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Abstract
We consider the existence and multiplicity of positive solutions of the Dirichlet
problem for the quasilinear difference equation

{
–∇[φ(�u(t))] = λa(t,u(t)) +μb(t,u(t)), t ∈ T,

u(1) = u(N) = 0,

where λ,μ ≥ 0, T = {2, . . . ,N – 1} with N > 3, φ(s) = s/
√
1 – s2. The function

f := λa(t, s) +μb(t, s) is either sublinear, or superlinear, or sub-superlinear near s = 0.
Applying the topological method, we prove the existence of either one or two, or
three positive solutions.
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1 Introduction
Let Z denote the integer set for N ∈ Z with N > 3, T := {2, . . . , N – 1}, T̂ := {1, . . . , N}. In
this paper, we are concerned with existence and multiplicity of positive solutions for the
quasilinear difference boundary value problem⎧⎨

⎩–∇[φ(�u(t))] = λa(t, u(t)) + μb(t, u(t)), t ∈ T,

u(1) = u(N) = 0,
(1.1)

where λ,μ ≥ 0, �u(t) = u(t + 1) – u(t) is the forward difference operator, ∇u(t) = u(t) –
u(t – 1) is the backward difference operator, φ : (–1, 1) → R is given by φ(s) = s/

√
1 – s2,

a, b : T×R →R are continuous functions.
Recently, Ma, Wei, and Chen [12] studied the existence and multiplicity of positive so-

lutions for the quasilinear two-point boundary value problem⎧⎨
⎩

–( u′√
1–|u′|2 )′ = λuq + μup, t ∈ [0, L),

u′(0) = u(L) = 0.
(1.2)
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Here, 0 < q < 1 < p. They showed that there exist a constant μ∗ > 0 and a function �∗(·) > 0
such that, for every μ > μ∗ and all λ ∈ (0,�∗(μ)), (1.2) has at least three positive solutions.
We note that (1.2) is the special case of a one-dimensional version of the Dirichlet problem
associated with the Minkowski-curvature equation

⎧⎨
⎩

– div( ∇u√
1–|∇u|2 ) = λf (x, u) + μg(x, u), in �,

u = 0, on ∂�,
(1.3)

where � ⊂ R
N . As it is well known, (1.3) plays an important role in differential geometry

and in the theory of relativity. In 2012, Corsato et al. [6] studied the multiplicity of positive
solutions of (1.3) with N = 1. For (1.2), [6, Theorem 2.4] is reduced to the following.

Theorem A Let 0 < q < 1 < p. Then there exist μ∗ > 0 and a function λ(·) : (μ∗, +∞) →
(0,∞) such that, for all μ > μ∗ and all λ ∈ (0,λ(μ)), problem (1.2) has at least three positive
solutions.

Theorem A has been extended by Corsato et al. [7] to the problem in general domain �,
see [7, Theorem 3.1(iv)].

The existence of solutions for quasilinear difference equations subject to diverse bound-
ary conditions has been investigated by several authors, we refer the reader to [1–
5, 11, 13, 14] and the references therein. However, very little is known about the multiplic-
ity of positive solutions for the discrete analog of Dirichlet problem (1.3). Motivated by the
interesting studies above and the references therein, we have a natural question whether
or not the similar results are still true for discrete problem (1.1). As we all know, some
basic ideas from differential calculus are not necessarily available in the field of difference
equations, such as mean value theorem and Poincaré inequality. Thus, new challenges are
faced and innovation is required.

The rest paper is arranged as follows: in Sect. 2, we state some notations and preliminary
results. Finally, in Sect. 3, we state and prove our main results.

2 Preliminary results
For u = (u(1), . . . , u(N)) ∈ R

N , set |u|∞ = max1≤t≤N |u(t)|, If a, b ∈ R
N , we write a ≤ b if

a(t) ≤ b(t) for every 1 ≤ t ≤ N . If a ≤ b and there exists t0 ∈ {1, . . . , N} such that a(t0) <
b(t0), then we write a < b. If a(t) < b(t) for every 1 ≤ t ≤ N , we write a  b.

For any u = (u(1), . . . , u(N)) ∈R
N , we define

�u =
(�u(1), . . . ,�u(N – 1)

) ∈R
N–1,

where �u(t) is defined by

�u(t) = u(t + 1) – u(t), 1 ≤ t ≤ N – 1.

