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Abstract
Umbral calculus is one of the important methods for obtaining the symmetric
identities for the degenerate version of special numbers and polynomials. Recently,
Kim–Kim (J. Math. Anal. Appl. 493(1):124521, 2021) introduced the λ-Sheffer sequence
and the degenerate Sheffer sequence. They defined the λ-linear functionals and
λ-differential operators, respectively, instead of the linear functionals and the
differential operators of umbral calculus established by Rota. In this paper, the author
gives various interesting identities related to the degenerate Lah–Bell polynomials
and special polynomials and numbers by using degenerate Sheffer sequences, and at
the same time derives the inversion formulas of these identities.
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1 Introduction
It is important to note that many academics in the field of mathematics have been re-
searching various degenerate versions of special polynomials and numbers not only in
some arithmetic and combinatorial aspects but also in applications to differential equa-
tions, identities of symmetry and probability theory [9, 12, 14, 16–23], beginning with
Carlitz’s degenerate Bernoulli polynomials and the degenerate Euler polynomials [2].

Moreover, umbral calculus, established by Rota in the 1970s, was based on modern con-
cepts such as linear functionals, linear operators, and adjoints [28]. Umbral calculus is
one of the important methods for obtaining the symmetric identities for the degenerate
version of special numbers and polynomials [5, 6, 24, 25, 28]. Recently, Kim–Kim [11] in-
troduced the λ-Sheffer sequence and the degenerate Sheffer sequence. They defined the
λ- linear functionals and λ- differential operators, respectively, instead of the linear func-
tionals and the differential operators used by Rota [28]. Also, Kim et al. introduced the
Lah–Bell polynomials and studied some identities of Lah–Bell polynomials [10, 25]. The
two papers mentioned above inspired me. So, I focus on finding the noble identities of
degenerate Lah–Bell polynomials in terms of quite a few well-known special polynomials
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and numbers arising from the degenerate Sheffer sequence. In addition, the author derives
the inversion formulas of the identities obtained in this paper. They include the degenerate
and other special polynomials and numbers such as Lah numbers, the degenerate falling
factorial, the degenerate Bernoulli polynomials and numbers, degenerate Frobenius–Euler
polynomials and numbers of order r, the degenerate Deahee polynomials, the degenerate
Bell polynomials, and degenerate Stirling numbers of the first and second kinds.

Now, we give some definitions and properties needed in this paper.
The unsigned Lah number L(n, k) counts the number of ways of all distributions of

n balls, labeled 1, 2, . . . , n, among k unlabeled, contents-ordered boxes, with no box left
empty and have an explicit formula

L(n, k) =
(

n – 1
k – 1

)
n!
k!

(see [10, 25]). (1)

From (1), the generating function of L(n, k) is given by

1
k!

(
t

1 – t

)k

=
∞∑

n=k

L(n, k)
tn

n!
, (k ≥ 0) (see [10, 25–27]). (2)

Recently, Lah–Bell polynomials were introduced by Kim–Kim to be

ex( 1
1–t –1) =

∞∑
n=0

BL
n(x)

tn

n!
(see [10]). (3)

When x = 1, BL
n = BL

n(1) are called Lah–Bell numbers.
For any nonzero λ ∈ R, the degenerate exponential function is defined by

ex
λ(t) = (1 + λt)

x
λ , eλ(t) = (1 + λt)

1
λ (see [2, 9, 12, 14, 16, 17, 19–23]). (4)

By Taylor expansion, we get

ex
λ(t) =

∞∑
n=0

(x)n,λ
tn

n!
(see [9, 12, 14, 16, 17, 19–23]), (5)

where (x)0,λ = 1, (x)n,λ = x(x – λ)(x – 2λ) · · · (x – (n – 1)λ) (n ≥ 1).
It is known that

(1 – t)–m =
∞∑
l=0

(
–m

l

)
(–1)ltl =

∞∑
l=0

〈m〉l
tl

l!
(see [1, 4]). (6)

where 〈x〉0 = 1, 〈x〉n = x(x + 1)(x + 2) · · · (x + n – 1), (n ≥ 1).
The degenerate Bernoulli polynomials and degenerate Euler polynomials of order r, re-

spectively, are given by the generating functions

(
t

eλ(t) – 1

)r

ex
λ(t) =

∞∑
n=0

β
(r)
n,λ(x)

tn

n!
(see [2, 7, 21]) (7)
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and

(
2

eλ(t) + 1

)r

ex
λ(t) =

∞∑
n=0

E(r)
n,λ(x)

tn

n!
(see [2, 7, 15, 18]). (8)

