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Abstract
The aim of this paper is to study a new generalization of Lupaş-type operators whose
construction depends on a real-valued function ρ by using two sequences um and vm
of functions. We prove that the new operators provide better weighted uniform
approximation over [0,∞). In terms of weighted moduli of smoothness, we obtain
degrees of approximation associated with the function ρ . Also, we prove
Voronovskaya-type theorem, quantitative estimates for the local approximation.
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1 Introduction
The Weierstrass approximation theorem is the basis of approximation theory introduced
by Weierstrass [15], which states that each continuous function defined on [a, b] can be
approximated uniformly by some polynomial. In 1912, Bernstein [3] established a con-
structive proof of the Weierstrass theorem by using Korovkin’s theorem [9].

On the other hand, Cárdenas et al. [4] defined the Bernstein-type operators by
Bm(goρ–1)oρ and also presented a better degree of approximation depending on ρ . This
type of approximation operators generalizes the Korovkin set from {e0, e1, e2} to {e0,ρ,ρ2}.
In 2014, Aral et al. [1] also proposed a new modification of Szász–Mirakyan type opera-
tors to investigate approximation properties of the announced operators acting on func-
tions defined on unbounded intervals [0,∞). For various other generalizations of Szász–
Mirakyan type operators, one can go through these papers [12–14] of Srivastava et al.

Very recently, for m ≥ 1, z ≥ 0, and suitable functions g defined on [0,∞), Hatice et al.
[8] introduced a new modification of Lupaş operators [11] using a suitable function ρ as
follows:

Lρ
m(g; z) = 2–mρ(z)

∞∑

j=0

(mρ(z))j

2jj!
(
goρ–1)

(
j

m

)
, (1.1)

where ρ satisfies following properties:
(ρ1) ρ is a continuously differentiable function on [0,∞),
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(ρ2) ρ(0) = 0 and infz∈[0,∞) ρ
′(z) ≥ 1, and (mρ(z))j is the rising factorial defined as follows:

(
mρ(z)

)
0 = 1,

(
mρ(z)

)
j =

(
mρ(z)

)(
mρ(z) + 1

)(
mρ(z) + 2

) · · · (mρ(z) + j – 1
)
, j ≥ 0.

If we put ρ(z) = z in (1.1), then it reduces to the classical Lupaş operators defined in [11].
Very recently, a new construction of Szász–Mirakjan operators was given by Aral et al.

[2] by using ρ and two sequences of functions αm, βm defined on a subinterval of [0,∞):

S̃ρ
m(g; z) = e–αm(z)

∞∑

j=0

(βm(z))j

j!
(
goρ–1)

(
j

m

)
. (1.2)

Inspired by the idea used by Aral et al. in [2], in this paper we define a new construction
of Lupaş operator (1.1) which depends on αm(z) and βm(z), where αm(z) and βm(z) are
sequences of functions defined on Ẽ ⊂ [0,∞).

The paper is organized as follows. In Sect. 2, the construction of the announced op-
erator is presented and its moments and central moments are calculated. In Sect. 3, we
study convergence properties by using weighted space. In Sect. 4, we obtain the rate of
convergence of new constructed operators associated with the weighted modulus of con-
tinuity. In Sect. 5, we prove Voronovskaya-type asymptotic formula. Finally, in Sect. 6, we
give some approximation results related to K-functional, also we define a Lipschitz-type
functions.

2 The construction of Lupaş-type operators
Let g be a continuous functions on [0,∞) and Ẽ ⊂ [0,∞). For given m0 ∈ N, define N1 =
{m ∈N : m ≥ m0}.

Let αm,βm : Ẽ →R such that

βm(z) – αm(z) ≥ 0 for any z ∈ Ẽ and m ∈N1, (2.1)

where αm, βm are positive functions defined on Ẽ.
Then we consider the new operators in the following form:

Lρ
m(g; z) = 2–αm(z)

∞∑

j=0

(βm(z))j

2jj!
(
goρ–1)

(
j

m

)
, (2.2)

where ρ is a function which satisfies the conditions (ρ1) and (ρ2).
We will impose some assumptions on these operators, to show the sequence of operators

(2.2) is an approximation process.
We suppose that, for z ∈ Ẽ,

Lρ
m(1; z) = 1 + um(z),
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where um : Ẽ → R. From (2.2), we obtain

Lρ
m(1; z) = 2–αm(z)

∞∑

j=0

(βn(z))j

2jj!

