
Nashine et al. Advances in Difference Equations        (2020) 2020:697 
https://doi.org/10.1186/s13662-020-03153-3

R E S E A R C H Open Access

Existence of local fractional integral
equation via a measure of non-compactness
with monotone property on Banach spaces
Hemant Kumar Nashine1,2, Rabha W. Ibrahim3,4, Ravi P. Agarwal5 and N.H. Can6*

*Correspondence:
nguyenhuucan@tdtu.edu.vn
6Applied Analysis Research Group,
Faculty of Mathematics and
Statistics, Ton Duc Thang University,
Ho Chi Minh City, Vietnam
Full list of author information is
available at the end of the article

Abstract
In this paper, we discuss fixed point theorems for a new χ -set contraction condition
in partially ordered Banach spaces, whose positive coneK is normal, and then
proceed to prove some coupled fixed point theorems in partially ordered Banach
spaces. We relax the conditions of a proper domain of an underlying operator for
partially ordered Banach spaces. Furthermore, we discuss an application to the
existence of a local fractional integral equation.
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1 Introduction and preliminaries
A measure of non-compactness (MNC) for the first time was given by Kuratowski [1]. It
is combined with the algebraically and analytically studies for establishing the existence
of nonlinear problems [2]. The fractional calculus is a subject of a long history and has
gained great interest in different fields of applied science, and many authors considered
this topic [3–7].

Let (X,‖ · ‖) be an infinite dimensional Banach space and θ be its zero element. B(ϑ , ζ )
will denote the closed ball with center ϑ are radius ζ and Bζ will stand for B(θ , ζ ). More-
over, MX will denote the family of nonempty bounded subsets of X and NX is its subfamily
consisting of all relatively compact sets.

Definition 1.1 ([8]) A mapping μ : MX →R
+ is said to be a measure of non-compactness

(MNC, for short) in X if it satisfies the following conditions (Y ,Y1,Y2 ∈MX):
(1◦) kerμ := {Y ∈MX : μ(Y) = 0} �= ∅ and kerμ ⊂NX,
(2◦) Y1 ⊆ Y2 ⇒ μ(Y1) ≤ μ(Y2),
(3◦) μ(Y) = μ(Y),
(4◦) μ(convY) = μ(Y),
(5◦) μ(λY1 + (1 – λ)Y2) ≤ λμ(Y1) + (1 – λ)μ(Y2) for λ ∈ [0, 1],
(6◦) μ(Y1 ∪Y2) = max{μ(Y1),μ(Y2)},
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(7◦) if (Yn) is a decreasing sequence of nonempty closed sets inMX and if limn→∞ μ(Yn) =
0, then the set Y∞ =

⋂∞
n=1 Yn is nonempty and compact.

A map α : MX → R
+ is said to be a Kuratowski MNC [1] if

α(Y) = inf

{

ε > 0 : Y ⊂
n⋃

k=1

Sk ,Sk ⊂X, diam(Sk) < ε(k ∈N)

}

. (1.1)

We denote by 	(X) a nonempty, bounded, closed and convex set on Banach space X.
The following extensions of the topological Schauder fixed point theorem and classical

Banach fixed point theorem were proved by Darbo (DFPT, in short) in 1955.

Theorem 1.2 ([8]) Let X be a Banach space, Y ∈ 	(X) and F : Y → Y be a continuous
operator such that there exists a λ ∈ [0, 1) with

μ
(
F(A)

) ≤ λμ(A)

for any ∅ �= A⊂ Y , here μ is the Kuratowski MNC on X. Then we can conclude that F has
a fixed point.

We define 
 := {ψ : R+ → R
+} is a non-decreasing function, and limn→∞ ψn(t) = 0 for

each t ≥ 0.