We note that β
(r)
n,λ = β

(r)
n,λ(0) and E(r)

n,λ = E(r)
n,λ(0) (n ≥ 0) are called degenerate Bernoulli and

degenerate Euler numbers of order r, respectively.
Kim et al. introduced the degenerate Frobenius–Euler polynomials of order r defined by

(
1 – u

eλ(t) – u

)r

ex
λ(t) =

∞∑
n=0

h(r)
n,λ(x|u)

tn

n!
, (u �= 1, u ∈C) (k ≥ 0) (see [15]). (9)

When x = 0, h(r)
n,λ(u) = h(r)

n,λ(0|u) are called degenerate Frobenius–Euler numbers of or-
der r.

The degenerate Daehee polynomials are defined by

logλ(1 + t)
t

(1 + t)x =
∞∑

n=0

Dn,λ(x)
tn

n!
(see [9]). (10)

Here logλ(1 + t) = 1
λ

((1 + t)λ – 1) and logλ(eλ(t)) = eλ(logλ(t)) = t.
When x = 0, Dn,λ = Dn,λ(0) are called degenerate Daehee numbers.
The Bell polynomials are defined by the generating function

ex(et–1) =
∞∑

n=0

Beln(x)
tn

n!
(see [8, 19, 22]). (11)

Kim–Kim introduced the degenerate Bell polynomial given by

ex
λ

(
eλ(t) – 1

)
=

∞∑
l=0

Bell,λ(x)
tl

l!
(see [19]). (12)

For n ≥ 0, it is well known that the Stirling numbers of the first and second kind, respec-
tively, are given by

(x)n =
n∑

l=0

S1(n, l)xl and
1
k!

(
log(1 + t)

)k =
∞∑

n=k

S1(n, k)
tn

n!
(see [2, 3]) (13)

and

xn =
n∑

l=0

S2(n, l)(x)l and
1
k!

(
et – 1

)k =
∞∑

n=k

S2(n, k)
tn

n!
(see [2, 3]), (14)

where (x)0 = 1, (x)n = x(x – 1) · · · (x – n + 1) (n ≥ 1).
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Moreover, the degenerate Stirling numbers of the first and second kind, respectively, are
given by

(x)n =
n∑

l=0

S1,λ(n, l)(x)l,λ and

1
k!

(
logλ(1 + t)

)k =
∞∑

n=k

S1,λ(n, k)
tn

n!
(k ≥ 0) (see [12, 14]),

(15)

and

(x)n,λ =
n∑

l=0

S2,λ(n, l)(x)l and

1
k!

(
eλ(t) – 1

)k =
∞∑

n=k

S2,λ(n, k)
tn

n!
(k ≥ 0) (see [12, 14]).

(16)

For k ∈ Z, Kim–Kim introduced the modified polyexponential function as

Eis(x) =
∞∑

n=1

xn

(n – 1)!ns (see [18, 21]). (17)

By (17), we see that Ei1(x) = ex – 1.
Kim–Jang considered the type 2 degenerate poly-Euler polynomials which are given by

the generating function to be

Eis(log(1 + 2t))
t(eλ(t) + 1)

ex
λ(t) =

∞∑
n=0

E (s)
n,λ(x)

tn

n!
(see [13]). (18)

When x = 0, E (s)
n,λ = E (s)

n,λ(0) are called type 2 degenerate poly-Euler numbers.
Since Ei1(log(1 + 2t)) = 2t, we see that E (1)

n,λ(x) = En,λ(x) (n ≥ 0) are the degenerate Euler
polynomials.

Let C be the complex number field and let F be the set of all power series in the variable
t over C with

F =

{
f (t) =

∞∑
k=0

ak
tk

k!

∣∣∣ak ∈C

}
. (19)

Let P = C[x] and P
∗ be the vector space all linear functional on P.

