃
( χ11

ς11

)
– 1

2 (p1(0)g11 + p2(0)g11) · f0, n = 0.

(3.41)

By the definition of Aτ̃ and (3.39), we have

Ẇ20 = Aτ̃ W20 = 2iωnτ̃W20 +
1
2
(
p1(θ )g20 + p2(θ )g02

) · fn, –1 ≤ θ < 0.

That is,

W20(θ ) =
i

2iωnτ̃

(

g20p1(θ ) +
g02
3

p2(θ )
)

· fn + E1e2iωn τ̃ θ ,

where

E1 =

⎧
⎨

⎩

W20(0), n = 1, 2, 3, . . . ,

W20(0) – i
2iωn τ̃

(g20p1(θ ) + g02
3 p2(θ )) · f0, n = 0.
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By the definition of Aτ̃ and (3.39), we have that for –1 ≤ θ < 0,

–
(

g20p1(0) +
g02
3

p2(0)
)

· f0 + 2iωnτ̃E1 – Aτ̃

(
i

2ωnτ̃

(

g20p1(0) +
g02
3

p2(0)
)

· f0

)

– Aτ̃ E1 – Lτ̃

(
i

2ωnτ̃

(

g20p1(0) +
g02
3

p2(0)
)

· fn + E1e2iωn τ̃ θ

)

= τ̃

(
χ20

ς20

)

–
1
2
(
p1(0)g20 + p2(0)g02

) · f0.

As

Aτ̃ p1(0) + Lτ̃ (p1 · f0) = iω0p1(0) · f0

and

Aτ̃ p2(0) + Lτ̃ (p2 · f0) = –iω0p2(0) · f0,

we have

2iωnE1 – Aτ̃ E1 – Lτ̃ E1e2iωn = τ̃

(
χ20

ς20

)

cos2
(

nx
l

)

, n ∈N0.

That is,

E1 = τ̃

(
2iωnτ̃ + d1

n2

l2 – a1 + u∗e–2iωn τ̃ a2

–ca3 2iωnτ̃ + d2
n2

l2 – c

)–1 (
χ20

ς20

)

cos2
(

nx
l

)

.

Similarly, from (3.40), we have

–Ẇ11 =
i

2ωnτ̃

(
p1(θ )g11 + p2(θ )g11

) · fn, –1 ≤ θ < 0.

That is,

W11(θ ) =
i

2iωnτ̃

(
p1(θ )g11 – p1(θ )g11

)
+ E2.

Then, we have

E2 = τ̃

(
d1

n2

l2 – a1 + u∗ a2

–ca3 d2
n2

l2 – c

)–1 (
χ11

ς11

)

cos2
(

nx
l

)

.

Thus, we can obtain

c1(0) =
i

2ωnτ̃

(

g20g11 – 2|g11|2 –
|g02|2

3

)

+
1
2

g21, μ2 = –
Re(c1(0))
Re(λ′(τ j

n))
,

T2 = –
1

ωnτ̃

[
Im

(
c1(0)

)
+ μ2 Im

(
λ′(τ j

n
))]

, β2 = 2 Re
(
c1(0)

)
.

(3.42)
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Theorem 3.3 For any critical value τ
j,±
n , the bifurcating periodic solutions exists for τ >

τ
j,±
n (or τ < τ

j,±
n ) when μ2 > 0 (or μ2 < 0), and are orbitally asymptotically stable (or unsta-

ble) when β2 < 0 (or β2 > 0).

4 A numerical simulation
In this section, we give a numerical simulation done with Matlab. The numerical simula-
tion of the systems is implemented by finite-difference methods. In the model (1.3), we fix
the following parameters:

s = 1, a = 2.5, b = 3, d1 = 0.5, d2 = 1, c = 0.1, l = 2.

The model (1.3) has a unique positive equilibrium (u∗, v∗) ≈ (0.4691, 0.3845). By direct
computation, we have D = {0, 1} 	= ∅, and τ∗ ≈ 2.0053. By Theorem 3.2, we know that
(u∗, v∗) is locally asymptotically stable when τ ∈ [0, τ∗) (shown in Fig. 1). Hopf bifurcation
occurs when τ = τ∗. By Theorem 3.3, we have

μ2 ≈ 0.6816 > 0, β2 ≈ –0.0942 < 0, and T2 ≈ 7.0182 > 0.

Hence, the locally asymptotically stable bifurcating periodic solutions exists for τ > 2.0053,
and the periods of bifurcating periodic solutions increase (shown in Fig. 2).

Figure 1 Numerical simulations of system (1.3) for τ = 1.5

Figure 2 Numerical simulations of system (1.3) for τ = 2.1
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5 Conclusion
In this paper, we considered a delayed diffusive predator–prey model with toxic substances
released by prey. We mainly analyzed the effect of the time delay on the stability of the
positive equilibrium, and time delay induced Hopf bifurcation. We gave some parameters
that determine the properties of Hopf bifurcation, namely bifurcation direction and the
stability of the bifurcating periodic solution. Compared with the model (1.1), time delay
is an important factor in relationship between prey and predator, since it may affect the
stability of the positive equilibrium and induce Hopf bifurcation.
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