Definition 1.3 ([9]) Denote by H the collection of all functions � : R+ →R+ and let � be
the collection of all functions

(◦; ·) : H(R+) →H(R+), � → (�; ·)

satisfying:
(i) (�; ζ ) > 0 for ζ > 0 and (�; 0) = 0,

(ii) (�; ζ ) ≤ (�, ξ ) for ζ ≤ ξ ,
(iii) limn→∞ (�; ζn) = (�; limn→∞ ζn),
(iv) (�; max{ζ , }) = max{(�; ζ ),(�; ξ )} for some � ∈H(R+).

Arab [10] used Definition 1.3 to generalize the result of Aghajani et al. [11].

Theorem 1.4 Let Y ∈ 	(X) and let F : Y → Y be a continuous operator satisfying


(
�;χ

(
F(�)

)
+ ϕ

(
χ

(
F(�)

))) ≤ ψ
(


(
�;χ (�) + ϕ

(
χ (�)

)))
,

for any ∅ �= � ⊂ Y , where χ is an arbitrary MNC, � ∈ H(R+), ψ ∈ 
 , (◦; ·) ∈ � and a
continuous function ϕ : R+ →R

+. Then we find that F has at least one fixed point.

With the above discussion in mind, an attempt has been made to give a monotone ver-
sion of Lemma 1.4 with the relaxed conditions of domain of an underlying operator into
partially ordered Banach spaces. To achieve the proposed results in partially ordered Ba-
nach spaces, we define a notion of MNC. Then we use this notion to prove some FPTs
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for χ -set contraction condition in partially ordered Banach spaces whose positive cone K
is norm. We will relax the conditions of bounds, closed and convexity of the domain of
operator at the expense of the operator being monotone and bounded. Next, we use the
obtained FPTs to establish the existence of the solution of local fractional integral equa-
tion.

2 FPTs
Let X be a Banach space with the norm ‖ · ‖ whose positive cone is defined by K = {x ∈X :
x ≥ 0}. (X,‖ · ‖) is a partially ordered Banach space with the order relation � induced by
cone K.

Denote by � a collection of continuous and strictly increasing function ω : R+ →R+.
We now discuss our results in partially ordered Banach spaces.

Theorem 2.1 Let (X,‖ · ‖,�) be a partially ordered Banach space, whose positive cone K
is normal. Suppose that F : X →X is a continuous, non-decreasing and bounded mapping
satisfying the following contraction:


(
�;χ

(
F(�)

)
+ ω

(
χ

(
F(�)

))) ≤ ψ
(


(
�;χ (�) + ω

(
χ (�)

)))
, (2.1)

for all bounded subset � in X, where χ denotes the arbitrary MNC, � ∈H(R+), (◦; ·) ∈ �,
ψ ∈ 
 , ω ∈ �.

If ∃ an element ς0 ∈ X such that ς0 � Fς0, then F has a fixed point �∗ and the sequence
{Fnς0} of successive iterations converges monotonically to �∗.

Proof Assume ς0 ∈X and define a sequence {ςn} ⊂X by

ςn+1 = Fςn, n ∈N
∗ = N∪ {0}. (2.2)

Since F is non-decreasing and ς0 � Fς0, we have

ς0 � ς1 � ς2 � · · · � ςn � · · · (2.3)

Denote Bn = conv{ςn,ςn+1, . . .} for n ∈ N
∗. By (2.2) and (2.3), each Bn is a bounded and

closed subset in X and

B0 ⊃B1 ⊃ · · · ⊃Bn ⊃ · · · . (2.4)

Following (2.1), we obtain


(
�;χ (Bn+1) + ω

(
χ (Bn+1)

))

= 
(
�;χ

(
Conv

(
F(Bn)

))
+ ω

(
χ

(
Conv

(
F(Bn)

))))

= 
(
�;χ

(
F(Bn)

)
+ ω

(
χ

(
F(Bn)

)))

≤ ψ
(


(
�;χ (Bn) + ω

(
χ (Bn)

)))

≤ ψ2(
(
�;χ (Bn–1) + ω

(
χ (Bn–1)

)))
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≤ · · ·
≤ ψn(

(
�;χ (B0) + ω

(
χ (B0)

)))
. (2.5)

Taking the limit n → ∞ in (2.5), we have by the virtue of ψ ∈ 


lim
n→∞

(
�;χ (Cn+1) + ω

(
χ (Bn+1)

))
= 0.