If |�u|∞ < 1, then we define

∇[
φ(�u)

]
=

(∇[
φ
(�u(2)

)]
, . . . ,∇[

φ
(�u(N – 1)

)]) ∈ R
N–2,
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where ∇[φ(�u(t))] is defined by

∇[
φ
(�u(t)

)]
= φ

(�u(t)
)

– φ
(�u(t – 1)

)
, 2 ≤ t ≤ N – 2.

For any m, n ∈ R, let B = {m + 1, . . . , n – 1}, ∂B = {m, n}, then B̂ := {m, . . . , n}.
Let

Y =
{

u ∈R
N : u(1) = u(N) = 0

}

with the norm |u|∞ := max1≤j≤N |u(j)|.
A solution of problem (1.1) is a vector u ∈ R

N satisfying (1.1) and such that |�u|∞ < 1.
A nontrivial solution of problem (1.1) is a solution of (1.1) such that u �= 0. A positive
solution of problem (1.1) is a solution of (1.1) such that u > 0. Further, it is said to be
strictly positive solution if u � 0.

Lemma 2.1 Suppose that v1, v2 ∈ R
N satisfy v1 ≤ v2. Let ui ∈ R

N be such that |�ui|∞ < 1
and

–∇[
φ
(�ui(t)

)]
= vi(t), i = 1, 2, t ∈ T.

Then

u2(t) ≤ u1(t) – min
t∈{1,N}

(
u1(t) – u2(t)

)
.

Proof Fix v ∈R
N and suppose that u ∈R

N is such that |�u|∞ < 1 and

–∇[
φ
(�u(t)

)]
= v(t), t ∈ T. (2.1)

Let us set

Cu =
{

z ∈ R
N : |�z|∞ ≤ 1, t ∈ T and z(1) = u(1), z(N) = u(N)

}

and define the functional Tv : Cu →R by

Tv(w) =
N–1∑
t=2

√
1 –

∣∣w(t)
∣∣2 +

N–1∑
t=2

v(t)w(t)

for all w ∈ Cu. We claim that u maximizes Tv in Cu. Indeed, pick any z ∈ Cu: multiplying
(2.1) by u – z and summing as t goes from 2 to N – 1, we get

N–1∑
t=2

–∇[
φ
(�u(t)

)](
u(t) – z(t)

)
=

N–1∑
t=2

v(t)
(
u(t) – z(t)

)
,

N–1∑
t=2

φ
(�u(t)

)�(
u(t) – z(t)

)
=

N–1∑
t=2

v(t)
(
u(t) – z(t)

)
. (2.2)
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By the concavity of the function y �→ √
1 – y2, we obtain

N–1∑
t=2

√
1 – |�z|2 –

N–1∑
t=2

√
1 – |�u|2 ≤

N–1∑
t=2

φ
(�u(t)

)�(
u(t) – z(t)

)
. (2.3)

Combining (2.2) and (2.3) yields Tv(z) ≤ Tv(u), i.e., u is a maximizer of Tv in Cu. Accord-
ingly, we have that u1 and u2 are maximizers of Tv1 in Cu1 and of Tv2 in Cu2 , respectively.

Let C = mint∈{1,N}(u1(t) – u2(t)), choose ε > 0 and define ũ1 = u1 – C + ε and �+ = {t ∈
T : u2(t) > ũ1(t)}. Assume that �+ is nonempty. Then, by uniqueness of the solution of this
variational problem, Tv2 (ũ1) ≤ Tv2 (u2), and hence

N–1∑
t=2

√
1 – |�ũ1|2 ≤

N–1∑
t=2

(√
1 – |�u2|2 + (ũ1 – u2)v2

)

=
N–1∑
t=2

(√
1 – |�u2|2 + (ũ1 – u2)v1 + (ũ1 – u2)(v2 – v1)

)
.