= 2βm(z)–αm(z).

Thus, we get

2βm(z)–αm(z) = 1 + um(z). (2.3)

Secondly, we assume that

Lρ
m(ρ; z) = ρ(z) + vm(z), (2.4)

where vm : Ẽ →R. From (2.2), we infer

Lρ
m(ρ; z) = 2–αm(z)

∞∑

j=0

(βm(z))j

2jj!
j

m

=
βm(z)

m
2βm(z)–αm(z). (2.5)

From (2.4) and (2.5), we obtain

βm(z)
m

2βm(z)–αm(z) = ρ(z) + vm(z). (2.6)

Now combining (2.3) and (2.6), we get

βm(z) = m
ρ(z) + vm(z)

1 + um(z)
, (2.7)

and from relation (2.3), we can write

βm(z) – αm(z) = ln2
(
1 + um(z)

)

and

αm(z) = m
ρ(z) + vm(z)

1 + um(z)
– ln2

(
1 + um(z)

)
, (2.8)

where um(z) > –1 for any z ∈ Ẽ and m ∈N1.
Therefore, as a consequence, operators (2.2) become

Lρ
m(g; z) = 2–m ρ(z)+vm(z)

1+um(z)
(
1 + um(z)

) ∞∑

j=0

(m ρ(z)+vm(z)
1+um(z) )j

2jj!
(
goρ–1)

(
j

m

)
(2.9)

for m ∈N1 and for any z ∈ Ẽ.
We can recover some linear positive operators which are already in the literature. From

operators (2.9) and for the particular choices of the functions um, vm, and ρ :
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(i) If we take um(z) = vm(z) = 0, operators (2.9) turn out to be operators (1.1).
(ii) If we take um(z) = vm(z) = 0, ρ(z) = z, operators (2.9) turn out to be the classical

Lupaş operators given in [11] by

Lm(g; z) = 2–mz
∞∑

j=0

(mz)j

2jj!
g
(

j
m

)
.

Now, in order to obtain weighted approximation processes, we assume that the following
inequalities hold:

∣∣um(z)
∣∣ ≤ um and

∣∣vm(z)
∣∣ ≤ vm, z ∈ Ẽ (2.10)

such that

lim
m→∞ um = lim

m→∞ vm = 0. (2.11)

From (2.10) and (2.11) it is clear that (Lρ
m(g; z))m≥m0 is an approximation process on Ẽ ⊂

[0,∞).
Now, we give some lemmas which are required to prove our main results.

Lemma 2.1 For the operators Lρ
m(g; z) and for all z ∈ Ẽ, we have:

1. Lρ
m(1; z) = 1 + um(z),

2. Lρ
m(ρ; z) = ρ(z) + vm(z),

3. Lρ
m(ρ2; z) = (ρ(z)+vm(z))2

1+um(z) + 2
m (ρ(z) + vm(z)),

4. Lρ
m(ρ3; z) = (ρ(z)+vm(z))3

(1+um(z))2 + 6(ρ(z)+vm(z))2

m(1+um(z)) + 6
m2 (ρ(z) + vm(z)),

5. Lρ
m(ρ4; z) = (ρ(z)+vm(z))4

(1+um(z))3 + 12(ρ(z)+vm(z))3

m(1+um(z))2 + 36(ρ(z)+vm(z))2

m2(1+um(z)) + 26
m3 (ρ(z) + vm(z)).