By the virtue of (iii) of Definition 1.1, we get


(
�; lim

n→∞χ (Bn+1) + lim
n→∞ω

(
χ (Bn+1)

))
= 0,

and therefore

lim
n→∞χ (Bn+1) = 0. (2.6)

Since Bn ⊂Bn–1, we have

B∞ =
∞⋂

n=1

Bn �= ∅ and B∞ ∈ Kerβ .

Hence, for every ε > 0 there exists an n0 ∈N such that

β(Bn) < ε, ∀n ≥ n0.

From this we conclude that Bn0 and consequently B0 is a compact chain in X. Hence, {ςn}
has a convergent subsequence. Applying the monotone property of F and the normality of
cone K , the whole sequence {ςn} = {Fnς0} converges monotonically to a point, say �∗ ∈B0.
Finally, from the continuity of F, we get

F�∗ = F

(
lim

n→∞ςn

)
= lim

n→∞Fςn = lim
n→∞ςn+1 = �∗. �

On different setting of functions � ∈H(R+), (◦; ·) ∈ �, ω : R+ →R
+ satisfying the con-

dition (2.1) in Theorems 2.1, we can get some new DFPTs. For example, if we set first
ω(t) = 0 and secondly ψ(ζ ) = λζ (λ ∈ (0, 1)) and finally � = identity map with (�; ζ ) = ζ ,
then we have following DFPTs, respectively.

Theorem 2.2 Let (X,‖ · ‖,�) be a partially ordered Banach space, whose positive cone K
is normal. Suppose that F : X →X is a continuous, non-decreasing and bounded mapping
satisfying the following contraction:


(
�;χ

(
F(B)

)) ≤ ψ
(


(
�;χ (B)

))
, (2.7)

for all bounded subset B in X, where χ denotes the arbitrary MNC, � ∈ H(R+). (◦; ·) ∈ �,
ψ ∈ 
 .

If ∃ an element ς0 ∈ X such that ς0 � Fς0, then F has a fixed point �∗ and the sequence
{Fnς0} converges monotonically to �∗.
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Theorem 2.3 Let (X,‖ · ‖,�) be a partially ordered Banach space, whose positive cone K
is normal. Suppose that F : X →X is a continuous, non-decreasing and bounded mapping
satisfying the following contraction:


(
�;χ

(
F(B)

)
+ ω

(
χ

(
F(B)

))) ≤ λ
(


(
�;χ (B) + ω

(
χ (B)

)))
, (2.8)

for all bounded subset B in X, where χ denotes the arbitrary MNC, � ∈ H(R+), (◦; ·) ∈ �,
ψ ∈ 
 , ω ∈ �.

If ∃ an element ς0 ∈ X such that ς0 � Fς0, then F has a fixed point �∗ and the sequence
{Fnς0} of successive iterations converges monotonically to �∗.

Theorem 2.4 Let (X,‖ · ‖,�) be a partially ordered Banach space, whose positive cone K
is normal. Suppose that F : X →X is a continuous, non-decreasing and bounded mapping
satisfying the following contraction:

χ
(
F(B)

)
+ ω

(
χ

(
F(B)

)) ≤ ψ
(
χ (B) + ω

(
χ (B)

))
, (2.9)

for all bounded subset B in X, where χ denotes the arbitrary MNC, ψ ∈ 
 , ω ∈ �.
If ∃ an element ς0 ∈ X such that ς0 � Fς0, then F has a fixed point �∗ and the sequence

{Fnς0} of successive iterations converges monotonically to �∗.

If we take diam(B) = diameter of B, then we have the following.