Pn =
{

P(x) ∈C[x]|deg P(x) ≤ n
}

(n ≥ 0). (20)

Then Pn is an (n + 1)-dimensional vector space over C.
Recently, Kim–Kim [11] considered the λ-linear functional and λ-differential operator

as follows:
For f (t) =

∑∞
k=0 ak

tk

k! ∈ F and a fixed nonzero real number λ, each λ gives rise to the
linear functional 〈f (t)|·〉λ on P, called λ-linear functional given by f (t), which is defined
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by

〈
f (t)|(x)n,λ

〉
λ

= an, for all n ≥ 0 (see [11]). (21)

and in particular 〈tk|(x)n,λ〉λ = n!δn,k , for all n, k ≥ 0, where δn,k is Kronecker’s symbol.
For λ = 0, we observe that the linear functional 〈f (t)|·〉0 agrees with the one in 〈f (t)|xn〉 =

ak , (k ≥ 0).
For each λ ∈ R, and each nonnegative integer k, they also defined the differential oper-

ator on P by

(
tk)

λ
(x)n,λ =

⎧⎨
⎩

(n)k(x)n–k,λ, if k ≤ n,

0 if k ≥ n (see [11]).
(22)

and for any power series f (t) =
∑∞

k=0 ak
tk

k! ∈F , (f (t))λ(x)n,λ =
∑n

k=0
(n

k
)
ak(x)n–k,λ (n ≥ 0).

Note that different λ give rise to different linear functionals on P (see [11] p. 5, p. 8).
The order o(f (t)) of a power series f (t)(�= 0) is the smallest integer k for which the coeffi-

cient of tk does not vanish. The series f (t) is called invertible if o(f (t)) = 0 and such series
has a multiplicative inverse 1/f (t) of f (t). f (t) is called a delta series if o(f (t)) = 1 and it has
a compositional inverse f (t) of f (t) with f (f (t)) = f (f (t)) = t.

Let f (t) and g(t) be a delta series and an invertible series, respectively. Then there exist
unique sequences sn,λ(x) such that we have the orthogonality conditions

〈
g(t)

(
f (t)

)k|sn,λ(x)
〉
λ

= n!δn,k (n, k ≥ 0) (see [11]). (23)

The sequences sn,λ(x) are called the λ-Sheffer sequences for (g(t), f (t)), which are denoted
by sn,λ(x) ∼ (g(t), f (t))λ.

The sequence sn,λ(x) ∼ (g(t), f (t))λ if and only if

1
g(f (t))

ex
λ

(
f (t)

)
=

∞∑
k=0

sk,λ(x)
k!

tk (n, k ≥ 0) (see [11]). (24)

Assume that, for each λ ∈ R
∗ of the set of nonzero real numbers, sn,λ(x) is λ-Sheffer for

(gλ(t), fλ(t)). Assume also that limλ→0 fλ(t) = f (t) and limλ→0 gλ(t) = g(t), for some delta se-
ries f (t) and an invertible series g(t). Then limλ→0 f λ(t) = f (t), where is the compositional
inverse of f (t) with f (f (t)) = f (f (t)) = t. Let limλ→0 sk,λ(x) = sk(x). In this case, Kim–Kim
called this the family {sn,λ(x)}λ∈R–{0} of λ-Sheffer sequences sn,λ are the degenerate (Shef-
fer) sequences for the Sheffer polynomial sn(x).

Let sn,λ(x) ∼ (g(t), f (t))λ and rn,λ(x) ∼ (h(t), g(t))λ (n ≥ 0). Then

sn,λ(x) =
n∑

k=0

μn,krk,λ(x) (n ≥ 0),

where μn,k =
1
k!

〈
h(f (t))
g(f (t))

(
l
(
f (t)

))k
∣∣∣(x)n,λ

〉
λ

(n, k ≥ 0) (see [11]).

(25)
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2 Degenerate Lah–Bell polynomials arising from degenerate Sheffer
sequences

In this section, we derive several identities between the degenerate Lah–Bell polynomials
and some other polynomials arising from degenerate Sheffer sequences.

Kim–Kim introduced the degenerate Lah–Bell polynomials given by

ex
λ

(
t

1 – t

)
=

∞∑
n=0

BL
n,λ(x)

tn

n!
(n, k ≥ 0) (see [10]). (26)

When x = 1, BL
n,λ := BL

n,λ(1) are called the nth degenerate Lah–Bell numbers.
When λ → 0, limλ→0 BL

n,λ = BL
n are the nth Lah–Bell numbers.

For n ∈N∪ {0} and P(x) =
∑n

k=0 ZkBL
k,λ(x) ∈ Pn,

by using (23), we observe that

〈(
t

1 + t

)k∣∣∣P(x)
〉
λ

=
n∑

l=0

Zl

〈(
t

1 + t

)k∣∣∣BL
l,λ(x)

〉
λ

=
n∑

l=0

Zll!δk,l = k!Zk . (27)

From (27), we have

Zk =
1
k!

