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Abstract
We consider a system of fractional-order differential equations to analyze breast
cancer growth in the immune-chemotherapeutic treatment process under some
control parameters: ketogenic diet, immune booster, and anti-cancer drugs. The
established model assumes the growth of the tumor density under chemotherapy
treatment and the immune response during the interaction between the normal cells
and tumor cells. For the local stability of the critical points (tumor-free critical point,
dead critical point, and co-existing critical point), we used the Routh-Hurwitz criteria
to show the necessary effect of the immune booster; moreover, we addressed the
ketogenic rate in the treatment process. Our theoretical and numerical studies
pointed out that on early detection of the tumor density (with weak Allee effect) the
treatment should be supported by ketogenic nutrition. Several examples are shown
to present our theoretical findings.

Keywords: Fractional-order differential equations; Stability analysis; Allee effect;
Breast cancer; Immune-chemotherapeutic treatment

1 Introduction
According to the National Cancer Registry, cancer kills more people than tuberculosis,
AIDS, and malaria combined. Statistics show that cancer mortality is estimated at 13 mil-
lion deaths by 2030 [1–3]. Breast cancer is the most widely recognized and obstructive
disease in females around the world. Breast cancer is a disease that affects the breast’s
cells and causes an uncontrolled division of abnormal cells that can be malignant in the
breast tissues [4]. Some of the breast cancer risk factors are hormonal imbalance, genetics,
and environmental; however, there is still little information on this disease as regards the
leading cause of a malignant form [5, 6]. Various mathematical and analytical approaches
have been developed to understand the interaction between the tumor cells and the im-
mune response during the treatment process that was mainly established as integer-order
differential equations (IDEs) [7–9].

However, it is seen that many problems in biology, as well as in other fields such as en-
gineering, finance, economics, and neural networks, can be formulated successfully by
fractional-order differential equations (FDEs); see, for instance, Refs. [10–15]. The nonlo-
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cal property of models of FDEs is not only depending on the current state but also provides
an adequate description for the historical ones. The transformation of models governed
by IDES into models of FDE needs to be precise due to the peculiarity of the order of differ-
entiation α, where a small change in α may cause a significant change in the result. FDEs
can model certain phenomena that cannot be modeled by IDEs. Thus, FDEs mainly use
biological models since they are relevant to memory and the hereditary feature [16–20].

2 Mathematical model
Over the years, modeling breast cancer has become a valuable tool to understand tumor
growth’s dynamical behavior in the treatment process. D’Onofrio et al. explored the role of
mathematical modeling in combination therapy for tumors [21]. Studies of Kermack and
McKendrick [22, 23] and some other investigations in [24–30] have shown that modeling
mathematically the biological phenomena is a useful tool to solve epidemical problems.

However, these studies did not include a nutritional diet (ketogenic diet) in their math-
ematical model. Oke et al. improved the model of Mudufza [28] in [3]. They incorporated
the control parameters such as ketogenic diet, immune booster, and anti-cancer drug to
emphasize the point that there is an interaction between the cells due to the mutation in
the tumor cell’s DNA.

In this paper, we establish a system of FDEs in the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

DαN(t) = N(t)r1(K1 – μ1N(t) – β1T(t)) – (1 – k)φ1N(t)E(t),

DαT(t) = T(t)r2(K2d – μ2T(t) – β2I(t)) – δT(t)

+ (1 – k)φ1N(t)E(t)T(t),

DαI(t) = ργ + I(t)(K3 – μ3 – β3T(t)) – (1 – k)φ2I(t)E(t),

DαE(t) = (1 – k)ε – β4E(t),

(2.1)

where the parameters denote positive real numbers.
The first equation in system (2.1) represents the normal cell population N(t). r1 is the

growth rate, while K1 is the carrying capacity of the population. μ1 represents the logistic
rate and β1 denotes the inhibition rate of N(t). φ1 is the tumor formation rate resulting
from DNA mutation caused by the presence of excess estrogen, while (1 – k) represents
the effectiveness of anti-cancer drugs.

In the second equation of (2.1), we show the luminal type (having estrogen receptors,
ESR1 + ve) tumor cells that are denoted by T(t). K2 is the carrying capacity of the popu-
lation, and it depends on the rate of d, which is the ketogenic diet. r2 is the growth rate of
the T(t) population. Any mutation in DNA that is caused by excess estrogen repopulate
the tumor cells by φ1N(t)E(t). μ2 represents the logistic rate of the tumor cell population.
β2 is the rate of the effectiveness of the immune system to the tumor cells, δ is the result
of the tumor starvation nutrients during the ketogenic diet.

The third equation in (2.1) shows the class of immune response as I(t), where ρ denotes
the source rate of immune response fully infused in the body daily. The immune booster
γ assists the immune response whenever tumor cells overpower immune cells to activate
the immune response and fight against the tumor cells. μ3 represents the logistic rate of
the immune cell population, while φ2 is the immune suppression rate. K3 is the carrying
capacity and β3 is the rate of interaction between T(t) and I(t).
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Table 1 The description of parameters

Parameter Symbol Value Unit

The growth rate of NC r1 0.3 day–1

The growth rate of TC r2 0.4 day–1

Logistic rate of NC μ1 [0.05–0.2] day–1

Logistic rate of TC μ2 [0.5–0.95] day–1

Logistic rate of IC μ3 [0.05–0.2] day–1

Carrying capacity of NC K1 1.232 day–1

Carrying capacity of TC K2 1.75 day–1

Carrying capacity of IC K3 [0.11, 1.17] day–1

Constant rate of the ketogenic diet d 0.5 day–1

Rate of inhibition of NC β1 6× 10–8 day–1

TC death rate due to immune response β2 3× 10–6 day–1

Interaction coefficient rate with immune response β3 1× 10–7 day–1

The natural death rate of estrogen β4 0.97 day–1

Tumor formation rate as a result of DNA damage by excess estrogen φ1 0.2 day–1

Immune suppression rate due to excess estrogen φ2 0.002 day–1

Efficacy of the anti-cancer drug k 0–1 day–1

Source rate of IC ρ 1.3× 102 day–1

Supplement of immune booster γ 0.01 day–1

The death rate of TC due to the ketogenic diet δ 2 day–1

Source rate of estrogen ε [0.6–3] day–1

Finally, the last equation of system (2.1) is the estrogen compartment, which is denoted
by E(t). It should be known that an increase in estrogen level can lead to the growth of the
tumor cells. The process of constantly replenishing excess estrogen is denoted by ε. We
assume that the majority of cancer cells are estrogen-receptor positive and only a small
proportion of epithelial cells are estrogen-receptor positive, which can only be blocked by
the anti-cancer drug (1 – k) tamoxifen. β4 is the rate at which estrogen is being washed
out from the body [3, 22]. According to the information on the parameters, all parametric
values are stated in Table 1.