Lemma 2.2 By using Lemma 2.1 and by the linearity of operators Lρ
m, we can acquire the

central moments as follows:
1. Lρ

m(ρ(ζ ) – ρ(z); z) = vm(z) – ρ(z)um(z),
2. Lρ

m((ρ(ζ ) – ρ(u))2; u) = (ρ(z)+vm(z))2

1+um(z) + 2(ρ(z)+vm(z))(1–mρ(z))
m + (1 + um(z))ρ2(z),

3. Lρ
m((ρ(ζ ) – ρ(u))3; u) =

(ρ(z)+vm(z))3

(1+um(z))2 + 3(ρ(z)+vm(z))2(2–nρ(z))
m(1+um(z)) + (ρ(z)+vm(z))(6–6nρ(z)+3m2ρ2(z))

m2 – (1 + um(z))ρ3(z),

4. Lρ
m((ρ(ζ ) – ρ(u))4; u) = (ρ(z)+vm(z))4

(1+um(z))3 + (ρ(z)+vm(z))3(12–4nρ(z))
m(1+um(z))2 +

(ρ(z)+vm(z))2(36–24nρ(z)+6m2ρ2(z))
m2(1+um(z)) + (ρ(z)+vm(z))(26–24nρ(z)+12m2ρ2(z)–4m3ρ3(z))

m3 + (1 + um(z))ρ4(z).

Remark 2.3 If we put um(z) = vm(z) = 0 in Lemma 2.1 and Lemma 2.2, we have the same
result proved in Lemma 2 and Lemma 3 of [8].

3 Direct result in weighted space
In this section, by using weighted space, we discuss some convergence properties for the
operators Lρ

m.
Let �(z) = 1 + ρ2(z) be a weight function and B�[0,∞) be the weighted spaces defined

as follows:

B�[0,∞) =
{

g : [0,∞) →R|∣∣g(z)
∣∣ ≤Kf �(z), z ≥ 0

}
,
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where Kg is a constant and B�[0,∞) is a normed linear space equipped with the norm

‖g‖� = sup
z∈[0,∞)

|g(z)|
�(z)

.

Also, the subspaces C�[0,∞), U�[0,∞) and U�[0,∞) of B�[0,∞) are defined as

C�[0,∞) =
{

g ∈ B�[0,∞) : g is continuous on [0,∞)
}

,

C∗
�[0,∞) =

{
g ∈ C�[0,∞) : lim

z→∞
g(z)
�(z)

= Kg = Constant
}

,

U�[0,∞) =
{

g ∈ C�[0,∞) :
g(z)
�(z)

is uniformly continuous on [0,∞)
}

.

It is obvious that C∗
�[0,∞) ⊂ U�[0,∞) ⊂ C�[0,∞) ⊂ B�[0,∞).

In [6], Gadjiev proved the following results for the weighted Korovkin-type theorems.

Lemma 3.1 ([6]) For m ≥ 1, Gm : B�[0,∞) → B�[0,∞) satisfying

∣∣Gm(�; z)
∣∣ ≤Km�(z), z ≥ 0,

holds, where Km > 0 is a constant depending on m.

Theorem 3.2 ([6]) For m ≥ 1, Gm : B�[0,∞) → B�[0,∞) satisfies

lim
m→∞

∥∥Gmρ i – ρ i∥∥
�

= 0, i = 0, 1, 2.

Then, for any function g ∈ C∗
�[0,∞), we obtain

lim
m→∞

∥∥Gm(g) – g
∥∥

�
= 0.

Therefore, our result follows.

Theorem 3.3 For each g ∈ C∗
�[0,∞), the following relation

lim
m→∞ sup

z∈Ẽ

|Lρ
m(g; z) – g(z)|

�(z)
= 0

holds, provided that conditions (2.10) and (2.11) are fulfilled.

Proof Let g ∈ C∗
�[0,∞). Then |g(z)| ≤ Hg�(z), z ≥ 0. Lρ

m being linear and positive, it is
monotone. Thus

Lρ
m(�; z) = 1 + um(z) +

(ρ(z) + vm(z))2

1 + um(z)
+

2
m

(
ρ(z) + vm(z)

)

implies that the operator Lρ
m maps the space C�[0,∞) into B�[0,∞).