〈(
t

1 + t

)k∣∣∣P(x)
〉
λ

. (28)

Thus, we have

P(x) =
n∑

k=0

ZkBL
k,λ(x) where Zk =

1
k!

〈(
t

1 + t

)k∣∣∣P(x)
〉
λ

. (29)

Theorem 1 For n ∈N∪ {0}, we have

BL
n,λ(x) =

n∑
k=0

L(n, k)(x)k,λ =
n∑

k=0

(
1
k!

k∑
l=0

(
k
l

)
(–1)k–l〈l〉n

)
(x)k,λ. (30)

As the inversion formula of (30), we have

(x)n,λ =
n∑

k=0

(–1)n–kL(n, k)BL
k,λ(x) =

n∑
k=0

(
1
k!

k∑
l=0

(
k
l

)
(–1)l+n〈l〉n

)
BL

k,λ(x). (31)

Proof From (5), (24) and (26), we consider the following two Sheffer sequences:

BL
n,λ(x) ∼

(
1,

t
1 + t

)
λ

and (x)n,λ ∼ (1, t)λ. (32)

From (6), (25) and (32), we have

BL
n,λ(x) =

n∑
k=0

μn,k(x)k,λ, (33)
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where

μn,k =
1
k!

〈(
t

1 – t

)k∣∣∣(x)n,λ

〉
λ

= L(n, k),

or μn,k =
1
k!

k∑
l=0

(
k
l

)
(–1)k–l

〈(
1

1 – t

)l∣∣∣(x)n,λ

〉
λ

=
1
k!

k∑
l=0

(
k
l

)
(–1)k–l〈l〉n.

(34)

Therefore, we have the identity (30).
To find the inversion formula of (30), let P(x) = (x)n,λ. From (29),

(x)n,λ =
n∑

k=0

ZkBL
k,λ(x), (35)

where

Zk =
1
k!

〈(
t

1 + t

)k∣∣∣(x)n,λ

〉
λ

= (–1)n–kL(n, k),

or Zk =
1
k!

k∑
l=0

(
k
l

)
(–1)l

〈(
1

1 + t

)l∣∣∣(x)n,λ

〉
λ

=
1
k!

k∑
l=0

(
k
l

)
(–1)l+n〈l〉n.

(36)

Therefore, from (35) and (36), we have the identity (31). �

Theorem 2 For n ∈N∪ {0} and r ∈ N, we have

BL
n,λ(x) =

n∑
k=0

( n∑
l=k

n–l∑
m=0

(
n
l

)
(1)m+1,λ

(m + 1)
L(l, k)L(n – l, m)

)
βk,λ(x). (37)

As the inversion formula of (37), we have

βn,λ(x) =
n∑

k=0

(
1
k!

k∑
l=0

n∑
m=0

(
k
l

)(
l + n – m – 1

n – m

)(
n
m

)
(–1)l+n–m(n – m)!βm,λ

)
BL

k,λ(x)

=
n∑

k=0

( n∑
m=0

(
n
m

)
(–1)n–m–kL(n – m, k)βm,λ

)
BL

k,λ(x),

(38)

where βn,λ(x) are the degenerate Bernoulli polynomials.

Proof From (7), (24) and (26), we consider the following two degenerate Sheffer sequences:

BL
n,λ(x) ∼

(
1,

t
1 + t

)
λ

and βn,λ(x) ∼
(

eλ(t) – 1
t

, t
)

λ

. (39)

From (2), (5) and (25), we have

BL
n,λ(x) =

n∑
k=0

μn,kβk,λ(x), (40)



Kim Advances in Difference Equations        (2020) 2020:687 Page 8 of 16

where

μn,k =
1
k!

〈(eλ( t
1–t ) – 1

t
1–t

)(
t

1 – t

)k∣∣∣(x)n,λ

〉
λ

=
〈(eλ( t

1–t ) – 1
t

1–t

)∣∣∣
(

1
k!

(
t

1 – t

)k)
λ

(x)n,λ

〉
λ

=
n∑

l=k

(
n
l

)
L(l, k)

〈(eλ( t
1–t ) – 1

t
1–t

)∣∣∣(x)n–l,λ

〉
λ

=
n∑

l=k

(
n
l

)
L(l, k)

〈 ∞∑
m=1

(1)m,λ

m!

(
t

1 – t

)m–1∣∣∣(x)n–l,λ

〉
λ

=
n∑

l=k

(
n
l

)
L(l, k)

〈 ∞∑
m=0

(1)m+1,λ

(m + 1)!