Thus, since ũ1 < u2 on �+ by construction and v1 ≤ v2, t ∈ T, this becomes

N–1∑
t=2

(√
1 – |�ũ1|2 – ũ1v1

) ≤
N–1∑
t=2

(√
1 – |�u2|2 – u2v1

)
,

which contradicts the maximality of Tv1 (ũ1). Hence �+ is empty, and since ε > 0 was ar-
bitrary, the result follows. �

Lemma 2.2 (Difference mean value theorem, see [10]) Let u(t) be defined on {a, . . . , b},
then there exists c ∈ {a + 1, . . . , b – 1} such that one of the following holds:

(i) �u(c) ≤ u(a)–u(b)
b–a ≤ �u(c – 1);

(ii) �u(c) ≥ u(a)–u(b)
b–a ≥ �u(c – 1).

Lemma 2.3 Suppose that v ∈ R
N , and let u be a solution of

⎧⎨
⎩–∇[φ(�u(t))] = v(t), t ∈ T,

u(1) = u(N) = 0.
(2.4)

Then, for any given � > 0, there exist constants δ ∈ (0, 1) and c such that, for every |v|∞ ≤ �,
the following estimates hold:

|�u|∞ < 1 – δ, |u|∞ ≤ c|v|∞.

Proof By Lemma 2.2, let τ be the maximum point of u(t), then �u(τ ) ≤ u(N)–u(1)
N–1 = 0 ≤

u(τ – 1). Summing both sides of (2.4) from t + 1 to τ and τ – 1, respectively, we have

�u(t) ≤ φ–1

(
τ∑

s=t+1

v(s)

)
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and

�u(t) ≥ φ–1

(
τ–1∑

s=t+1

v(s)

)
.

Since φ–1 : (–∞,∞) → (–1, 1) is given by φ–1(s) = s/
√

1 + s2, φ–1 is increasing on (–∞,∞)
and it is an odd function, thus

�u(t) ≤ φ–1

(
τ∑

s=t+1

v(s)

)
≤ φ–1

(∣∣∣∣∣
τ∑

s=t+1

v(s)

∣∣∣∣∣
)

≤ φ–1

(
τ∑

s=t+1

∣∣v(s)
∣∣)

and

�u(t) ≥ φ–1

(
τ–1∑

s=t+1

v(s)

)
= –φ–1

(
–

τ–1∑
s=t+1

v(s)

)

≥ –φ–1

(∣∣∣∣∣
τ–1∑

s=t+1

v(s)

∣∣∣∣∣
)

≥ –φ–1

(
τ∑

s=t+1

∣∣v(s)
∣∣).

Since |v|∞ ≤ �, there exists a constant δ > 0 such that φ–1 : [0, (τ – t)�] → [0, 1 – δ], t ∈ T,
i.e., |�u|∞ < 1 – δ. Moreover, by [14, Lemma 2.2, Lemma 2.3], Dirichlet problem (2.4) is
equivalent to the problem

⎧⎨
⎩–∇[(�u(t))] = h(�u(t),�u(t – 1))v(t), t ∈ T,

u(1) = u(N) = 0
(2.5)

with

h(y, z) =

⎧⎪⎨
⎪⎩

√
1–|y|2

√
1–|z|2

[√
1–|y|2+

√
1–|z|2

]
√

1–|z|2
√

1–|y|2+1+zy
, |y| < 1, |z| < 1,

0, |y| ≥ 1, |z| ≥ 1,

and h(y, z) ≤ 2. Summing both sides of (2.5) from 1 to N , it is easy to see that there exists
a constant c such that |u|∞ ≤ c|v|∞. �

The strong maximum principle is as follows.

Lemma 2.4 Fix u ∈ Y such that either

u(t) > 0 or –∇[
φ
(�u(t)

)] ≥ 0 (2.6)

for all t ∈ T. Then, either u > 0 in T or u ≡ 0.

Proof Fix u ∈ Y satisfying (2.6) and such that u �≡ 0. From (2.6), if u(j) ≤ 0, j ∈ T, one has

–∇[
φ
(�u(t)

)] ≥ 0.
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Now, we claim that u(2) > 0. Arguing by contradiction, we assume u(2) ≤ 0. Applying (2.6)
with j = 2, we have

–∇[
φ
(�u(2)

)] ≥ 0,

so

u(3) – u(2)√
1 – (�u(2))2

≤ u(2)√
1 – (�u(1))2

.