By (2.10) and Lemma 2.1, we have

lim
m→∞ sup

z∈Ẽ

|Lρ
m(ρr) – ρr|

�(z)
= 0, r = 0, 1, 2. (3.1)
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As we know each Lρ
m(g; z) is defined on Ẽ. Now, by considering the following sequence of

operators, we extend it on [0,∞):

Am =

⎧
⎨

⎩
Lρ

m(g; z), if z ∈ Ẽ,

g(z), if z ∈ [0,∞) \ Ẽ.

Obviously,

∥∥Am(g) – g
∥∥

�
= sup

z∈Ẽ

Lρ
m(g; z) – g(z)

�(z)
. (3.2)

By applying 3.2 to the operators Gm = Am the claim will be proved.
Hence, we have to prove that

∥∥Am
(
ρr) – ρr∥∥

�
→ 0 as m → ∞, r = 0, 1, 2.

Since

∥∥Am
(
ρr) – ρr∥∥

�
= sup

z∈Ẽ

|Lρ
m(ρr)(z) – ρr(z)|

�(z)
,

by using (3.1), we have

lim
m→∞

∥∥Am(g) – g
∥∥

�
= 0.

By using (3.2), we get the desired result. �

4 Rate of convergence
In this section, by using weighted modulus of continuity ωρ(g; δ), we determine the rate of
convergence for Lρ

m which was recently considered by Holhoş [7] as follows:

ωρ(g; δ) = sup
z,ζ∈[0,∞),|ρ(ζ )–ρ(z)|≤δ

|g(ζ ) – g(z)|
�(ζ ) + �(z)

, δ > 0, (4.1)

where g ∈ C�[0,∞), with the following properties:
(i) ωρ(g; 0) = 0,

(ii) ωρ(g; δ) ≥ 0, δ ≥ 0 for g ∈ C�[0,∞),
(iii) limδ→0 ωρ(g; δ) = 0 for each g ∈ U�[0,∞).

Theorem 4.1 ([7]) Let us consider a sequence of positive linear operators Gm : C�[0,∞) →
B�[0,∞) with

∥∥Gm
(
ρ0) – ρ0∥∥

�0 = am, (4.2)
∥∥Gm(ρ) – ρ

∥∥
�

1
2

= bm, (4.3)
∥∥Gm

(
ρ2) – ρ2∥∥

�
= cm, (4.4)

∥∥Gm
(
ρ3) – ρ3∥∥

�
3
2

= dm, (4.5)
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where the sequences am, bm, cm, and dm converge to zero as m → ∞. Then

∥∥Gm(g) – g
∥∥

�
3
2

≤ (7 + 4am + 2cm)ωρ(g; δm) + ‖g‖�am (4.6)

for all g ∈ C�[0,∞), where

δm = 2
√

(am + 2bm + cm)(1 + am) + am + 3bm + 3cm + dm.

Theorem 4.2 Let us have, for each g ∈ C�[0,∞),

∥∥Lρ
m(g) – g

∥∥
�

3
2

≤
(

7 + 4um + 2
(

v2
m + 2vm +

2
m

+
2vm

m

))
ωρ(g; δm)

+ ‖g‖�um,

where

δm = 2

√(
um + 4vm + v2

m +
2
m

+
2vm

m

)
(1 + um)

+ v3
m + 6v2

m + 12vm +
6v2

m
m

+
18vm

m
+

6vm

m2 +
12
m

+
6

m2 .

Proof If we calculate the sequences (am), (bm), (cm), and (dm), then by using Lemma 2.1,
clearly we have

∥∥Lρ
m
(
ρ0) – ρ0∥∥

�0 = sup
z∈Ẽ

um(z) ≤ um = am,

∥∥Lρ
m(ρ) – ρ

∥∥
�

1
2

= sup
z∈Ẽ

vm(z)√
1 + ρ2

≤ vm = bm,

and

∥∥Lρ
m
(
ρ2) – ρ2∥∥

�
≤ v2

m + 2vn +
2
m

+
2vm

m
= cm.

Finally,

∥∥Lρ
m
(
ρ3) – ρ3∥∥

�
3
2

≤ v3
m + 3v2

m + 3vm +
6v2

m
m

+
12vm

m
+

6
m

+
6

m2 +
6vm

m2 = dm.