Definition 2.1 ([31]) Given a function ϕ(x), the fractional integral with order α > 0 is
given by Abdel’s formula by

Iαϕ(x) =
1


(α)

∫ x

0
ϕ(t)(x – t)α–1f (t) dt, x > 0. (2.2)

Definition 2.2 ([31]) Let ϕ : R+ → R be a continuous function. The Caputo fractional
derivative of order α ∈ (n – 1, n), where n is a positive integer is defined as

Dα
0 ϕ(x) =

1

(n – α)

∫ x

0

ϕ(n)(t)
(x – t)α+1–n dt. (2.3)

When α = n, the derivatives are defined to be the usual nth order derivatives.

Definition 2.3 ([32]) The Mittag-Leffler function of one variable is

Eα(λ, z) = Eα

(
λzα

)
=

∞∑

k=0

λkzαk


(1 + αk)
(
λ �= 0, z ∈C : Re(α) > 0

)
. (2.4)
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3 The equilibrium points
Consider the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DαN(t) = f (N(t), T(t), I(t), E(t))

= N(t)r1(K1 – μ1N(t) – β1T(t)) – (1 – k)φ1N(t)E(t),

DαT(t) = g(N(t), T(t), I(t), E(t)),

= T(t)r2(K2d – μ2T(t) – β2I(t)) – δT(t) + (1 – k)φ1N(t)E(t)T(t),

DαI(t) = h(N(t), T(t), I(t), E(t))

= ργ + I(t)(K3 – μ3 – β3T(t)) – (1 – k)φ2I(t)E(t),

DαE(t) = j(N(t), T(t), I(t), E(t)) = (1 – k)ε – β4E(t).

(3.1)

To analyze the stability of the system (3.1), we perturb the equilibrium point by adding
εi(t) > 0, i = 1, 2, 3, 4, that is,

N(t) – N = ε1(t), T(t) – T = ε2(t),

I(t) – I = ε3(t) and E(t) – E = ε4(t).
(3.2)

Thus, we have

Dα
(
ε1(t)

) � f (N , T , I, E) +
∂f (N , T , I, E)

∂N
ε1(t) +

∂f (N , T , I, E)
∂T

ε2(t)

+
∂f (N , T , I, E)

∂I
ε3(t) +

∂f (N , T , I, E)
∂j

ε4(t),

Dα
(
ε2(t)

) � g(N , T , I, E) +
∂g(N , T , I, E)

∂N
ε1(t) +

∂g(N , T , I, E)
∂T

ε2(t)

+
∂g(N , T , I, E)

∂I
ε3(t) +

∂g(N , T , I, E)
∂j

ε4(t),

Dα
(
ε3(t)

) � h(N , T , I, E) +
∂h(N , T , I, E)

∂N
ε1(t) +

∂h(N , T , I, E)
∂T

ε2(t)

+
∂h(N , T , I, E)

∂I
ε3(t) +

∂h(N , T , I, E)
∂j

ε4(t)

and

Dα
(
ε4(t)

) � j(N , T , I, E) +
∂j(N , T , I, E)

∂N
ε1(t) +

∂j(N , T , I, E)
∂T

ε2(t)

+
∂j(N , T , I, E)

∂I
ε3(t) +

∂j(N , T , I, E)
∂j

ε4(t).

This perturbation around the equilibrium point is to linearize the system since we estab-
lished a nonlinear fractional-order system based on the Lotka-Volterra logistic equation.
Moreover, since we are working with the Caputo derivative, the constant function is here
zero.
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We use the fact that f (N , T , I, E) = g(N , T , I, E) = h(N , T , I, E) = j(N , T , I, E) = 0 and ob-
tain, therefore, a linearized system about the equilibrium point such as

DαZ = JZ, (3.3)

where Z = (ε1(t), ε2(t), ε3(t), ε4(t)). Moreover, J is the Jacobian matrix at equilibrium:

J =

⎛

⎜
⎜
⎜
⎜
⎝

∂f (N ,T ,I,E)
∂N

∂f (N ,T ,I,E)
∂T

∂f (N ,T ,I,E)
∂I

∂f (N ,T ,I,E)
∂ j

∂g(N ,T ,I,E)
∂N

∂g(N ,T ,I,E)
∂T

∂g(N ,T ,I,E)
∂I

∂g(N ,T ,I,E)
∂ j

∂h(N ,T ,I,E)
∂N

∂h(N ,T ,I,E)
∂T

∂h(N ,T ,I,E)
∂I

∂h(N ,T ,I,E)
∂ j

∂ j(N ,T ,I,E)
∂N

∂ j(N ,T ,I,E)
∂T

∂ j(N ,T ,I,E)
∂I

∂ j(N ,T ,I,E)
∂ j

⎞

⎟
⎟
⎟
⎟
⎠

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
(N(t),T(t),I(t),E(t))=(N ,T ,I,E)

. (3.4)

We have B–1JB = C, where C is the diagonal matrix of the eigenvalues λi (i = 1, 2, 3, 4)
and B, the eigenvectors of J . Therefore, we get

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
0 η1 = λ1η1,

Dα
0 η2 = λ2η2,

Dα
0 η3 = λ3η3,

Dα
0 η4 = λ4η4,

where η =

⎛

⎜
⎜
⎜
⎝

η1

η2

η3

η4

⎞

⎟
⎟
⎟
⎠

and η = B–1Z, (3.5)

whose solutions are given by the Mittag-Leffler functions,

η1(t) =
∞∑

n=0

(λ1)ntnα


(nα + 1)
η1(0) = Eα

(
λ1tα

)
η1(0), (3.6)

η2(t) =
∞∑

n=0

(λ2)ntnα


(nα + 1)
η2(0) = Eα

(
λ2tα

)
η2(0), (3.7)

η3(t) =
∞∑

n=0

(λ3)ntnα


(nα + 1)
η3(0) = Eα

(
λ3tα

)
η3(0) (3.8)

and

η4(t) =
∞∑

n=0

(λ4)ntnα


(nα + 1)
η4(0) = Eα

(
λ4tα

)
η4(0). (3.9)

Matington studied in [33], a fractional differential system involving the Caputo deriva-
tive

Dα
0 x(t) = Ax(t) (3.10)

with initial values x(0) = x0 = (x10, x20, . . . , xn0)T , where x = (x1, x2, . . . , xn)T , α ∈ (0, 1) and
A ∈R

n×n. The stability of system (3.10) was defined by Matington as follows.

Definition 3.1 The autonomous system (3.10) is said to be
(i) stable if and only if for any x0, there exists ε > 0 such that ‖x‖ ≤ ε for t ≥ 0,
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(ii) asymptotically stable if and only if limt→∞ ‖x‖ = 0.

Theorem A ([34]) The autonomous system (3.10) is
(i) asymptotically stable if and only if if | arg(λi)| > απ

2 , in this case, the components of
the state decay towards 0 like t–α ,

(ii) stable if and only if either it is asymptotically stable, or those critical values which
satisfy | arg(λi)| = απ

2 have geometric multiplicity one.