Proposition 2.5 Let (X,‖·‖,�) be a partially ordered Banach space, whose positive cone K
is normal. Suppose that F : X →X is a continuous, non-decreasing and bounded mapping
satisfying the following contraction:

diam
(
F(B)

)
+ ω

(
diam

(
F(B)

)) ≤ ψ
(
diam(B) + ω

(
diam(B)

))
(2.10)

for all bounded subset B in X, where ψ ∈ 
 , ω ∈ �.
If there exists an element ς0 ∈ X such that ς0 � Fς0, then F has a fixed point �∗ and the

sequence {Fnς0} of successive iterations converges monotonically to �∗.

Proof Theorem 2.1 and Proposition 3.2 [12] claim the existence of aF-invariant nonempty
closed convex subset B with diam(B∞) = 0, that is, B∞ has a singleton element, hence
we have a fixed point of F �= ∅.

To prove uniqueness, we suppose that there exist two distinct fixed points ζ , ξ ∈B, then
we may define the set 	 := {ζ , ξ}. In this case diam(	) = diam(F(	)) = ‖ξ – ζ‖ > 0. Then
using (2.10), we get

diam
(
F(	)

)
+ ω

(
diam

(
F(	)

)) ≤ ψ
(
diam(	) + ω

(
diam(	)

))
,

a contradiction with the property of ψ ∈ 
 , ψ(t) < t for each t > 0 and hence ξ = ζ . �

The following is the generalized classical fixed point result derived from Proposition 2.3.
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Theorem 2.6 Let (X,‖ · ‖,�) be a partially ordered Banach space, whose positive cone K
is normal. Suppose that F : X →X is a continuous, non-decreasing and bounded mapping
satisfying the following contraction:

‖Fζ – Fξ‖ + ω
(‖Fζ – Fξ‖) ≤ ψ

(‖ζ – ξ‖ + ω
(‖ζ – ξ‖)) (2.11)

for all ζ , ξ ∈ X, where ψ ∈ 
 , ω ∈ �. If there exists an element ς0 ∈ X such that ς0 � Fς0,
thenF has a unique fixed point �∗ and the sequence {Fnς0} of successive iterations converges
monotonically to �∗.

Proof Let χ : MX → R
+ be a set quantity defined by the formula χ (X) = diamX, where

diamX = sup{‖ζ – ξ‖ : ζ , ξ ∈ X} stands for the diameter of X . It is easily seen that χ is a
MNC in a space X in the sense of Definition 1.1. Therefore from (2.11) we have

sup
ζ ,ξ∈X

[‖Fζ – Fξ‖ + ω
(‖Fζ – Fξ‖)] ≤ sup

ζ ,ξ∈X
‖Fζ – Fξ‖ + ω

(
sup

ζ ,ξ∈X
‖Fζ – Fξ‖

)

≤ sup
ζ ,ξ∈X

ψ
[‖Fζ – Fξ‖ + ω

(‖Fζ – Fξ‖)]

≤ ψ
[

sup
ζ ,ξ∈X

‖ζ – ξ‖ + ω
(

sup
ζ ,ξ∈X

‖ζ – ξ‖
)]

,

which implies that

diam
(
F(X)

)
+ ω

(
diam

(
F(X)

)) ≤ ψ
(
diam(X) + φ

(
diam(X)

))
.

Thus following Proposition 2.3, F has an unique fixed point. �

3 Coupled FPTs
In this section, we prove some coupled fixed point theorems. We begin our discussion by
recalling some definitions and notions.

Definition 3.1 ([13]) An element (�∗,σ ∗) ∈X
2 is called a coupled fixed point of a mapping

G : X2 →X if G(�∗,σ ∗) = �∗ and G(σ ∗,�∗) = σ ∗.

Definition 3.2 Let (X,‖ · ‖,�) be a partially ordered Banach space and let G : X2 → X

be a mapping. A map G is said to have the monotone property if G(�,σ ) is monotone
non-decreasing in both variables � and σ , that is, for any �,σ ∈ X,

�1,�2 ∈X, �1 � �2 ⇒ G(�1,σ ) � G(�2,σ )

and

σ1,σ2 ∈X, σ1 � σ2 ⇒ G(�,σ1) � G(�,σ2).