Thus conditions (4.1)–(4.5) are satisfied. Now, by Theorem 4.1, we obtain the desired re-
sult. �

Remark 4.3 From property (iii) of ωρ(g; δ) and Theorem 4.2, we have

lim
m→∞

∥∥Lρ
m(g) – g

∥∥
�

3
2

= 0 for g ∈ U�[0,∞).
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5 Voronovskaya-type theorem
In this section, we establish Voronovskaya-type result for Lρ

m.

Theorem 5.1 Let g ∈ C�[0,∞), z ∈ [0,∞) and suppose that (goρ–1)′ and (goρ–1)′′ exist at
ρ(z). If (goρ–1)′′ is bounded on [0,∞) and

lim
m→∞ mzm(z) = 	1, lim

m→∞ mvm(z) = 	2,

then we have

lim
m→∞ m

[
Lρ

m(g; z) – g(z)
]

= ρ(z)	1 + 	2 – ρ(z)	1
(
goρ–1)′

ρ(z) + ρ(z)
(
goρ–1)′′

ρ(z).

Proof By using the Taylor expansion of (goρ–1) at ρ(z) ∈ [0,∞), there exists a point ζ lying
between z and z, we have

g(ζ ) =
(
goρ–1)(ρ(ζ )

)

=
(
goρ–1)(ρ(z)

)
+

(
goρ–1)′(

ρ(z)
)(

ρ(ζ ) – ρ(z)
)

(5.1)

+
(goρ–1)′′(ρ(z))(ρ(ζ ) – ρ(z))2

2
+ λz(ζ )

(
ρ(ζ ) – ρ(z)

)2,

where

λz(ζ ) =
(goρ–1)′′(ρ(ζ )) – (goρ–1)′′(ρ(z))

2
. (5.2)

Therefore, the assumption on g and (5.2) ensure that

∣∣λz(ζ )
∣∣ ≤K for all ζ ∈ [0,∞)

and limζ→z λz(ζ ) = 0. By applying operators (2.9) to (5.1), we obtain

[
Lρ

m(g; z) – g(z)
]

=
(
goρ–1)′(

ρ(z)
)
Lρ

m
((

ρ(ζ ) – ρ(z)
)
; z

)

+
(goρ–1)′′(ρ(z))Lρ

m((ρ(ζ ) – ρ(y))2; z)
2

(5.3)

+ Lρ
m
(
λz(ζ )

((
ρ(ζ ) – ρ(z)

)2; z
))

.

From Lemmas 2.1 and 2.2, we obtain

lim
m→∞ mLρ

m
((

ρ(ζ ) – ρ(z)
)
; z

)
= 	2 – ρ(z)	1 (5.4)

and

lim
m→∞ mLρ

m
((

ρ(ζ ) – ρ(z)
)2; z

)
= 2ρ(z). (5.5)
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Since from (5.2), for every ε > 0, limζ→z λz(ζ ) = 0. Let δ > 0 such that |λz(ζ )| < ε for every
ζ ≥ 0. From the Cauchy–Schwarz inequality, we get immediately

lim
m→∞ mLρ

m
(∣∣λz(ζ )

∣∣(ρ(ζ ) – ρ(z)
)2; z

) ≤ ε lim
m→∞ mLρ

m
((

ρ(ζ ) – ρ(z)
)2; z

)

+
L
δ2 lim

m→∞ Lρ
m
((

ρ(ζ ) – ρ(z)
)4; z

)
.

Since

lim
m→∞ mLρ

m
((

ρ(ζ ) – ρ(z)
)4; z

)
= 0, (5.6)

we obtain

lim
m→∞ mLρ

m
(∣∣λz(ζ )

∣∣(ρ(ζ ) – ρ(z)
)2; z

)
= 0. (5.7)

Thus, taking into account equations (5.4), (5.5), and (5.7) to equation (5.3), this proves the
theorem. �

6 Local and global approximation
In order to prove local approximation theorems for the operators, let CB[0,∞) be the space
of real-valued continuous and bounded functions g with the norm ‖ · ‖ given by

‖g‖ = sup
0≤z<∞

∣∣g(z)
∣∣.