(Here, arg(λi) denotes the arguments of the eigenvalues of the square matrix A.)
The proof of Theorem A was sketched by Matington in [33], while Zeng et al. proved

the theorem in detail by using the Mittag-Leffler functions in [35]. Therefore, consid-
ering system (3.3) we can say that if | arg(λi)| > απ

2 (i = 1, 2, 3, 4), then ηi(t) (i = 1, 2, 3, 4)
are decreasing and therefore also εi(t) (i = 1, 2, 3, 4) are decreasing. Thus, let the solution
(ε1(t), ε2(t), ε3(t), ε4(t)) of (3.3) exist. If the solution of (3.3) is increasing, then (N , T , I, E) is
unstable and if (ε1(t), ε2(t), ε3(t), ε4(t)) is decreasing, then (N , T , I, E) is locally asymptoti-
cally stable.

There are four critical points; two of them are the dead critical points, one is a tumor-
free critical point, and the other one is the co-existing critical point. These are given as
follows:

Tumor-free critical point: �1 = (N1, 0, I1, E1) = ( r1K1β4–(1–k)2φ1ε

μ1r1β4
, 0, ργβ4

(1–k)2φ2ε–β4(K3–δ) , (1–k)ε
β4

),
where φ1 < K1r1β4

ε(1–k)2 and φ2 > (K3–δ)β4
ε(1–k)2 for K3 > δ.

Dead critical point 1: �2 = (0, 0, I2, E2) = (0, 0, ργβ4
(1–k)2φ2ε–β4(K3–δ) , (1–k)ε

β4
), where φ2 > (K3–δ)β4

ε(1–k)2

for K3 > δ.
Dead critical point 2: �3 = (0, T3, I3, E3) = (0, T3, I3, (1–k)ε

β4
), where φ2 > (K3–δ)β4

ε(1–k)2 for K3 > δ.
Co-existing critical point: �4 = (N4, T4, I4, E4), where all classes are positive, where φ1 <

K1r1β4
ε(1–k)2 and φ2 > (K3–δ)β4

ε(1–k)2 for K3 > δ.

4 Stability, existence, and uniqueness
This section analyzes the local stability of (3.1) around each obtained critical point. The
Jacobian matrix of the tumor-free critical point �1 = (N1, 0, I1, E1) is given as

J(�1) =

⎛

⎜
⎜
⎜
⎝

a11 a12 0 a14

0 a22 0 0
0 a32 a33 a34

0 0 0 a44

⎞

⎟
⎟
⎟
⎠

, (4.1)

where

a11 = r1K1 – 2μ1N1 –
(1 – k)2φ1ε

β4
, a12 = –β1r1N1, a14 = –(1 – k)φ1N1,

a22 = r2K2d – δ – β2r2I1 +
(1 – k)2φ1ε

β4
N1, a32 = –β3I1,

a33 = –
((1 – k)2φ2ε – β4(K3 – μ3))

β4
, a34 = –(1 – k)φ2I1, a44 = –β4.

On the other hand, the characteristic equation of �1 is given by

(a11 – λ)(a22 – λ)(a33 – λ)(a44 – λ) = 0. (4.2)
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Theorem 4.1 Let �1 be the tumor-free critical point of system (3.1) and assume that φ1 <
K1r1β4
ε(1–k)2 and φ2 > (K3–δ)β4

ε(1–k)2 hold. Then �1 is stable local asymptotic if and only if

N1 <
(δ – r2K2d)β4

(1 – k)2φ1ε
, (4.3)

where r2 < δ
K2d .

Proof From (4.2), it follows that
(i) λ1 = r1K1 – 2μ1N1 – (1–k)2φ1ε

β4
< 0 since φ1 < K1r1β4

ε(1–k)2 ,

(ii) λ2 = r2K2d – δ – β2r2I1 + (1–k)2φ1ε

β4
N1 < 0 ⇒ N1 < (δ–r2K2d)β4

(1–k)2φ1ε
, where r2 < δ

K2d ,

(iii) λ3 = – ((1–k)2φ2ε–β4(K3–μ3))
β4

< 0, since φ2 > (K3–δ)β4
ε(1–k)2 ,

(iv) λ4 = –β4 < 0. �

Remark 4.1 In Theorem 4.1. it is seen that any increase in the ketogenic rate affects the
growth of the tumor population. It is assumed here that the invasion of the tumor cells
into the normal cells is small. Thus, the tumor cell population can be eliminated from the
breast tissues, since �1 depends on the immune response and the estrogen level.

The Jacobian matrix of the dead critical point �2 = (0, 0, ργβ4
(1–k)2φ2ε–β4(K3–δ) , (1–k)ε

β4
) is given

as

J(�2) =

⎛

⎜
⎜
⎜
⎝

a11 0 0 0
0 a22 0 0
0 a32 a33 a34

0 0 0 a44

⎞

⎟
⎟
⎟
⎠

, (4.4)

where

a11 = r1K1 –
(1 – k)2φ1ε

β4
, a22 = r2K2d – δ – β2r2I2, a32 = –β3I2,

a33 = –
((1 – k)2φ2ε – β4(K3 – μ3))

β4
, a34 = –(1 – k)φ2I2, a44 = –β4.

Theorem 4.2 Assume that φ1 > K1r1β4
ε(1–k)2 and φ2 > (K3–δ)β4

ε(1–k)2 holds. The dead critical point �2

of system (3.1) is stable local asymptotic if and only if

I2 >
(r2K2d – δ)β4

(1 – k)2φ1ε
, (4.5)

where r2 > δ
K2d .

Proof From (4.4), we obtain the following:
(i) λ1 = r1K1 – (1–k)2φ1ε

β4
< 0 if φ1 > K1r1β4

ε(1–k)2 ,
(ii) λ2 = r2K2d – δ – β2r2I2 < 0 ⇒ I2 > (r2K2d–δ)β4

(1–k)2φ1ε
, where r2 > δ

K2d ,

(iii) λ3 = – ((1–k)2φ2ε–β4(K3–μ3))
β4

< 0, since φ2 > (K3–δ)β4
ε(1–k)2 ,

(iv) λ4 = –β4 < 0. �
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Remark 4.2 In Theorem 4.2. it is shown that applying a low ketogenic diet increases the
growth of the tumor population. In this scenario, the damage of DNA causes a malignant
class in the breast tissues. The competition between the tumor cells and the immune sys-
tem is intense, and the effect of the anti-cancer drug tamoxifen decreases the tumor popu-
lation. However, the increase of the estrogen level also affected the healthy cell population
to extinct as well.

Now, we consider the Jacobian matrix of dead critical point 2; �3 = (0, T3, I3, (1–k)ε
β4

), now
we have

J(�1) =

⎛

⎜
⎜
⎜
⎝

a11 0 0 0
a21 a22 a23 0
0 a32 a33 a34

0 0 0 a44

⎞

⎟
⎟
⎟
⎠

, (4.6)

where

a11 = r1K1 – β1r1T3 –
(1 – k)2φ1ε

β4
, a21 =

(1 – k)2φ1ε

β4
T3,

a22 = (K2dr2 – δ) – 2r2μ2T3 – β2r2I3, a23 = –β2r2I3, a32 = –β3I3,

a33 = (K3 – μ3 – β3T3) –
(1 – k)2φ2ε

β4
, a34 = –(1 – k)φ2I3, a44 = –β4.