Lemma 3.3 [14] Suppose that β1,β2, . . . ,βn are MNCs (in Banach spaces X1,X2, . . . ,Xn),
respectively. We assume that the function G : Rn

+ → R+ is convex and G(ζ1, ζ2, . . . , ζn) = 0 if
and only if ζi = 0 for i = 1, 2, 3, . . . , n. Then

β(B) = G
(
β1(B1),β2(B2), . . . ,βn(Bn)

)
,
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defines a MNCs in X1 ×X2 ×X3 × · · · ×Xn where Bi denotes the natural projection of B
into Xi, for i = 1, 2, 3, . . . , n.

Theorem 3.4 Let (X,‖ · ‖,�) be a partially ordered Banach space whose positive cone K

is normal. Suppose that G : X2 → X is a continuous and bounded mapping, having the
monotone property and satisfying


(
�;β

(
G(B1 ×B2)

)
+ ω

(
β
(
G(B1 ×B2)

)))

≤ 1
2
ψ

[


(
�;β(B1) + β(B2) + ω

(
β(B1) + β(B2)

))]
(3.1)

for all bounded subsets B1, B2 in X, where β denotes the MNC in X
2, � ∈H(R+), (◦; ·) ∈

�, ψ ∈ 
 , ω ∈ �.
If ∃ elements �0,σ0 ∈ X such that �0 � G(�0,σ ) for any σ ∈ X and σ0 � G(σ0,�) for any

� ∈X, then G has at least a coupled fixed point (�∗,σ ∗).

Proof We consider the following map Ĝ : X2 →X
2:

Ĝ(�,σ ) =
(
G(�,σ ),G(σ ,�)

)
.

Due to the assumption, Ĝ is also a continuous and bounded mapping, having the mono-
tone property.

Following Lemma 3.3, for B = B1 ×B2, we define a new MNC as

β̂(B) = β(B1) + β(B2),

where Bi, i = 1, 2, denote the natural projections of B. Now let B = B1 × B2 ⊂ X
2 be a

nonempty bounded subset. Due to (3.1) we conclude that


(
�; β̂

(
Ĝ(B)

)
+ ω

(
β̂
(
Ĝ(B)

)))

≤ 
(
�; β̂

(
G(B1 ×B2) × G(B2 ×B1)

)
+ ω

(
β̂
(
G(B1 ×B2) × G(B2 ×B1)

)))

= 
(
�;β

(
G(B1 ×B2)

)
+ ω

(
β
(
G(B1 ×B2)

)))

+ 
(
�;β

(
G(B2 ×B1)

)
+ ω

(
β
(
G(B2 ×B1)

)))

≤ 1
2
ψ

(


(
�;β(B1) + χ (B2) + ω

(
β(B1) + β(B2)

)))

+
1
2
ψ

(


(
�;β(B2) + β(B1) + ω

(
β(B2) + β(B1)

)))

= ψ
(


(
�;β(B1) + β(B2) + ω

(
β(B1) + β(B2)

)))

= ψ(
(
�; β̂(B) + ω

(
β̂(B)

))
,

that is,


(
�; β̂

(
Ĝ(B)

)
+ ω

(
β̂
(
Ĝ(B)

))) ≤ ψ(
(
�; β̂(B) + ω

(
β̂(B)

))
.
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Next, we show that there is a �̂0 ∈B such that �̂0 � Ĝ (̂�0). Indeed, there exist two elements
�0,σ0 ∈ X such that �0 � G(�0,σ ) for any σ ∈ X and σ0 � G(σ0,�) for any � ∈ X, set �̂0 =
(�0,σ0). Then, by the definition of Ĝ , we have

�̂0 = (�0,σ0) � (
G(�0,σ0),G(σ0,�0)

)
= Ĝ(�0,σ0)

= Ĝ (̂�0).