We begin by considering the K-functional

K2(g, δ) = inf
r∈W 2

{‖g – r‖ + δ
∥∥g ′′∥∥}

,

where δ > 0 and W 2 = {s ∈ CB[0,∞) : r′, r′′ ∈ CB[0,∞)}. Then, in view of the known result
[5], there exists an absolute constant D > 0 such that

L(g, δ) ≤Dω2(g,
√

δ). (6.1)

For g ∈ CB[0,∞), the second order modulus of smoothness is defined as

ω2(g,
√

δ) = sup
0<h≤√

δ

sup
z∈[0,∞)

∣∣g(z + 2h) – 2g(z + h) + g(z)
∣∣,

and the usual modulus of continuity is defined as

ω(g, δ) = sup
0<h≤δ

sup
z∈[0,∞)

∣∣g(z + h) – g(z)
∣∣.

Theorem 6.1 There exists an absolute constant D > 0 such that

∣∣Lρ
m(g; z) – g(z)

∣∣ ≤DK
(
g, δm(z)

)
,
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where g ∈ CB[0,∞) and

δm(z) =
{

(ρ(z) + vm(z))2

1 + um(z)
+

2(ρ(z) + vm(z))(1 – mρ(z))
m

+
(
1 + um(z)

)
ρ2(z)

}
.

Proof Let r ∈ W 2 and z, ζ ∈ [0,∞). By using Taylor’s formula we have

r(ζ ) = r(z) +
(
roρ–1)′(

ρ(z)
)(

ρ(ζ ) – ρ(z)
)

+
∫ ρ(ζ )

ρ(z)

(
ρ(ζ ) – v

)(
roρ–1)′′(v) dv. (6.2)

By using the equality

(
roρ–1)′′(

ρ(z)
)

=
r′′(z)

(ρ ′(z))2 – r′′(z)
ρ ′′(z)

(ρ ′(z))3 , (6.3)

putting v = ρ(z) in the last term in equality (6.2), we get

∫ ρ(ζ )

ρ(z)

(
ρ(ζ ) – v

)(
roρ–1)′′(v) dv =

∫ ζ

z

(
ρ(ζ ) – ρ(z)

)[ r′′(z)ρ ′(z) – r′(z)ρ ′′(v)
(ρ ′(z))2

]
dz

=
∫ ρ(ζ )

ρ(z)

(
ρ(ζ ) – v

) r′′(ρ–1(v))
(ρ ′(ρ–1(v))2 dv (6.4)

–
∫ ρ(ζ )

ρ(z)

(
ρ(ζ ) – v

) r′(ρ–1(v))ρ ′′(ρ–1(v))
(ρ ′(ρ–1(v))3 dv.

By applying S∗μ,λ
m,ρ to (6.2) and also by using Lemma 2.1 and (6.4), we deduce

Lρ
m(r; z) = r(z) + Lρ

m

(∫ ρ(ζ )

ρ(z)

(
ρ(ζ ) – v

) r′′(ρ–1(v))
(ρ ′(ρ–1(v))2 dv; z

)

– Lρ
m

(∫ ρ(ζ )

ρ(z)

(
ρ(ζ ) – v

) r′(ρ–1(v))ρ ′′(ρ–1(v))
(ρ ′(ρ–1(v))3 dv; z

)
.

By using conditions (ρ1) and (ρ2), we get

∣∣Lρ
m(r; z) – r(z)

∣∣ ≤Mρ
m,2(z)

(∥∥r′′∥∥ +
∥∥r′∥∥∥∥ρ ′′∥∥)

,

where

Mρ
m,2(z) = Lρ

m
((

ρ(ζ ) – ρ(z)
)2; z

)
.