(
t

1 – t

)m∣∣∣(x)n–l,λ

〉
λ

=
n∑

l=k

(
n
l

)
L(l, k)

n–l∑
m=0

(1)m+1,λ

(m + 1)

〈
1

m!

(
t

1 – t

)m∣∣∣(x)n–l,λ

〉
λ

=
n∑

l=k

(
n
l

)
L(l, k)

n–l∑
m=0

(1)m+1,λ

(m + 1)
L(n – l, m).

(41)

To find the inversion formula of (37), let P(x) = βn,λ(x). From (29), we have

βn,λ(x) =
n∑

k=0

ZkBL
k,λ(x) (n ≥ 0).

where

Zk =
1
k!

〈(
t

1 + t

)k∣∣∣βn,λ(x)
〉
λ

=
1
k!

k∑
l=0

(
k
l

)
(–1)l

〈(
1

1 + t

)l∣∣∣βn,λ(x)
〉
λ

=
1
k!

k∑
l=0

(
k
l

)
(–1)l

n∑
ν=0

(
l + ν – 1

ν

)
(–1)ν

〈
tν

∣∣∣
n∑

m=0

(
n
m

)
βm,λ(x)n–m,λ

〉
λ

=
1
k!

k∑
l=0

(
k
l

)
(–1)l

n∑
ν=0

(
l + ν – 1

ν

)
(–1)ν

n∑
m=0

(
n
m

)
βm,λ

〈
tν |(x)n–m,λ

〉
λ

=
1
k!

k∑
l=0

(
k
l

)(
l + n – m – 1

n – m

)
(–1)l+n–m

n∑
m=0

(
n
m

)
βm,λ(n – m)!.

(42)

Stated differently, we get

Zk =
1
k!

〈(
t

1 + t

)k∣∣∣βn,λ(x)
〉
λ

=
〈

1
k!

(
t

1 + t

)k∣∣∣
n∑

m=0

(
n
m

)
βm,λ(x)n–m,λ

〉
λ

(43)
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=
n∑

m=0

(
n
m

)
βm,λ

〈
1
k!

(
t

1 + t

)k∣∣∣(x)n–m,λ

〉
λ

=
n∑

m=0

(
n
m

)
βm,λ(–1)n–m–kL(n – m, k).

Therefore, from (42) and (43) we have the identity (38). �

Theorem 3 For n ∈N∪ {0}, we have

BL
n,λ(x)

=
1

(1 – u)r

n∑
k=0

( n∑
l=k

r∑
j=0

n–l∑
m=0

(
n
l

)(
r
j

)
(–u)r–j(j)m,λL(l, k)L(n – l, m)

)
h(r)

k,λ(x|u).
(44)

As the inversion formula of (44), we have

h(r)
n,λ(x|u)

=
n∑

k=0

(
1
k!

k∑
l=0

n∑
m=0

(
k
l

)(
n
m

)(
l + n – m – 1

n – m

)
(–1)l+n–m(n – m)!h(r)

m,λ(u)

)
BL

k,λ(x)

=
n∑

k=0

( n∑
m=0

(
n
m

)
(–1)n–m–kL(n – m, k)h(r)

m,λ(u)

)
BL

k,λ(x),

(45)

where h(r)
n,λ(x|u) are the degenerate Frobenius–Euler polynomials of order r.

Proof From (9), (24) and (26), we consider the following two degenerate Sheffer sequences:

BL
n,λ(x) ∼

(
1,

t
1 + t

)
λ

and h(r)
n,λ(x|u) ∼

((
eλ(t) – u

1 – u

)r

, t
)

λ

. (46)

By using (2), (5), (25) and (46), we have

BL
n,λ(x) =

n∑
k=0

μn,kh(r)
k,λ(x|u), (47)

Here

μn,k =
1
k!

〈( (eλ( t
1–t ) – u)
1 – u

)r( t
1 – t

)k∣∣∣(x)n,λ

〉
λ

=
〈( (eλ( t

1–t ) – u)
1 – u

)r∣∣∣
(

1
k!

(
t

1 – t

)k)
λ

(x)n,λ

〉
λ

=
1

(1 – u)r

n∑
l=k

(
n
l

)
L(l, k)

〈(
eλ

(
t

1 – t

)
– u

)r∣∣∣(x)n–l,λ

〉
λ

(48)

=
1

(1 – u)r

n∑
l=k

(
n
l

)
L(l, k)

r∑
j=0

(
r
j

)
(–u)r–j

〈
ej
λ

(
t

1 – t

)∣∣∣(x)n–l,λ

〉
λ
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=
1

(1 – u)r

n∑
l=k

(
n
l

)
L(l, k)

r∑
j=0

(
r
j

)
(–u)r–j

n–l∑
m=0

(j)m,λ

〈
1

m!