The characteristic equation of the dead critical point 2 is given by

(a11 – λ)(a44 – λ)
{

(a22 – λ)(a33 – λ) – a23a32
}

= 0. (4.7)

Thus, the local stability for �3 = (0, T3, I3, E3) is obtained in Theorem 4.3 as follows.

Theorem 4.3 Let �3 be the critical point of system (3.1) and assume that φ1 > K1r1β4
ε(1–k)2 . Then

the following statements are true:
(i) Let r2 > δ

K2d and R0 < 1. If

T3 ∈
(

(K3 – μ3)β4 – (1 – k)2φ2ε

β4β3
,

K2dr2 – δ

2r2μ2

)

,

I3 ∈
( {(K2dr2 + K3)β4 – ((μ3 + δ)β4 + (1 – k)2φ2ε)} – (2r2μ2 + β3)β4T3

β4β2r2
,

(K2dr2 – δ) – 2r2μ2T3

β2r2

)

and

E4 ∈
(

2r2μ2(K3 – μ3) – (K2dr2 – δ)β3

2r2μ2(1 – k)φ2
,

(K2dr2 + K3 – (μ3 + δ))
(1 – k)φ2

)

then both roots are real or complex conjugates with negative real parts and | arg(λi)| > απ
2

(i = 1, 2, 3, 4) is equivalent to the Routh-Hurwitz criteria. This implies that �3 is locally
asymptotically stable.
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(ii) Let r2 > δ
K2d and R0 < 1. If

T3 ∈
(

0,
(K3 – μ3)β4 – (1 – k)2φ2ε

β4β3

)

, I3 ∈
(

(K2dr2 – δ) – 2r2μ2T3

β2r2
,∞

)

and

E4 ∈
(

2r2μ2(K3 – μ3) – (K2dr2 – δ)β3

2r2μ2(1 – k)φ2
,

(K2dr2 + K3 – (μ3 + δ))
(1 – k)φ2

)

,

then both roots are complex conjugate with positive real parts and

∣
∣
∣
∣tan–1

(

–
(

4
(
(K2dr2 – δ) – 2r2μ2T3 – β2r2I3

)

×
(

(K3 – μ3 – β3T3) –
(1 – k)2φ2ε

β4

)

(1 – R0)

–
(

(K2dr2 – δ) – 2r2μ2T3 – β2r2I3 + (K3 – μ3 – β3T3) –
(1 – k)2φ2ε

β4

)2) 1
2

×
((

(K2dr2 – δ) – 2r2μ2T3 – β2r2I3 + (K3 – μ3 – β3T3) –
(1 – k)2φ2ε

β4

))–1)∣
∣
∣
∣

>
απ

2
.

This implies that �3 is locally asymptotically stable.

Proof From (4.7), we obtain

λ1 = r1K1 –
(1 – k)2φ1ε

β4
< 0 if φ1 >

K1r1β4

ε(1 – k)2 (4.8)

and λ4 = –β4 < 0. In this case, we need to consider only the characteristic equation

λ2 – (a22 + a33)λ + a22a33 – a23a32 = 0. (4.9)

Equation (4.9) shows the basic reproductive number, which is

R0 =
a23a32

a22a33
(4.10)

for the characteristic equation

λ2 – (a22 + a33)λ + a22a33

(

1 –
a23a32

a22a33

)

= 0,

which implies

λ2 –
3∑

i=2

aiiλ +
3∏

i=2

aii(1 – R0) = 0. (4.11)
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(i) Let us consider the case where � = (a22 + a33)2 – 4a22a33(1 – R0) > 0. For R0 < 1 and
r2 > δ

K2d , we have

(K3 – μ3)β4 – (1 – k)2φ2ε

β4β3
< T3 <

K2dr2 – δ

2r2μ2
and

I3 <
(K2dr2 – δ) – 2r2μ2T3

β2r2
,

(4.12)

which implies that � > 0. Moreover, computations show that

a22 + a33 < 0

⇒ {(K2dr2 + K3)β4 – ((μ3 + δ)β4 + (1 – k)2φ2ε)} – (2r2μ2 + β3)β4T3

β4β2r2
< I3, (4.13)

where

T3 <
(K2dr2 + K3)β4 – ((μ3 + δ)β4 + (1 – k)2φ2ε)

(2r2μ2 + β3)β4
(4.14)

and

E4 <
(K2dr2 + K3 – (μ3 + δ))

(1 – k)φ2
. (4.15)

Considering (4.12)–(4.14), we obtain

{(K2dr2 + K3)β4 – ((μ3 + δ)β4 + (1 – k)2φ2ε)} – (2r2μ2 + β3)β4T3

β4β2r2

< I3 <
(K2dr2 – δ) – 2r2μ2T3

β2r2
(4.16)

and

(K3 – μ3)β4 – (1 – k)2φ2ε

β4β3

< T3 <
K2dr2 – δ

2r2μ2
<

(K2dr2 + K3)β4 – ((μ3 + δ)β4 + (1 – k)2φ2ε)
(2r2μ2 + β3)β4

, (4.17)

where

E4 >
2r2μ2(K3 – μ3) – (K2dr2 – δ)β3

2r2μ2(1 – k)φ2
. (4.18)

From (4.15) and (4.18), we get

2r2μ2(K3 – μ3) – (K2dr2 – δ)β3

2r2μ2(1 – k)φ2
< E4 <

(K2dr2 + K3 – (μ3 + δ))
(1 – k)φ2

for r2 >
δ

K2d
. (4.19)

(ii) Let us consider the case of complex roots with positive real parts. First of all, if

a22 + a33 > 0 (4.20)
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then we obtain positive real parts. Thus, for the inequality

a22 + a33 > 0

⇒ {(K2dr2 + K3)β4 – ((μ3 + δ)β4 + (1 – k)2φ2ε)} – (2r2μ2 + β3)β4T3

β4β2r2
> I3, (4.21)

where

T3 <
(K2dr2 + K3)β4 – ((μ3 + δ)β4 + (1 – k)2φ2ε)

(2r2μ2 + β3)β4
(4.22)

and

E4 <
(K2dr2 + K3 – (μ3 + δ))

(1 – k)φ2
, (4.23)

we end up with (4.20).
Considering the condition � = (a22 + a33)2 – 4a22a33(1 – R0) < 0, we have

R0 <
4a22a33 – (a22 + a33)2

4a22a33
< 1. (4.24)

Moreover, computations reveal that 4a22a33 > (a22 + a33)2, if

T3 <
(K3 – μ3)β4 – (1 – k)2φ2ε

β4β3
(4.25)

and

I3 >
(K2dr2 – δ) – 2r2μ2T3

β2r2
, (4.26)

where

T3 <
K2dr2 – δ

2r2μ2
. (4.27)

From (4.22), (4.25), and (4.27), we get

T3 <
(K3 – μ3)β4 – (1 – k)2φ2ε

β4β3
, I3 >

(K2dr2 – δ) – 2r2μ2T3

β2r2
(4.28)

and

2r2μ2(K3 – μ3) – (K2dr2 – δ)β3

2r2μ2(1 – k)φ2
< E4 <

(K2dr2 + K3 – (μ3 + δ))
(1 – k)φ2

for r2 >
δ

K2d
. (4.29)

�

Remark 4.3 It is shown in Theorem 4.3 that the reproduction number has a dominant role
to play in the dynamical system’s stability. In this scenario, we assumed a weak immune
response with low ketogenic support. It is seen that without the control parameters, the
immune system is not strong enough to defend the tissues and the human body from the
invasion of the malignant population.