Since u(2) ≤ 0, we obtain that

u(3) – u(2)√
1 – (�u(2))2

≤ u(2)√
1 – (�u(1))2

≤ 0,

we have u(3) ≤ u(2). Let j = 3, 4, . . . , N – 1, repeating the same computation, we get

u(N) ≤ u(N – 1) ≤ · · · ≤ u(2) ≤ 0.

Since u(N) = 0, we have u ≡ 0 and this is absurd, so our claim is proved. Moreover we can
prove u(3) > 0, . . . , u(N – 1) > 0 and, finally, in the same way, we obtain u(N) > 0. Hence,
the proof is complete. �

Lemma 2.5 Let B, B1 be bounded sets and B̂1 ⊂ B. Let v ∈R
N be such that v(t) > 0, t ∈ B1

and suppose that the solution u of (2.4) satisfies u ≥ 0 in B. Then minB̂1
u > 0.

Proof Since v(t) > 0, t ∈ B1, by the strong maximum principle, u(t) > 0, t ∈ B1. Suppose
that u(t0) = 0, t0 ∈ ∂B1 ⊂ B. Since

�u(t0) = u(t0 + 1) – u(t0) > 0, �u(t0 – 1) = u(t0) – u(t0 – 1) ≤ 0,

thus

–∇[
φ
(�u(t0)

)]
= –φ

(�u(t0)
)

+ φ
(�u(t0 – 1)

)
= –

�u(t0)√
1 – (�u(t0))2

+
�u(t0 – 1)√

1 – (�u(t0 – 1))2

≤ 0,

this is in contradiction with the strong maximum principle. �

Lemma 2.6 Let us consider the Dirichlet problem

⎧⎨
⎩–∇[φ(�u(t))] = γ up, t ∈ T,

u(1) = u(N) = 0,
(2.7)

where γ > 0 and p > 0. The following conclusions hold:
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(i) If p ∈ (0, 1), then for every γ > 0 problem (2.7) has at least one solution u satisfying
u � 0.

(ii) If p ≥ 1, then there exists γ ∗ > 0 such that, for every γ > γ ∗, problem (2.7) has at least
one solution u satisfying u � 0.

Proof If f (t, u(t)) = up, p ∈ (0, 1), applying [10, Theorem 8.4.2], when

lim
s→0

f (t, s)
s

= 0

holds, then for every γ > 0, problem (2.7) has at least one solution u satisfying u � 0. If
f (t, u(t)) = up, p ≥ 1, applying [10, Theorem 8.4.3], when

lim
s→0

f (t, s)
s

= ∞

holds, then there exists γ ∗ > 0 such that, for every γ > γ ∗, problem (2.7) has at least one
solution u satisfying u � 0. �

Let us consider the linear eigenvalue problem

⎧⎨
⎩–∇(�u(t)) = λm(t)u(t), t ∈ T,

u(1) = u(N) = 0,
(2.8)

where λ is the spectrum parameter and m(t) > 0. From [9] it follows that there exist N real
eigenvalues satisfying

0 < λ1 < λ2 < · · · < λN .

The following result follows from Rayleigh’s inequality of [8].

Lemma 2.7 Let λ1 be the smallest eigenvalue of (2.8). Then

λ1 ≤
∑N

s=1[�u(t – 1)]2∑N
s=1 m(t)u2(t)

,

where u(t) is any nontrivial real-valued function defined on T̂ with u(1) = u(N) = 0. Fur-
thermore, equality holds if and only if u(t) is an eigenfunction corresponding to λ1.

3 Existence and multiplicity results
Let us consider problem (1.1). The following assumptions will be considered:

(H) a, b : T×R →R are continuous functions;
(A1) There exist an open set T1 ⊆ T, a1 > 0, and p1 ∈ (0, 1) such that

a1xp1 ≤ a(t, x), t ∈ T1, x ∈
[

0,
N – 1

2

]
;

(A2) 0 ≤ a(t, 0), t ∈ T;
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(A3) There exist a2 > 0 and p2 ∈ (0, 1) such that

a2xp2 ≥ a(t, x), t ∈ T, x ∈
[

0,
N – 1

2

]
;

(B1) There exist an open set T1 ⊆ T, b1 > 0, and q1 ∈ [1, +∞) such that

b1xq1 ≤ b(t, x), t ∈ T1, x ∈
[

0,
N – 1

2

]
;

(B2) 0 ≤ b(t, 0), t ∈ T;
(B3) There exist b2 > 0 and q2 ∈ (1, +∞) such that

b2xq2 ≥ b(t, x), t ∈ T, x ∈
[

0,
N – 1

2

]
.