For all g ∈ CB[0,∞), we have

∣∣Lρ
m(r; z)

∣∣ ≤ ∥∥goρ–1∥∥(
1 + um(z)

)

≤ ‖g‖Lρ
m(1; z) = ‖g‖. (6.5)

Hence we have

∣∣Lρ
m(g; z) – g(z)

∣∣ ≤ ∣∣Lρ
m(g – r; z)

∣∣ +
∣∣Lρ

m(r; z) – r(z)
∣∣ +

∣∣r(z) – g(z)
∣∣
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≤ 2‖g – r‖

+
{

(ρ(z) + vm(z))2

1 + um(z)
+

2(ρ(z) + vm(z))(1 – mρ(z))
m

+
(
1 + um(z)

)
ρ2(z)

}(∥∥r′′∥∥ +
∥∥r′∥∥∥∥ρ ′′∥∥)

.

If we choose D = max{2,‖ρ ′′‖}, then

∣∣Lρ
m(g; z) – g(z)

∣∣ ≤ D
(

2‖g – r‖ +
{

(ρ(z) + vm(z))2

1 + um(z)

+
2(ρ(z) + vm(z))(1 – mρ(z))

m
+

(
1 + um(z)

)
ρ2(z)

}∥∥r′′∥∥
W 2

)
.

Taking infimum over all r ∈ W 2, we obtain

∣∣Lρ
m(g; z) – g(z)

∣∣ ≤DK
(
g, δm(z)

)
. �

Let 0 < α ≤ 1, ρ be a function with conditions (ρ1), (ρ2) and LipM(ρ(y);α), H ≥ 0 satis-
fying

∣∣g(ξ ) – g(z)
∣∣ ≤H

∣∣ρ(ξ ) – ρ(z)
∣∣α , y, ξ ≥ 0.

Moreover, Y ⊂ [0,∞) is a bounded subset and the function g ∈ LipM(ρ(z);α), 0 < α ≤ 1
on Y if

∣∣g(ζ ) – g(z)
∣∣ ≤Hα,g

∣∣ρ(ζ ) – ρ(z)
∣∣α , z ∈ Y and ζ ≥ 0,

where Hα,g is a constant.

Theorem 6.2 Let ρ be a function satisfying conditions (ρ1), (ρ2). Then, for any g ∈
LipH(ρ(z);α), 0 < α ≤ 1 and for every z ∈ (0,∞), m ∈ N, we have

∣∣Lρ
m(g; z) – g(z)

∣∣ ≤H
(
δm(z)

) α
2 , (6.6)

where

δm(z) =
{

(ρ(z) + vm(z))2

1 + zm(z)
+

2(ρ(z) + vm(z))(1 – mρ(z))
m

+
(
1 + zm(z)

)
ρ2(z)

}
.

Proof Assume that α = 1. Then, for g ∈ LipM(α; 1) and z ∈ (0,∞), we have

∣∣Lρ
m(g; z) – g(z)

∣∣ ≤ Lρ
m
(∣∣g(ζ ) – g(z)

∣∣; z
)

≤ HLρ
m
(∣∣ρ(ζ ) – g(z)

∣∣; z
)
.

By applying the Cauchy–Schwarz inequality, we get

∣∣Lρ
m(g; z) – g(z)

∣∣ ≤ H
[
Lρ

m
((

ρ(ζ ) – ρ(z)
)2; z

)] 1
2

≤ H
√

δm(z).
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Let us assume that α ∈ (0, 1). Then, for g ∈ LipH(α; 1) and z ∈ (0,∞), we have

∣∣Lρ
m(g; z) – g(z)

∣∣ ≤ Lρ
m
(∣∣g(ζ ) – g(z)

∣∣; z
)

≤ HLρ
m
(∣∣ρ(ζ ) – g(z)

∣∣α ; z
)
.

By taking p = 1
α

and q = 1
1–α

, g ∈ LipH(ρ(z);α), and applying Hölder’s inequality, we have

∣∣Lρ
m(g; z) – g(z)

∣∣ ≤ H
[
Lρ

m(
∣∣(ρ(ζ ) – ρ(z)

∣∣; z
)]α .