Yousef et al. Advances in Difference Equations        (2020) 2020:696 Page 12 of 25

Let us consider the Jacobian matrix of the co-existing critical point: �4 = (N4, T4, I4, E4),
which has the form

J(�4) =

⎛

⎜
⎜
⎜
⎝

a11 a12 0 a14

a21 a22 a23 a24

0 a32 a33 a34

0 0 0 a44

⎞

⎟
⎟
⎟
⎠

, (4.30)

where

a11 = r1K1 – 2r1μ1N4 – r1β1T4 –
(1 – k)2φ1ε

β4
, a12 = –β1r1N4,

a14 = –(1 – k)φ1N4, a21 =
(1 – k)2φ1εT4

β4
,

a22 = (K2dr2 – δ) – 2r2μ2T4 – β2r2I4 +
(1 – k)2φ1εN4

β4
,

a23 = –β2r2T4, a24 = (1 – k)φ1N4T4, a32 = –β3I4,

a33 = (K3 – μ3 – β3T4) –
(1 – k)2φ2ε

β4
,

a34 = –(1 – k)φ2I4, a44 = –β4.

The characteristic equation of (4.30) around �4 is given by

(a11 – λ)
{
λ2 – (a22 + a33)λ + a22a33(1 – R0)

}
– (a33 – λ)a12a21 = 0 (4.31)

and

λ4 = –β4 < 0, (4.32)

while (4.31) is a cubic equation of the form

λ3 + (–a11 – a22 – a33)λ2 +
(
a11a22 + a11a33 – a12a21 + a23a32(1 – R0)

)
λ

+
(
a33a12a21 – a11a22a33(1 – R0)

)
= 0. (4.33)

Theorem 4.4 Let �4 be the equilibrium point of system (3.1) and assume that R0 < 1,
φ1 < K1r1β4

ε(1–k)2 and (K3–δ)β4
ε(1–k)2 < φ2 < (K3–μ3)β4

ε(1–k)2 . Then the following statements are true:

(i) Let r1 > (1–k)2φ1ε

2β4μ1
and r2 > δ

K2d . If

T4 >
r1K1β4 – (1 – k)2φ1ε

(r1β1 + 2r2μ2)β4
and I4 >

K2dr2 – δ

β2r2
,

where β3 > (r1β1+2r2μ2)((K3–μ3)β4–(1–k)2φ2ε)
r1K1β4–(1–k)2φ1ε

then all the roots of (4.33) are real. This
implies that �4 is locally asymptotically stable.
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(ii) Let r1 ≥ (1–k)2φ1ε

2β4μ1
and r2 > δ

K2d . If

N4 ∈
(

(r1K1 – r1β1T4)β4 – (1 – k)2φ1ε

β4r1(2μ1 + β1)
,∞

)

,

T4 ∈
[

r1K1β4 – (1 – k)2φ1ε

(r1β1 + 2r2μ2)β4
,

r1K1β4 – (1 – k)2φ1ε

r1β1β4

)

,

I4 ∈
[

K2dr2 – δ

β2r2
,∞

)

and

(
(1 – k)φ1E4 + 2r2μ2

(1 – k)φ1E4

)

>
N4

T4
,

where β3 = (r1β1+2r2μ2)((K3–μ3)β4–(1–k)2φ2ε)
r1K1β4–(1–k)2φ1ε

, then there is one real root and one complex
root with its complex conjugate, which implies that �4 is locally asymptotically
stable.

Proof (i) If the discriminant of (4.33) is positive, then the Routh-Hurwitz conditions are
necessary and sufficient conditions for locally asymptotically stability of �4. Thus, we first
consider the conditions for a positive discriminant of the cubic polynomial (4.33):

If

a11 + a22 + a33 < 0, (4.34)

a33a12a21 – a11a22a33(1 – R0) > 0, (4.35)

a11a22 + a11a33 – a12a21 + a23a32(1 – R0) > 0 (4.36)

and

(–a11 – a22 – a33)
(
a11a22 + a11a33 – a12a21 + a23a32(1 – R0)

)

> a33a12a21 – a11a22a33(1 – R0), (4.37)

then the discriminant of (4.33) is positive.
Because of (4.34), we have

(
(1 – k)2φ1ε

β4
– 2r1μ1

)

N4 +
(

r1K1 – (r1β1 + 2r2μ2)T4 –
(1 – k)2φ1ε

β4

)

+ (K2dr2 – δ – β2r2I4) +
(

K3 – μ3 –
(1 – k)2φ2ε

β4
– β3T4

)

< 0,

where we obtain

(1 – k)2φ1ε

β4
– 2r1μ1 < 0 ⇒ r1 >

(1 – k)2φ1ε

2β4μ1
, (4.38)
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r1K1 – (r1β1 + 2r2μ2)T4 –
(1 – k)2φ1ε

β4
< 0

⇒ T4 >
r1K1β4 – (1 – k)2φ1ε

(r1β1 + 2r2μ2)β4
for φ1 <

K1r1β4

ε(1 – k)2 , (4.39)

K2dr2 – δ – β2r2I4 < 0 ⇒ I4 >
K2dr2 – δ

β2r2
for r2 >

δ

K2d
(4.40)

and

K3 – μ3 –
(1 – k)2φ2ε

β4
– β3T4 < 0

⇒ T4 >
(K3 – μ3)β4 – (1 – k)2φ2ε

β4β3
for φ2 <

(K3 – μ3)β4

ε(1 – k)2 . (4.41)

Since �4 is a positive critical point for φ2 > (K3–δ)β4
ε(1–k)2 , we see from (4.41) that μ3 < δ. Con-

sidering both (4.39) and (4.41), we have

T4 >
r1K1β4 – (1 – k)2φ1ε

(r1β1 + 2r2μ2)β4
>

(K3 – μ3)β4 – (1 – k)2φ2ε

β4β3
, (4.42)

where β3 > (r1β1+2r2μ2)((K3–μ3)β4–(1–k)2φ2ε)
r1K1β4–(1–k)2φ1ε

.
On the other side, it is evident that (4.35) holds, since a33 < 0. Moreover, considering

(4.36) and (4.37), we obtain the result that it is satisfied with the conditions in (4.38)–
(4.42). This completes the proof of (i).

(ii) If the discriminant of (4.33) is negative, then there is only one real root and one
complex root with its complex conjugate. Let us assume that

P(λ) = (λ + a)(λ – b – iω)(λ – b + iω)

= λ3 + (–a11 – a22 – a33)λ2 +
(
a11a22 + a11a33 – a12a21 + a23a32(1 – R0)

)
λ

+
(
a33a12a21 – a11a22a33(1 – R0)

)
= 0. (4.43)

Then

a – 2b = –a11 – a22 – a33,

b2 + ω2 – 2ab = a11a22 + a11a33 – a12a21 + a23a32(1 – R0)

and

a
(
b2 + ω2) = a33a12a21 – a11a22a33(1 – R0).