Theorem 2.1 implies that Ĝ has a fixed point, and hence G has a coupled fixed point. �

Theorem 3.5 Let (X,‖ · ‖,�) be a partially ordered Banach space whose positive cone K

is normal. Suppose that G : X2 → X is a continuous and bounded mapping, having the
monotone property and satisfying


(
�;β

(
G(B1 ×B2)

)
+ ω

(
β
(
G(B1 ×B2)

)))
(3.2)

≤ ψ
[


(
�; max

{
β(B1),β(B2)

}
+ ω

(
max

{
β(B1),β(B2)

}))]
(3.3)

for all bounded subsets B1, B2 in X, where β denotes the MNC in X
2, � ∈H(R+), (◦; ·) ∈

�, ψ ∈ 
 , ω ∈ �. If there exist elements �0,σ0 ∈ X such that �0 � G(�0,σ ) for any σ ∈ X

and σ0 � G(σ0,�) for any � ∈X, then G has at least a coupled fixed point (�∗,σ ∗).

Proof We consider the map Ĝ : X2 →X
2 defined by

Ĝ(�,σ ) =
(
G(�,σ ),G(σ ,�)

)
.

Then Ĝ is a continuous and bounded mapping, having the monotone property.
For any B = B1 ×B2, we define a new MNC in the space X

2 as

β̂(B) = max
{
β(B1),β(B2)

}

where Bi, i = 1, 2, denote the natural projections of B. Now let B⊂ X
2 with B = B1 ×B2

be a nonempty bounded subset. We can conclude


(
�; β̂

(
Ĝ(B)

)
+ ω

(
β̂
(
Ĝ(B)

)))

≤ 
(
�; β̂

(
G(B1 ×B2) × G(B2 ×B1)

)
+ ω

(
β̂
(
G(B1 ×B2) × G(B2 ×B1)

)))

= 
(
�; max

{
β
(
G(B1 ×B2)

)
,β

(
G(B2 ×B1)

)}

+ ω
(
max

{
β
(
G(B1 ×B2)

)
,β

(
G(B2 ×B1)

)}))

≤ ψ

(



(

�; max

{
max{β(B1),β(B2)} + ω(max{β(B1),β(B2)}),
max{β(B2),β(B1)} + ω(max{β(B2),β(B1)})

}))

= ψ
(


(
�; max

{
β(B1),β(B2)

}
+ ω

(
max

{
β(B1),β(B2)

})))

= ψ
(


(
�; β̂(B) + ω

(
β̂(B)

)))
.

That is,


(
�; β̂

(
Ĝ(B)

)
+ ω

(
β̂
(
Ĝ(B)

))) ≤ ψ
(


(
�; β̂(B) + ω

(
β̂(B)

)))
.
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Next, we show that there is a �̂0 ∈B such that �̂0 � Ĝ (̂�0). There exist elements �0,σ0 ∈X

such that �0 � G(�0,σ ) for any σ ∈ X and σ0 � G(σ0,�) for any � ∈ X, set �̂0 = (�0,σ0).
Then, by the definition of Ĝ , we have

�̂0 = (�0,σ0) � (
G(�0,σ0),G(σ0,�0)

)
= Ĝ(�0,σ0)

= Ĝ (̂�0).

Theorem 2.1 implies that Ĝ has a fixed point, and hence G has a coupled fixed point. �

4 Fractals
Recently, a fractional derivative without singular kernel with its details was given in [15,
16]. The local fractional derivative of K(�) of order 0 < γ ≤ 1 is inserted by

Dγ
K(�) =

dγK(�)
�γ

∣
∣
∣
∣
�=�0

= lim
�→�0

dγ [K(�) – K(�0)]
[d(� – �0)]γ

,

where the expression dγ [K(�) – K(�0)]/[d(� – �0)]γ is the Riemann–Liouville fractional
derivative given by

dγK(�)
d�γ

=
1

�(1 – γ )
d

d�

∫ �

0

K(t)
(� – t)γ

dt

and we have the integral operator as follows:

(
Iγ
K

)
(�) =

1
�(γ )