Theorem 3.1 Let (H) hold. Then:
(i) If μ = 0 and (A1)–(A2) are satisfied, then for every λ > 0 problem (1.1) has at least

one positive solution;
(ii) If λ = 0 and (B1)–(B2) are satisfied, then there exists μ∗ > 0 such that, for every

μ > μ∗, problem (1.1) has at least one positive solution;
(iii) If λ = 0 and (B1)–(B3) are satisfied, then there exists μ∗ > 0 such that, for every

μ > μ∗, problem (1.1) has at least two positive solutions;
(iv) If (A1)–(A3) and (B1)–(B3) are satisfied, then there exist μ∗ > 0 and a function

λ(·) : (μ∗, +∞) → R such that, for every μ > μ∗, λ ∈ (0,λ(μ)), problem (1.1) has at
least three positive solutions.

Proof Step 1. An equivalent problem. Fix λ ≥ 0 and μ ≥ 0. Assume (H), (A2) (λ > 0) and
(B2) (μ > 0). Define the functions ā, b̄, f̄ : T× [– N–1

2 , N–1
2 ] →R by

ā(t, x) =

⎧⎨
⎩a(t, 0), – N–1

2 ≤ x < 0,

a(t, x), 0 ≤ x ≤ N–1
2 ,

b̄(t, x) =

⎧⎨
⎩b(t, 0), – N–1

2 ≤ x < 0,

b(t, x), 0 ≤ x ≤ N–1
2 ,

and f̄ = λā + μb̄.
Notice that any nontrivial solution u of the Dirichlet problem

⎧⎨
⎩–∇[φ(�u(t))] = λā(t, u(t)) + μb̄(t, u(t)), t ∈ T,

u(1) = u(N) = 0
(3.1)
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is positive. Indeed, as f̄ (t, x) ≥ 0 for all t ∈ T, x ∈ [– N–1
2 , 0], multiplying the equation in

(3.1) by u– := – min{u, 0} and summing by parts, we have

0 ≤
N∑

t=1

f̄ (t, u)u– = –
N∑

t=1

∇[
φ(�u)

]
u– =

N–1∑
t=1

φ(�u)�(
u–)

= –
N–1∑
t=1

φ
(�(

u–))�(
u–) ≤ 0,

and hence �(u–) = 0. As u(1)– = u(N)– = 0, we conclude that u– = 0. Therefore u is a
positive solution of (1.1) if and only if it is a nontrivial solution of (3.1).

We set

D =
{

u ∈ Y : |�u|∞ < 1
}

and denote K : RN → Y that sends any vector v onto the unique solution w ∈ Y of

⎧⎨
⎩–∇[φ(�w(t))] = v(t), t ∈ T,

w(1) = w(N) = 0.

The operator Nλ,μ : D̄ →R
N is defined by

Nλ,μ(u) = f̄ (·, u),

and the operator Fλ,μ = K ◦ Nλ,μ is completely continuous because Y is a finite dimen-
sional space. Obviously, a function u is a positive solution of (3.1) if and only if u ∈ D is a
nontrivial fixed point of Fλ,μ.

Step 2. Proof of (i). Take μ = 0 and fix λ > 0. Assume (H) and (A1)–(A2). We further
use the symbols N and F to replace the operators Nλ,0 and Fλ,0. Set �a = λ|ā|∞ and let
δa ∈ (0, 1) be the constant δa = δ introduced in Lemma 2.3, with � = �a.

Let us consider the Dirichlet problem

⎧⎨
⎩–∇[φ(�u(t))] = λa1up1 , t ∈ T1,

u(t1) = u(t2) = 0,
(3.2)

where t1, t2 ∈ R, T1, a1 and p1 are defined in (A1). Suppose that T̂1 ⊂ T. By Lemma 2.6
there exists a solution α satisfying |α|∞ ≤ N–1

2 and α � 0. Let us extend α to a function α̃

satisfying |�α̃|∞ ≤ 1 and

–
N – 1

2
< α̃(t) < 0, t ∈ T̂ \ T̂1.