By the result in [36], since a – 2b > 0 and b ≥ 0,

a11 + a22 + a33 ≤ 0, (4.44)

which holds for

(1 – k)2φ1ε

β4
– 2r1μ1 ≤ 0 ⇒ r1 ≥ (1 – k)2φ1ε

2β4μ1
, (4.45)
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r1K1 – (r1β1 + 2r2μ2)T4 –
(1 – k)2φ1ε

β4
≤ 0

⇒ T4 ≥ r1K1β4 – (1 – k)2φ1ε

(r1β1 + 2r2μ2)β4
for φ1 <

K1r1β4

ε(1 – k)2 , (4.46)

K2dr2 – δ – β2r2I4 ≤ 0 ⇒ I4 ≥ K2dr2 – δ

β2r2
for r2 >

δ

K2d
(4.47)

and

K3 – μ3 –
(1 – k)2φ2ε

β4
– β3T4 ≤ 0 ⇒ T4 ≥ (K3 – μ3)β4 – (1 – k)2φ2ε

β4β3
(4.48)

for (K3–δ)β4
ε(1–k)2 < φ2 < (K3–μ3)β4

ε(1–k)2 where μ3 < δ. Considering both (4.46) and (4.48), we have

T4 ≥ r1K1β4 – (1 – k)2φ1ε

(r1β1 + 2r2μ2)β4
, (4.49)

where β3 = (r1β1+2r2μ2)((K3–μ3)β4–(1–k)2φ2ε)
r1K1β4–(1–k)2φ1ε

.
On the other side, from [36] we have

b2 + ω2 – 2ab ≥ 0 ⇒ b2 + ω2 ≥ 2ab ⇒ b2 sec2 θ ≥ 2ab ≥ 4b2, (4.50)

which implies that | arg(λ)| = θ ≥ π
3 and from | arg(λ)| > απ

2 , we have α < 2
3 . Thus,

a11a22 + a11a33 – a12a21 + a23a32(1 – R0) ≥ 0, (4.51)

which holds for the conditions in (4.45)–(4.49).
At last, we consider

a33a12a21 – a11a22a33(1 – R0) > 0,

which implies

β1r1N4T4
(1 – k)2φ1ε

β4

> –
(

r1K1 – 2r1μ1N4 – r1β1T4 –
(1 – k)2φ1ε

β4

)

×
(

(K2dr2 – δ) – 2r2μ2T4 – β2r2I4 +
(1 – k)2φ1εN4

β4

)

(1 – R0) (4.52)

we have

N4 >
(r1K1 – r1β1T4)β4 – (1 – k)2φ1ε

β4r1(2μ1 + β1)
, (4.53)

where

T4 <
r1K1β4 – (1 – k)2φ1ε

r1β1β4
(4.54)
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and

(
(1 – k)φ1E4 + 2r2μ2

(1 – k)φ1E4

)

>
N4

T4
. (4.55)

�

Remark 4.4 In Theorem 4.4, it is shown that, if the source rate of estrogen is low, then
the interaction between the normal cells and tumor cells continues. At the same time, the
growth of both populations has an inverse relation. According to the ketogenic assistance
and supplements of an immune booster, a robust immune response is expected in this
competition.

Example 4.1 In this example, the theoretical results are demonstrated by using numerical
simulations. For this purpose, we wrote code and ran it using the MATLAB version 2019.
The initial values of (3.1) are N(0) = 200, T(0) = 50, I(0) = 50, E(0) = 2.

Figure 1 shows the limited competition between cancer and normal cell populations. Af-
ter the cancer cells appear, some immune booster supplements support the normal cells
in the interaction. The red graph is the cancer cell population T(t), while the blue graph
shows the normal cell population N(t). It is seen that after a specific time, the tumor pop-
ulation becomes so strong that the immune system needs additional support from the
control parameters. Therefore, to stabilize only the immune system is not sufficient for
interaction against the malignant tumor.

In Figs. 2 and 3, we notice that introducing a ketogenic diet reduces the cancer cells. In
this case, applying for the ketogenic program during the mixed-immunotherapy shows an
effect on the per capita growth of the cancer cells and stabilizes the treatment to support
the normal cells.

However, it is also known that increasing the rate of the ketogenic diet leads to keto-
acidosis. Keto-acidosis is a composition of ketosis and acidosis. Ketosis is a substance
known as ketone bodies, and acidosis is the acid of the blood, causing frequent polyuria,
poor appetite, and loss of consciousness. Therefore, a rate at d = 0.3 is reasonable, and the
interaction can be supported by anti-cancer drugs such as tamoxifen. The tumor cell is
given in red, while the normal cells are denoted in blue.

Figure 1 Bifurcation diagram of T (t) and N(t) with only one control parameter, the immune booster
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Figure 2 Bifurcation diagram of T (t) and N(t) with a mixed therapy including the ketogenic diet

Figure 3 Effect of the ketogenic diet to the cell populations T (t) and N(t)

5 Existence and uniqueness
Considering system (3.1) with the initial conditions N(0) > 0, T(0) > 0, I(0) > 0 and E(0) >
0, the IVP can be written in matrix form as

⎧
⎪⎪⎨

⎪⎪⎩

DαU(t) = M + AU(t) + N(t)BU(t) + T(t)CU(t)

+ I(t)DU(t) + E(t)GU(t), t ∈ (0, T],

U(0) = U0,

(5.1)

where U(t) =

[ N(t)
T(t)
I(t)
E(t)

]

and U(0) =

[ N(0)
T(0)
I(0)
E(0)

]

and M =

[ 0
0

ργ

(1–k)ε

]

.

Let us assume that N(0) ≤ υ1, and T(0) > 0, I(0) > 0, E(0) > 0, when t > σ ≥ 0.
In this case, the following definitions can be applied to the main theorems in this section.

Definition 5.1 Let C∗[0, T] be the class of continuous column vector U(t) whose com-
ponents N(t), T(t), I(t), E(t) ∈ C[0, T] are the class of continuous functions on the interval
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[0, T]. The norm of U ∈ C∗[0, T] is given by

‖U‖ = sup
t

∣
∣e–WtN(t)

∣
∣ + sup

t

∣
∣e–WtT(t)

∣
∣ + sup

t

∣
∣e–WtI(t)

∣
∣ + sup

t

∣
∣e–WtE(t)

∣
∣.

When t > σ ≥ 0, we write C∗
σ [0, T] and Cσ [0, T].

Definition 5.2 Let the IVP of (5.1) have a solution given by U ∈ C∗[0, T], if
(i) (t, U(t)) ∈ D, t ∈ [0, T] where D = [0, T] × K and

K =
{(

N(t), T(t), I(t), E(t)
)

:
∣
∣N(t)

∣
∣ ≤ υ1,

∣
∣T(t)

∣
∣ ≤ υ2,

∣
∣I(t)

∣
∣ ≤ υ3,

∣
∣E(t)

∣
∣ ≤ υ4

}
.