∫ �

0
(� – t)γ –1

K(t) dt. (4.1)

The operator in (4.1) is well defined and it is represented to the classical fractional calculus.
The function K is called local fractional continuous at �0 if for all ε > 0 there is a κ that
satisfies

∣
∣K(�) – K(�0)

∣
∣ < εγ

provided |� – �0| < κ . We denote the space of all local fractional continuous functions by
Cγ . For K ∈ Cγ , the local fractional integral is defined by

Iγ

[a,b]K(ς ) =
1

�(1 + γ )

∫ b

a
K(ς )(dς )γ ,

where (see [17])

(dς )γ = dγ ς =
ς1–γ

�(2 – γ )
dςγ .

The goal of this part is to study the existence and uniqueness of the generalized fractional
integral equation

�(ς ) =
�o

�(2 – γ )�(1 + γ )
–

λ

�(1 + γ )

∫ 1

0
�(ς )(dς )γ

+
1

�(1 + γ )

∫ 1

0
K

(
ς ,�(ς )

)
(dς )γ . (4.2)
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For this investigation, we shall apply Theorem 2.6. For our setting, we make the following
assumptions:

(A1) The function K : [0, 1] × Cγ [0, 1] → Cγ [0, 1] is a non-decreasing function in
Cγ [0, 1] satisfying that there occurs a positive constant � > 0 such that

∣
∣K(ς ,�) – K(ς ,η)

∣
∣ ≤ �|� – η|.

(A2) There is a positive constant L satisfying

L :=
� + λ

�(1 + γ )�(2 – γ )
< 1.

Theorem 4.1 Suppose that [A1], [A2] are achieved. If

�(1 + γ )�(2 – γ ) > (� + λ), 0 < γ ≤ 1,λ,� > 0,

then Eq. (4.2) admits a unique solution in Cγ [0, 1].

Proof Define the operator 	 : Cγ [0, 1] → Cγ [0.1], it is well defined and given by

(	�)(ς ) =
�o

�(2 – γ )�(1 + γ )
–

λ

�(1 + γ )

∫ 1

0
�(ς )(dς )γ (4.3)

+
1

�(1 + γ )

∫ 1

0
K

(
ς ,�(ς )

)
(dς )γ . (4.4)

Set K̃(ς ) = K(ς , 0) and the ballBr = {� ∈ Cγ [0, 1] : ‖�‖ ≤ r}. Now we subdivide the operator
	 into two operator 	1 and 	2 on Br as follows:

(	1�)(τ ) =
1

�(1 + γ )

∫ 1

0
K

(
ς ,�(ς )

)
(dς )γ

and

(	2�)(ς ) =
�o

�(1 + γ )�(2 – γ )
–

λ

�(1 + γ )

∫ 1

0
�(ς )(dς )γ ,

where λ is a positive constant. Since K is a non-decreasing and continuous function, this
leads to 	 being also a non-decreasing and continuous mapping.

The proof is as follows.
Step 1. (Boundedness) 	� := 	1� + 	2� ∈ Br for every � ∈ Br . In view of [A1], we have

∣
∣	�(ς )

∣
∣ ≤

∣
∣
∣
∣

1
�(1 + γ )

∫ 1

0
K

(
ς ,�(ς )

)
(dς )γ

∣
∣
∣
∣ +

∣
∣
∣
∣

�o

�(2 – γ )�(1 + γ )

–
λ

�(1 + γ )

∫ 1

0
�(ς )(dς )γ

∣
∣
∣
∣

≤ 1
�(2 – γ )�(1 + γ )

(
(� + λ)|�| + |�0| +

∣
∣K̃(ς )

∣
∣
)
.
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This implies that

‖	�‖ ≤ ‖�0‖ + ‖K̃‖
�(2 – γ )�(1 + γ ) – (� + λ)

:= r. (4.5)

Hence, 	 is bounded, continuous and non-decreasing in Br .
Step 2. 	 is ψ-contraction mapping (condition (2.11)).
For any �,η ∈ Br , we obtain

∣
∣(	�)(ς ) – (	η)(ς )

∣
∣

≤ 1
�(1 + γ )

∫ 1

0

∣
∣K

(
ς ,�(ς )

)
– K

(
ς ,η(ς )

)∣
∣dς

+
λ

�(1 + γ )

∫ 1

0

∣
∣�(ς ) – η(ς )

∣
∣dς

≤ � + λ

�(2 – γ )�(1 + γ )
(|� – η|).