We define the open bounded subset of Y

U0 =
{

u ∈ Y : u � α̃, |�u|∞ < 1 – δa
}

,



Su and Ma Advances in Difference Equations        (2020) 2020:677 Page 10 of 18

and v0 ∈R
N by setting

v0(t) = λā
(
t, α̃(t)

)
, t ∈ T.

Note that v0 ≥ 0 in T, v0 > 0 in T1 and |v0|∞ ≤ �a. Let z0 be the solution of the problem

⎧⎨
⎩–∇[φ(�u(t))] = v0(t), t ∈ T,

u(1) = u(N) = 0.

By Lemma 2.4, z0 � 0 in T̂.

Claim F has no fixed points on ∂U0 and deg(I – F , U0, 0) = 1.

We first prove that

deg(I – z0, U0, 0) = 1.

It suffices to verify that z0 ∈ U0. The condition |�z0|∞ < 1 – δa is satisfied by the definition
of δa. It remains to prove that z0 ≥ α̃, t ∈ T. Since z0(t) ≥ 0, t ∈ T and α̃(t) < 0, t ∈ T̂\ T̂1, we
only need to show that z0(t) > α(t), t ∈ T̂1. Since z0(t) � 0, t ∈ T̂, we have mint∈T̂1

z0(t) > 0.
Moreover, as λa1up1 ≤ v0, t ∈ T by (A1), we get, by Lemma 2.1,

α(t) ≤ z0(t) – min{t1,t2} z0(t) < z0(t)

for all t ∈ T̂1.
Next we consider the homotopy H : [0, 1] × D̄ → Y defined by

H(k, u) = K
(
kN(u) + (1 – k)v0

)
.

Obviously, H is completely continuous. Note that

H(0, u) = z0, H(1, u) = F(u)

for all u ∈ D̄. Fix now k ∈ [0, 1] and suppose that u ∈ Ū0 is a fixed point of H(k, ·). We will
prove that u ∈ U0. Since u is a fixed point of H(k, ·), u is a solution of

⎧⎨
⎩–∇[φ(�u(t))] = kλa(t, u(t)) + (1 – k)v0(t), t ∈ T,

u(1) = u(N) = 0.

Observe that

kλā(t, x) + (1 – k)v0(t) ≥ 0, t ∈ T, x ∈
[

–
N – 1

2
, 0

]
.

Arguing as in Step 1, we see that u ≥ 0 in T. Moreover, as

kλā
(
t, u(t)

)
+ (1 – k)v0(t) > 0, t ∈ T1,



Su and Ma Advances in Difference Equations        (2020) 2020:677 Page 11 of 18

by Lemma 2.5 we deduce that mint∈T̂1
u > 0. Let us prove that u � α̃ in T̂. As above we

observe that, since u(t) ≥ 0, t ∈ T and α̃(t) < 0, t ∈ T̂ \ T̂1, we only need to show that
u(t) > α(t), t ∈ T̂1. Note that, using (A1) and u ∈ Ū0, we have

kλā
(·, u(t)

)
+ (1 – k)v0(t) ≥ kλa1up1 + (1 – k)λā

(·,α(t)
) ≥ λa1α

p1 , t ∈ T1.

Applying Lemma 2.1, we get

α(t) ≤ u(t) – min{t1,t2} u < u(t)

for all t ∈ T̂.
Furthermore, as

∣∣kλā
(
t, u(t)

)
+ (1 – k)v0(t)

∣∣∞ ≤ �a,

Lemma 2.3 yields

|�u|∞ < 1 – δa.

In conclusion, u ∈ U0. The homotopy invariance of the degree implies that

deg(I – F , U0, 0) = deg(I – z0, U0, 0) = 1.

This concludes the proof of the claim.
Therefore, for every λ > 0, there exists a nontrivial fixed point u ∈ U0 of the operator F ,

i.e., there exists a positive solution u of (3.1) satisfying u � α̃ in T̂.
Step 3. Proof of (ii). Take λ = 0 and μ > 0. Assume (H) and (B1)–(B2). We further use the

symbols N and F to replace the operators N0,μ and F0,μ. Set �b = μ|b̄|∞ and let δb ∈ (0, 1)
be the constant δb = δ introduced in Lemma 2.3, with � = �b.