(
t

1 – t

)m∣∣∣(x)n–l,λ

〉
λ

=
1

(1 – u)r

n∑
l=k

(
n
l

)
L(l, k)

r∑
j=0

(
r
j

)
(–u)r–j

n–l∑
m=0

(j)m,λL(n – l, m).

Therefore, from (47) and (48), we get the identity (44).
To find the inversion formula of (44), by (29), we have

h(r)
n,λ(x|u) =

n∑
k=0

ZkBL
k,λ(x).

In the same way as (42) and (43), we have

Zk =
1
k!

〈(
t

1 + t

)k∣∣∣h(r)
n,λ(x|u)

〉
λ

=
1
k!

k∑
l=0

(
k
l

)
(–1)l

〈(
1

1 + t

)l∣∣∣h(r)
n,λ(x|u)

〉
λ

=
1
k!

k∑
l=0

(
k
l

)
(–1)l

n∑
ν=0

(
l + ν – 1

ν

)
(–1)ν

〈
tν

∣∣∣
n∑

m=0

(
n
m

)
h(r)

m,λ(u)(x)n–m,λ

〉
λ

=
1
k!

k∑
l=0

(
k
l

)
(–1)l

n∑
ν=0

(
l + ν – 1

ν

)
(–1)ν

n∑
m=0

(
n
m

)
h(r)

m,λ(u)
〈
tν |(x)n–m,λ〉λ

=
1
k!

k∑
l=0

(
k
l

)(
l + n – m – 1

n – m

)
(–1)l+n–m

n∑
m=0

(
n
m

)
h(r)

m,λ(u)(n – m)!.

(49)

In another way, we can get

Zk =
1
k!

〈(
t

1 + t

)k∣∣∣h(r)
n,λ(x|u)

〉
λ

=
n∑

m=0

(
n
m

)
h(r)

m,λ(u)(–1)n–m–kL(n – m, k). (50)

Therefore, from (49) and (50), we have the identity (45). �

When u = –1 in Theorem 3, we have the following corollary.

Corollary 4 For n ∈N∪ {0} and r ∈N, we have

BL
k,λ(x) =

1
2r

n∑
k=0

( n∑
l=k

r∑
j=0

n–l∑
m=0

(
n
l

)(
r
j

)
(j)m,λL(l, k)L(n – l, m)

)
E(r)

k,λ(x). (51)

By the inversion formula of (51), we have

E(r)
n,λ(x) =

n∑
k=0

(
1
k!

k∑
l=0

n∑
m=0

(
k
l

)(
n
m

)(
l + n – m – 1

n – m

)
(–1)l+n–m(n – m)!E(r)

m,λ

)
BL

k,λ(x),

where E(r)
n,λ(x) are the degenerate Euler polynomials of order r.
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Theorem 5 For n ∈N∪ {0} and r ∈ N, we have

BL
n,λ(x) =

n∑
k=0

( n∑
l=k

n∑
m=0

n–m∑
j=0

(
n
m

)
(1)j+1,λ

j + 1
S2,λ(l, k)L(m, l)L(n – m, j)

)
Dk,λ(x). (52)

As the inversion formula of (52), we have

Dn,λ(x) =
n∑

k=0

( n∑
m=0

n–m∑
j=0

(
n
m

)
(–1)n–m–kS1,λ(n – m, j)L(n – m, k)Dm,λ

)
BL

k,λ(x), (53)

where Dn,λ(x) are the degenerate Daehee polynomials.

Proof From (10) and (24), we consider the following two degenerate Sheffer sequences:

BL
n,λ(x) ∼

(
1,

t
1 + t

)
λ

and Dn,λ(x) ∼
(

eλ(t) – 1
t

, eλ(t) – 1
)

λ

. (54)

From (2), (16), (25) and (54), we have

BL
n,λ(x) =

n∑
k=0

μn,kDk,λ(x), (55)

where

μn,k =
1
k!

〈eλ( t
1–t ) – 1

t
1–t

(
eλ

(
t

1 – t

)
– 1

)k∣∣∣(x)n,λ

〉
λ

=
〈

1 – t
t

(
eλ

(
t

1 – t

)
– 1

)
1
k!