(ii) U(t) satisfies (5.1).

Theorem 5.1 The IVP of (5.1) has a unique solution U ∈ C∗[0, T].

Proof Let us write

I1–α d
dt

U(t) = M + AU(t) + N(t)BU(t) + T(t)CU(t) + I(t)DU(t) + E(t)GU(t). (5.2)

Operating with Iα , we obtain

U(t) = U(0) + Iα
(
M + AU(t) + N(t)BU(t) + T(t)CU(t) + I(t)DU(t) + E(t)GU(t)

)
. (5.3)

Now let F : C∗[0, T] → C∗[0, T] be defined by

FU(t) = U(0) + Iα
(
M + AU(t) + N(t)BU(t) + T(t)CU(t) + I(t)DU(t) + E(t)GU(t)

)
. (5.4)

Then we get

e–Wt‖FU – FV‖
= e–WtIα

(
A

(
U(t) – V (t)

)
+ N(t)B

(
U(t) – V (t)

)
+ T(t)C

(
U(t) – V (t)

)

+ I(t)D
(
U(t) – V (t)

)
+ E(t)G

(
U(t) – V (t)

))

≤ 1

(α)

∫ t

0
(t – s)α–1e–W (t–s)(U(s) – V (s)

)
e–Ws(A + υ1B + υ2C + υ3D + υ4G) ds

≤ (A + υ1B + υ2C + υ3D + υ4G)
W α

‖U – V‖
∫ t

0

sα–1


(α)
ds.

This implies that ‖FU – FV‖ ≤ (A+υ1B+υ2C+υ3D+υ4G)
Wα ‖U – V‖. If we choose W such that

W α > A + υ1B + υ2C + υ3D + υ4G, then we obtain ‖FU – FV‖ ≤ ‖U – V‖. Moreover, the
operator F given by (4.4) has a unique fixed point.

Consequently, (5.3) has a unique solution U ∈ C∗[0, T]. From (5.3), we have

U(t) = U(0) +
(

tα


(α + 1)
(
M + AU(t) + N(t)BU(t) + T(t)CU(t)

+ I(t)DU(t) + E(t)GU(t)
)
)
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+ Iα+1(AU ′(t) + N ′(t)BU(t) + N(t)BU ′(t) + T ′(t)CU(t) + T(t)CU ′(t)

+ I ′(t)DU(t) + I(t)DU ′(t) + E′(t)GU(t) + E(t)GU ′(t)
)

and

U(t)
dt

=
tα–1


(α)
(
M + AU(0) + N(0)BU(0) + T(0)CU(0) + I(0)DU(0) + E(0)GU(0)

)

+ Iα
(
AU ′(t) + N ′(t)BU(t) + N(t)BU ′(t) + T ′(t)CU(t) + T(t)CU ′(t)

+ I ′(t)DU(t) + I(t)DU ′(t) + E′(t)GU(t) + E(t)GU ′(t)
)
,

which implies

e–Nt
(

U(t)
dt

)

= e–Nt
(

tα–1


(α)
(
M + AU(0) + N(0)BU(0) + T(0)CU(0) + I(0)DU(0) + E(0)GU(0)

)

+ Iα
(
AU ′(t) + N ′(t)BU(t) + N(t)BU ′(t) + T ′(t)CU(t) + T(t)CU ′(t)

+ I ′(t)DU(t) + I(t)DU ′(t) + E′(t)GU(t) + E(t)GU ′(t)
)
)

from which we can deduce that U ′ ∈ C∗
σ [0, T]. Thus, we have

dU(t)
dt

=
d
dt

Iα
(
M + AU(t) + N(t)BU(t) + T(t)CU(t) + I(t)DU(t) + E(t)GU(t)

)
,

which implies

I1–α dU(t)
dt

= I1–α d
dt

Iα
(
M + AU(t) + N(t)BU(t) + T(t)CU(t) + I(t)DU(t) + E(t)GU(t)

)

or

DαU(t) = M + AU(t) + N(t)BU(t) + T(t)CU(t) + I(t)DU(t) + E(t)GU(t)

and

U(0) = U0 + Iα
(
M + AU(0) + N(0)BU(0) + T(0)CU(0) + I(0)DU(0) + E(0)GU(0)

)
= U0.

Therefore, this IVP is equivalent to (5.1), which completes the proof. �

6 An analysis of the tumor growth at low density
In 1838, Verhulst considered the logistic growth function to explain mono-species growth.
Later on, it was demonstrated that the logistic equation needs modifications to explain the
growth of the population in low density-size, which is known as the Allee effect.

The Allee effect can be divided into two main types:
• strong Allee effect and
• weak Allee effect.
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A population with a strong Allee effect will have a critical population size, the popu-
lation’s threshold. Any size that is less than the threshold will go to extinction without
any further aid. However, a population with a weak Allee effect will reduce the per capita
growth rate at a lower population density or size [37–41].

Based on the above discussion, we apply the weak Allee function at time t to the system
(3.1), such as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

DαN(t) = N(t)r1(K1 – μ1N(t) – β1T(t)) – (1 – k)φ1N(t)E(t),

DαT(t) = a(T(t)) · T(t){r2(K2d – μ2T(t) – β2I(t)) – δ + (1 – k)φ1N(t)E(t)},
DαI(t) = ργ + I(t)(K3 – μ3 – β3T(t)) – (1 – k)φ2I(t)E(t),

DαE(t) = (1 – k)ε – β4E(t),

(6.1)

where t > 0 and (N(0), T(0), I(0), E(0)) = (N0, T0, I0, E0). Moreover, we define � > 0 as the
Allee coefficient of the tumor population and a(T(t)) = T(t)

�+T(t) is the Allee function.
Considering the density of class T(t), we can see that the Allee function is useful for the

malignant class if

T(t) ∈
(

0, –� +

√
� (μ2r2� + K2dr2 – δ – β2r2I(t) + (1 – k)φ1N(t)E(t))

μ2r2

)

, (6.2)

where the immune system is also dependent on the Allee coefficient,

I(t) <
μ2r2� + K2dr2 – δ

β2r2
for r2 >

δ

K2d
. (6.3)

For a low population size of the tumor population, let us consider the stability conditions
around �4. The characteristic equation is given by

(a11 – λ)
{
λ2 – (a22 + a33)λ + a22a33(1 – R0)

}
– (a33 – λ)a12a21 = 0 (6.4)

and

λ4 = –β4 < 0, (6.5)

while (6.4) is a cubic equation of the form

λ3 + (–a11 – a22 – a33)λ2 +
(
a11a22 + a11a33 – a12a21 + a23a32(1 – R0)

)
λ

+
(
a33a12a21 – a11a22a33(1 – R0)

)
= 0 (6.6)

and

a11 = r1K1 – 2r1μ1N4 – r1β1T4 –
(1 – k)2φ1ε

β4
, a12 = –β1r1N4,

a14 = –(1 – k)φ1N4, a21 =
(1 – k)2φ1εT4a(T4)

β4
,

a22 = a(T4)
(

(K2dr2 – δ) – 2r2μ2T4 – β2r2I4 +
(1 – k)2φ1εN4

β4

)

,
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a23 = –β2r2T4a(T4), a24 = (1 – k)φ1N4T4a(T4), a32 = –β3I4,

a33 = (K3 – μ3 – β3T4) –
(1 – k)2φ2ε

β4
, a34 = –(1 – k)φ2I4, a44 = –β4.