Let us consider the Dirichlet problem

⎧⎨
⎩–∇[φ(�u(t))] = μb1uq1 , t ∈ T1,

u(t1) = u(t2) = 0,
(3.3)

where b1 and q1 are defined in (B1). We still suppose that T̂1 ⊂ T. By Lemma 2.6, there
exists a constant μ∗ > 0 such that, for any μ > μ∗, problem (3.3) has at least one solution
α1 satisfying |α1|∞ ≤ N–1

2 and α1 � 0 in T̂. As in step 2, we extend α1 to a function α̃1

satisfying |�α̃1|∞ < 1 and

–
N – 1

2
< α̃1(t) < 0, t ∈ T̂ \ T̂1.

We define the open bounded set

U1 =
{

u ∈ Y : u � α1, |�u|∞ < 1 – δb
}
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and v1 ∈R
N by setting

v1(t) = μb̄
(
t, α̃1(t)

)
.

The proof continues as in step 2, by showing that F has no fixed points on ∂U1 and

deg(I – F , U1, 0) = 1.

Therefore we conclude that, for all μ > μ∗, there exists a nontrivial fixed point u ∈ U1 of
F , i.e., there exists a positive solution u of (3.1) satisfying u � α̃1.

Step 4. Proof of (iii). Take λ = 0 and μ > 0. Assume (H) and (B1)–(B3). Note that (B1) and
(B3) together imply q1 > 1. Similarly, we use the symbols N and F to denote the operators
N0,μ and F0,μ. Let μ∗ be the constant, whose existence was proved in Step 3, such that
problem (3.1) has at least one positive solution for all μ > μ∗. Fix μ > μ∗ and let u1 ∈ U1

be a corresponding solution. Let us prove the existence of a second positive solution.
For each r > 0, we set

Ur
2 =

{
u ∈ Y : |u|∞ < r, |�u|∞ < 1 – δb

}
with δb defined in Step 3.

Claim There exists r̂ > 0 such that, for each r ∈ (0, r̂], F has no fixed points on ∂Ur
2 and

deg
(
I – F , Ur

2, 0
)

= 1.

Consider the homotopy H : [0, 1] × D̄ → Y defined by

H(k, u) = K
(
kN(u)

)
.

Obviously, H is completely continuous. We have

H(0, u) = 0, H(1, u) = F(u)

for all u ∈ D̄. Fix k ∈ [0, 1] and suppose that u ∈ Ūr
2 is a fixed point of H(k, ·). We will prove

that u ∈ Ur
2. Since u is a fixed point of H(k, ·), u is a solution of

⎧⎨
⎩–∇[φ(�u(t))] = kμb̄(t, u(t)), t ∈ T,

u(1) = u(N) = 0,
(3.4)

multiplying the equation in (3.4) by u(t) and summing, we obtain

N–1∑
t=2

(�u(t)
)2 ≤

N–1∑
t=2

φ
(�u(t)

)�u(t) =
N–1∑
t=2

kμb̄
(
t, u(t)

)
u(t)

≤ μb2

N–1∑
t=2

|u|q2+1 ≤ μb2rq2–1
N–1∑
t=2

u2

≤ μb2rq2–1 1
λ1 mint∈T m(t)

N–1∑
t=2

(�u(t)
)2,
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where λ1 is the smallest eigenvalue of (2.8). Hence there exists a sufficiently small r̂ > 0 such
that, for every r ∈ (0, r̂], we have �u = 0, and therefore u = 0. The homotopy invariance of
the degree implies that

deg
(
I – F , Ur

2, 0
)

= 1.

This concludes the proof of the claim.
We finally set

U3 =
{

u ∈ Y : |�u|∞ < 1 – δb
}

.

Using the definition of δb and arguing as above, we easily see that

deg(I – F , U3, 0) = 1.

Let us fix r ∈ (0, min{|α̃1|∞, r̂}], with α̃1 defined in Step 3. Notice that the sets U1 and Ur
2,

previously defined, are disjoint and both contained in U3. Let us define

Wr = U3 \ (
U1 ∪ Ur

2
)
.