(
eλ

(
t

1 – t

)
– 1

)k∣∣∣(x)n,λ

〉
λ

=
n∑

l=k

S2,λ(l, k)
〈

1 – t
t

(
eλ

(
t

1 – t

)
– 1

)∣∣∣
(

1
l!

(
t

1 – t

)l)
λ

(x)n,λ

〉
λ

=
n∑

l=k

S2,λ(l, k)
n∑

m=0

(
n
m

)
L(m, l)

〈
1 – t

t

(
eλ

(
t

1 – t

)
– 1

)∣∣∣(x)n–m,λ

〉
λ

=
n∑

l=k

S2,λ(l, k)
n∑

m=0

(
n
m

)
L(m, l)

〈 ∞∑
j=1

(1)j,λ
1
j!

(
t

1 – t

)j–1∣∣∣(x)n–m,λ

〉
λ

=
n∑

l=k

S2,λ(l, k)
n∑

m=0

(
n
m

)
L(m, l)

〈 ∞∑
j=0

(1)j+1,λ
1

(j + 1)!

(
t

1 – t

)j∣∣∣(x)n–m,λ

〉
λ

=
n∑

l=k

S2,λ(l, k)
n∑

m=0

(
n
m

)
L(m, l)

n–m∑
j=0

(1)j+1,λ

j + 1

〈
1
j!

(
t

1 – t

)j∣∣∣(x)n–m,λ

〉
λ

=
n∑

l=k

S2,λ(l, k)
n∑

m=0

(
n
m

)
L(m, l)

n–m∑
j=0

(1)j+1,λ

j + 1
L(n – m, j).

(56)

Therefore, from (55) and (56), we get the identity (52).
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To find the inversion formula of (52), from (29), we have

Dn,λ(x) =
n∑

k=0

ZkBL
k,λ(x). (57)

By using (1 + t)x =
∑∞

n=0(x)n
tn

n! and the first equation of (15), we have

Zk =
〈

1
k!

(
t

1 + t

)k∣∣∣Dn,λ(x)
〉
λ

=
〈

1
k!

(
t

1 + t

)k∣∣∣
n∑

m=0

(
n
m

)
Dm,λ(x)n–m

〉
λ

=
n∑

m=0

(
n
m

)
Dm,λ

〈
1
k!

(
t

1 + t

)k∣∣∣
n–m∑
j=0

S1,λ(n – m, j)(x)n–m,λ

〉
λ

=
n∑

m=0

(
n
m

)
Dm,λ

n–m∑
j=0

S1,λ(n – m, j)
〈

1
k!

(
t

1 + t

)k∣∣∣(x)n–m,λ

〉
λ

=
n∑

m=0

(
n
m

)
Dm,λ

n–m∑
j=0

S1,λ(n – m, j)(–1)n–m–kL(n – m, k).

(58)

Therefore, from (57) and (58), we have the identity (53). �

Theorem 6 For n ∈N∪ {0}, we have

BL
n,λ(x) =

n∑
k=0

( n∑
l=k

S1,λ(l, k)L(n, k)

)
Belk,λ(x). (59)

As the inversion formula of (59), we have

Beln,λ(x) =
n∑

k=0

( n∑
l=0

(–1)l–kS2,λ(n, l)L(l, k)

)
BL

k,λ(x), (60)

where Beln,λ(x) are the degenerate Bell polynomials.

Proof From (12), (24) and (26), we consider two degenerate Sheffer sequences as follows:

BL
n,λ(x) ∼

(
1,

t
1 + t

)
λ

and Beln,λ(x) ∼ (
1, logλ(1 + t)

)
λ
. (61)

By using (2), (15), (25) and (61), we have

BL
n,λ(x) =

n∑
k=0

μn,kBelk,λ(x), (62)
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where

μn,k =
1
k!

〈(
logλ

(
1 +

t
1 – t

))k∣∣∣(x)n,λ

〉
λ

=
n∑

l=k

S1,λ(l, k)
〈

1
l!

(
t

1 – t

)l∣∣∣(x)n,λ

〉
λ

=
n∑

l=k

S1,λ(l, k)L(n, l).
(63)

Therefore from (62) and (63), we get the identity (59).
To find inversion formula of (59), from (29), we have

Beln,λ(x) =
n∑

k=0

ZkBL
k,λ(x). (64)

From (5) and (16), we observe that

∞∑
n=0

Beln,λ(x)
tn

n!
= ex

λ

(
eλ(t) – 1

)
=

∞∑
n=0

( n∑
l=0

S2,λ(n, l)(x)l,λ

)
tn

n!
.