This gives

∥
∥(	�) – (	η)

∥
∥ ≤ � + λ

�(2 – γ )�(1 + γ )
‖� – η‖ := L‖� – η‖.

Define two continuous functions ϕ and ψ as follows:

ω(ζ ) =
ζ

2
, ψ(ζ ) =

3
2
ζ .

From the last inequality, we obtain

∣
∣(	�)ς ) – (	η)ς )

∣
∣ + ω

(‖� – η‖) ≤ L‖� – η‖ +
‖� – η‖

2

≤ ‖� – η‖ +
‖� – η‖

2

=
3
2
‖� – η‖

= ψ
(‖� – η‖ + ω

(‖� – η‖)).

In view of [A2], the operator 	 is a ψ-contraction mapping. Taking the sup. over Br , we
have

∥
∥(	�) – (	η)

∥
∥ + ω

(‖� – η‖) ≤ ψ
(‖� – η‖ + ω

(‖� – η‖)).

Thus, 	 obeys all the conditions of Theorem 2.6. That is, 	 has a unique fixed point
in Br . �

Example 1 For the initial point �0 = 0.1 and γ = 0.5, we have

�(ς ) =
0.1

(�(1.5))2 +
0.5(1 – λ)

�(1.5)

∫ 1

0
ς (dς )0.5. (4.6)
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Then, for all λ ∈ (0, 1), Eq. (4.6) has a unique solution in C0.5[0, 1]. The fixed point approx-
imates the value ς ≈ 1, whenever λ = 113,261/500,000 ≈ 0.22. Furthermore, for γ = 0.9
we have

�(ς ) =
0.1

(�(1.9))2 +
0.5(1 – λ)

�(1.9)

∫ 1

0
ς (dς )0.9. (4.7)

Equation (4.7) has a unique solution in C0.9[0, 1]. The fixed point is approximated to the
value ς ≈ 1, whenever λ = 1,372,727/10,000,000 ≈ 0.137. We proceed by assuming the
following integral equation:

�(ς ) =
0.7

(�(1.9))2 +
0.5(1 – λ)

�(1.9)

∫ 1

0
ς (dς )0.9. (4.8)

Equation (4.8) has a unique solution in C0.9[0, 1]. The fixed point is approximated to the
value ς ≈ 1, whenever λ = 71,017/100,000 ≈ 0.7. Finally, we consider the following fractal
integral:

�(ς ) =
0.07

(�(1.9))2 +
0.5(1 – λ)

�(1.9)

∫ 1

0
ς (dς )0.9. (4.9)

Equation (4.9) has a unique solution in C0.9[0, 1]. The fixed point approximates the value
ς ≈ 1, whenever λ = 101,527/1,000,000 ≈ 0.1.

Remark 4.2
• By applying Theorem 3.5, one can show that the coupled system

�1(ς ) =
�o

�(2 – γ )�(1 + γ )
–

λ1

�(1 + γ )

∫ 1

0
�2(ς )(dς )γ

+
1

�(1 + γ )

∫ 1

0
K1

(
ς ,�(ς )

)
(dς )γ ,

�2(ς ) =
�o

�(2 – γ )�(1 + γ )
–

λ2

�(1 + γ )

∫ 1

0
�1(ς )(dς )γ

+
1

�(1 + γ )

∫ 1

0
K2

(
ς ,�(ς )

)
(dς )γ ,

where � = (�1,�2) and �1(0) = �2(0) = �0, has at least one fixed point.
• All the above fixed point theorems are applicable for both convex and non-convex

domains.
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