Finally, by applying the Cauchy–Schwarz inequality, we get

∣∣Lρ
m(g; z) – g(z)

∣∣ ≤H
(
δm(z)

) α
2 . �

Theorem 6.3 Let ρ be a function satisfying conditions (ρ1), (ρ2) andY be a bounded subset
of [0,∞). Then, for any g ∈ LipH(ρ(z);α), 0 < α ≤ 1, on Y α ∈ (0, 1], we have

∣∣Lρ
m(g; z) – g(z)

∣∣ ≤Hα,g
{(

δm(z)
) α

2 + 2
[
ρ ′(z)

]αdα(z,Y)
}

, z ∈ [0,∞), m ∈ N,

where d(z,Y) = inf{‖z – x‖ : x ∈ Y} and Hα,g is a constant depending on α and g , and

δm(z) =
{

1
(m + 1)2 ρ2(z) +

2m – 1
(m + 1)2 ρ(z) +

1
3(m + 1)2

}
.

Proof Let Y be the closure of Y in [0,∞). Then there exists a point z0 ∈ Y such that
d(z,Y) = |z – z0|.

Using the monotonicity of Lρ
m and the hypothesis of g , we obtain

∣∣Lρ
m(g; z) – g(z)

∣∣ ≤ Lρ
m
(∣∣g(ζ ) – g(z0)

∣∣; z
)

+ Lρ
m
(∣∣g(z) – g(z0)

∣∣; z
)

≤ Hα,g
{

Lρ
m
(∣∣ρ(ζ ) – ρ(z)

∣∣α ; z
)

+ 2
∣∣ρ(z) – ρ(z0)

∣∣α}
.

By using Hölder’s inequality for p = 2
α

and q = 2
2–α

, as well as the fact |ρ(z) – ρ(z0)| =
ρ ′(z)|ρ(z) – ρ(z0)| in the last inequality, we get

∣∣Lρ
m(g; z) – g(z)

∣∣ ≤Hα,g
{[

Lρ
m
((

ρ(ζ ) – ρ(z)
)2; z

)] 1
2 + 2

[
ρ ′(z)

∣∣ρ(z) – ρ(z0)
∣∣]α}

.

Hence, by Lemma 2.2 we get the proof. �

Now, we recall the local approximation given in [10] for g ∈ CB[0,∞) as follows:

ω̃ρ
α(g; z) = sup

ζ �=z,ζ∈(0,∞)

|g(ζ ) – g(z)|
|ζ – z|α , z ∈ [0,∞) and α ∈ (0, 1]. (6.7)

Then we get the next result.

Theorem 6.4 Let g ∈ CB[0,∞) and α ∈ (0, 1]. Then, for all z ∈ [0,∞), we have

∣∣Lρ
m(g; z) – g(z)

∣∣ ≤ ω̃ρ
α(g; z)

(
δm(z)

) α
2 ,
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where

δm(z) =
{

(ρ(z) + vm(z))2

1 + zm(z)
+

2(ρ(z) + vm(z))(1 – mρ(z))
m

+
(
1 + zm(z)

)
ρ2(z)

}
.

Proof We know that

∣∣Lρ
m(g; z) – g(z)

∣∣ ≤ Lρ
m
(∣∣g(ζ ) – g(z)

∣∣; z
)
.

From equation (6.7), we have

∣∣Lρ
m(g; z) – g(z)

∣∣ ≤ ω̃ρ
α(g; z)Lρ

m
(∣∣ρ(ζ ) – ρ(z)

∣∣α ; z
)
.

By applying Hölder’s inequality with p = 2
α

and q = 2
2–α

, we have

∣∣Lρ
m(g; z) – g(z)

∣∣ ≤ ω̃ρ
α(g; z)

[
Lρ

m,q
((

ρ(ζ ) – ρ(z)
)2; z

)] α
2

≤ ω̃ρ
α(g; z)

(
δm(z)

) α
2 ,

which proves the desired result. �

Conclusion. Here, a new construction of the generalized Lupaş operators is constructed.
We have investigated convergence properties, order of approximation, Voronovskaja-type
results, and quantitative estimates for the local approximation. The constructed operators
have better flexibility and rate of convergence which depend on the selection of the func-
tion ρ and the sequences um, vm.
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