Thus, by using Beln,λ(x) =
∑n

l=0 S2,λ(n, l)(x)l,λ and (6), we have

Zk =
1
k!

〈(
t

1 + t

)k∣∣∣Beln,λ(x)
〉
λ

=
〈

1
k!

(
t

1 + t

)k∣∣∣
n∑

l=0

S2,λ(n, l)(x)l,λ

〉
λ

=
n∑

l=0

S2,λ(n, l)
〈

1
k!

(
t

1 + t

)k∣∣∣(x)l,λ

〉
λ

=
n∑

l=0

S2,λ(n, l)(–1)l–kL(l, k).

(65)

Therefore, from (64) and (65), we have the identity (60). �

Theorem 7 For n ∈N∪ {0}, we have

BL
n,λ(x) =

n∑
k=0

( n∑
l=k

S2,λ(l, k)L(n, l)

)
(x)n (n ≥ 0). (66)

Proof Since ex
λ(log(1 + t)) = (1 + t)x =

∑∞
n=0(x)n

tn

n! , we have (x)n ∼ (1, eλ(t) – 1)λ.
Therefore, we consider the two degenerate Sheffer sequences as follows:

BL
n,λ(x) ∼

(
1,

t
1 + t

)
λ

and (x)n ∼ (
1, eλ(t) – 1

)
λ
. (67)

Thus, from (2), (16) and (67), we have

BL
n,λ(x) =

n∑
k=0

μn,k(x)k (n ≥ 0), (68)
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where

μn,k =
1
k!

〈(
eλ

(
t

1 – t

)
– 1

)k∣∣∣(x)n,λ

〉
λ

=
n∑

l=k

S2,λ(l, k)
〈

1
l!

(
t

1 – t

)l∣∣∣(x)n,λ

〉
λ

=
n∑

l=k

S2,λ(l, k)L(n, l).
(69)

Therefore, from (68) and (69), we have the identity (66). �

Theorem 8 For n ∈N∪ {0} and s ∈N, we have

E (s)
n,λ(x) =

n∑
k=0

( n∑
l=k

(
n
l

)
(–1)l–kL(l, k)E (s)

n–l,λ

)
BL

k,λ(x), (70)

where E (s)
n,λ(x) are type 2 degenerate poly-Euler polynomials.

Proof From (18), (24) and (26), we consider the following two degenerate Sheffer se-
quences as follows:

BL
n,λ(x) ∼

(
1,

t
1 + t

)
λ

and E (s)
n,λ(x) ∼

(
t(eλ(t) + 1)

Eis(log(1 + 2t))
, t

)
λ

. (71)

By using (2) and (25), we have

E (s)
n,λ(x) =

n∑
k=0

μn,kBL
kλ(x), (72)

where

μn,k =
1
k!

〈
Eis(log(1 + 2t))

t(eλ(t) + 1)

(
t

1 + t

)k∣∣∣(x)n,λ

〉
λ

=
〈

Eis(log(1 + 2t))
t(eλ(t) + 1)

∣∣∣
(

1
k!

(
t

1 + t

)k)
λ

(x)n,λ

〉
λ

=
n∑

l=k

(
n
l

)
(–1)l–kL(l, k)

〈
Eis(log(1 + 2t))

t(eλ(t) + 1)

∣∣∣(x)n–l,λ

〉
λ

=
n∑

l=k

(
n
l

)
(–1)l–kL(l, k)E (s)

n–l,λ.

(73)

Therefore, from (72) and (73), we get the identity (70). �

3 Conclusion
The author represented the degenerate Lah–Bell polynomials in terms of quite a few well-
known special polynomials and at the same time derived the inversion formulas of those
identities by using the degenerate Sheffer sequences. We addressed the special polyno-
mials and numbers: the degenerate falling factorial, the Lah numbers and the degenerate
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Bernoulli polynomials; the Lah numbers and the degenerate Frobenius–Euler polynomi-
als of order r; the Lah numbers and the degenerate Deahee polynomials; the Lah numbers
and the degenerate Bell polynomials; the Lah numbers and the type 2 degenerate poly
Euler polynomials. Therefore, the paper demonstrates that degenerate versions are not
only applicable for number theory and combinatorics but also to symmetric identities,
differential equations and probability theory. Building upon this, the author would like to
further study into degenerate versions of certain special polynomials and numbers and
their applications to physics, economics and engineering as well as mathematics.
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