Theorem 6.1 Let �4 be the positive equilibrium point of system (6.1) and assume that
R0 < 1, φ1 < K1r1β4

ε(1–k)2 and (K3–δ)β4
ε(1–k)2 < φ2 < (K3–μ3)β4

ε(1–k)2 . Then the following statements are true:

(i) Let r1 > (1–k)2φ1εa(T4)
2β4μ1

and r2 > δ
K2d . If

T4 >
r1K1β4 – (1 – k)2φ1ε

(r1β1 + 2r2μ2a(T4))β4
and I4 >

K2dr2 – δ

β2r2
,

where β3 > (r1β1+2r2μ2a(T4))((K3–μ3)β4–(1–k)2φ2ε)
r1K1β4–(1–k)2φ1ε

then all the roots are real. This implies
that �4 is locally asymptotically stable.

(ii) Let r1 ≥ (1–k)2φ1εa(T4)
2β4μ1

and r2 > δ
K2d . If

N4 ∈
(

(r1K1 – r1β1T4)β4 – (1 – k)2φ1ε

β4r1(2μ1 + β1)
,∞

)

,

T4 ∈
[

r1K1β4 – (1 – k)2φ1ε

(r1β1 + 2r2μ2a(T4))β4
,

r1K1β4 – (1 – k)2φ1ε

r1β1β4

)

,

I4 ∈
[

K2dr2 – δ

β2r2
,∞

)

and

(
(1 – k)φ1E4 + 2r2μ2a(T4)

(1 – k)φ1E4

)

>
N4

T4
,

where β3 = (r1β1+2r2μ2a(T4))((K3–μ3)β4–(1–k)2φ2ε)
r1K1β4–(1–k)2φ1ε

, then there are only one real root and
one complex root with its complex conjugate, which imply that �4 is locally
asymptotically stable.

Proof (i) Let us consider the conditions for a positive discriminant of (6.6). Thus,

+
(

(1 – k)2φ1εa(T4)
β4

– 2r1μ1

)

N4 +
(

r1K1 –
(
r1β1 + 2r2μ2a(T4)

)
T4 –

(1 – k)2φ1ε

β4

)

+ a(T4)(K2dr2 – δ – β2r2I4) +
(

K3 – μ3 – β3T4 –
(1 – k)2φ2ε

β4

)

< 0, (6.7)

where we obtain

(1 – k)2φ1εa(T4)
β4

– 2r1μ1 < 0 ⇒ r1 >
(1 – k)2φ1εa(T4)

2β4μ1
, (6.8)

r1K1 –
(
r1β1 + 2r2μ2a(T4)

)
T4 –

(1 – k)2φ1ε

β4
< 0

⇒ T4 >
r1K1β4 – (1 – k)2φ1ε

(r1β1 + 2r2μ2a(T4))β4
for φ1 <

K1r1β4

ε(1 – k)2 , (6.9)



Yousef et al. Advances in Difference Equations        (2020) 2020:696 Page 22 of 25

K2dr2 – δ – β2r2I4 < 0 ⇒ I4 >
K2dr2 – δ

β2r2
for r2 >

δ

K2d
(6.10)

and

K3 – μ3 –
(1 – k)2φ2ε

β4
– β3T4 < 0

⇒ T4 >
(K3 – μ3)β4 – (1 – k)2φ2ε

β4β3
for φ2 <

(K3 – μ3)β4

ε(1 – k)2 . (6.11)

Considering both (6.9) and (6.11), we have

T4 >
r1K1β4 – (1 – k)2φ1ε

(r1β1 + 2r2μ2a(T4))β4
>

(K3 – μ3)β4 – (1 – k)2φ2ε

β4β3
, (6.12)

where β3 > (r1β1+2r2μ2a(T4))((K3–μ3)β4–(1–k)2φ2ε)
r1K1β4–(1–k)2φ1ε

. This completes the proof of (i).
Since Theorem 4.4/(ii) is similar to (i), it is given without proof. �

Remark 6.1 Theorem 6.1 shows that the ketogenic diet affects the growth rate of the tu-
mor population. Decreasing the ketogenic rate is increasing the tumor growth rate, which
leads to a weak immune response. On the other side, increasing the ketogenic program in
continuous time restricts the tumor population’s capacity, supporting the immune system.
Additionally, we noticed that other complement control parameters such as anti-cancer
drugs decrease the estrogen level caused by damage to the DNA.

Example 6.1 In this example, we wrote code and ran it using the MATLAB version 2019.
The initial values of (3.1) are N(0) = 200, T(0) = 50, I(0) = 50, E(0) = 2. Figure 4 shows the
graph of the tumor cells and the normal cells, where T(t) is given in red and N(t) in blue
for mixed therapy in the case of early detection. All control parameters are included in
the treatment with low dosages, which drive the tumor density extinct in a short discrete
time. This simulation demonstrates the weak Allee effect, where the Allee coefficient is
� = 0.4. Therefore, it is seen that the ketogenic assistance and supplements of an immune
booster are essential in all stages of cancer treatment.

7 Conclusions
This study analyzed a mathematical model of breast cancer as a fractional-order system to
analyze tumor growth under chemotherapeutic treatment and immune response. We in-
corporated sensitive control parameters (ketogenic diet, immune booster, and anti-cancer
drugs). Further, we assumed in the model that the majority of the malignant cells are
ESR1 + ve.

In Sect. 2, we established the model, and in Sect. 3, we obtained four essential equilib-
rium points: the tumor-free equilibrium point, the death equilibrium point 1-2, and the
co-existing equilibrium point. We proved in Sect. 4 that if the tumor cells’ invasion of
the healthy cells is small, then the malignant tumor size can be eliminated from the breast
tissues because of the immune response and estrogen level seen for the tumor-free equilib-
rium point. We found that the ketogenic diet rate supports the immune response to fight
against tumor growth but cannot stop the estrogen level for the death equilibrium points.
For the co-existing positive equilibrium point, it is shown that if we have a low rate of the
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Figure 4 Bifurcation diagram of T (t) and N(t) with a mixed therapy with Allee effect

estrogen level, then the normal cells and the cancer cells are interactional stables. This oc-
curs with a robust immune system relevant to the support of ketogenic assistance and the
immune booster’s supplements. After that, we considered the existence and uniqueness
of the initial value problem in Sect. 5.

Finally, in Sect. 6, we considered the early detection case of the tumor population by
applying the weak Allee effect at a discrete-time of t. We show that the Allee coefficient
affects the normal cell population growth. We emphasized that the DNA damage caused
by the estrogen level is still low in the early stages of the malignant population. The essen-
tial point was that the ketogenic diet rate was not related to the malignant class density,
while the immune response was concerning the tumor growth and the Allee coefficient.
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