As F has no fixed point in ∂U1 ∪ ∂Ur
2 ∪ ∂U3, by the excision and additivity properties of

the degree, we have

deg(I – F , U3, 0) = deg
(
I – F , U3 \ (

∂U1 ∪ ∂Ur
2
)
, 0

)
= deg(I – F , U1, 0) + deg

(
I – F , Ur

2, 0
)

+ deg
(
I – F , Wr , 0

)
and hence

deg
(
I – F , Wr , 0

)
= –1.

In particular, there exists a fixed point u2 of F such that |u2|∞ > r and for which the condi-
tion u2 � α1 does not hold. Therefore u2 is a positive solution of (3.1) which differs from
u1. We conclude that, for all μ > μ∗, there exist at least two positive solutions of (3.1).

Step 5. Proof of (iv). Take λ > 0 and μ > 0. Assume (H), (A1)–(A3) and (B1)–(B3). Again,
we can suppose that T̂1 ⊂ T. As already noticed in Step 4, we have q1 > 1. Let μ∗ be the
constant, introduced in Step 3, such that problem (3.1), with λ = 0, has at least one positive
solution for all μ > μ∗. Fix μ > μ∗, set

� = |ā|∞ + μ|b̄|∞,

and let δ ∈ (0, 1) be the constant introduced in Lemma 2.3. Let us take T̂2 ⊂ T1, and con-
sider, for λ ∈ (0, 1], the Dirichlet problem

⎧⎨
⎩–∇[φ(�u(t))] = λa1up1 , t ∈ T2,

u(t3) = u(t4) = 0,
(3.5)
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where t3, t4 ∈ R. By Lemma 2.6 there exists a solution αλ
2 of (3.5) satisfying |αλ

2|∞ ≤ N–1
2

and αλ
2 � 0.

Denote by c0 > 0 a constant, dependent on � and T2, such that

|u|∞ ≤ c0|v|∞

holds for all v ∈ R
N satisfying |v|∞ ≤ �. Similarly, denote by c′

0 a constant, dependent on
�, T, such that

|u|∞ ≤ c′
0|v|∞

holds for all v ∈R
N satisfying |v|∞ ≤ �. Set c1 = �max{c0, c′

0} and rλ = λ(c1 + 1). Observe
that, since by (A1), |a1(αλ

2)p1 |∞ ≤ �, we have

∣∣αλ
2
∣∣∞ ≤ c0�λ ≤ c1λ.

As in Step 3, let α1 be a solution of the Dirichlet problem

⎧⎨
⎩–∇[φ(�u(t))] = μb1uq1 , t ∈ T1,

u(t1) = u(t2) = 0.

Since α1 � 0, t ∈ T̂, we have mint∈T̂2
α1 > 0. Therefore we can take λ̄ ∈ (0, 1] such that, for

all λ ∈ (0, λ̄), rλ < mint∈T̂2
α1. For all λ ∈ (0, λ̄), we extend α1 to a function α̃λ

1 and αλ
2 to a

function α̃λ
2 such that

∣∣�α̃λ
1
∣∣∞ ≤ 1,

∣∣�α̃λ
2
∣∣∞ ≤ 1,

∣∣�α̃λ
2
∣∣∞ ≤ rλ,

–
N – 1

2
< α̃λ

2 (t) < α̃λ
1 (t) < 0, t ∈ T̂ \ T̂1,

–
N – 1

2
< α̃λ

2 (t) < 0, t ∈ T̂1 \ T̂2.

We define, for every λ ∈ (0, λ̄), the open bounded sets

Vλ
1 =

{
u ∈ Y : u � α̃λ

1, |�u|∞ < 1 – δ
}

and

Vλ
2 =

{
u ∈ Y : u � α̃λ

2, |u|∞ < rλ, |�u|∞ < 1 – δ
}

.

We also set, for t ∈ T,

vλ
1(t) = μb̄

(
t, α̃λ

1 (t)
)

and

vλ
2(t) = λā

(
t, α̃λ

2 (t)
)
.
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For every λ ∈ (0, λ̄), let zλ
1 be the solution of the Dirichlet problem

⎧⎨
⎩–∇[φ(�u(t))] = vλ

1(t), t ∈ T,

u(1) = u(N) = 0.

Arguing as in the claim of Step 2, we easily verify that Fλ,μ has no fixed points on ∂Vλ
1 and

deg
(
I – Fλ,μ, Vλ

1 , 0
)

= 1.

For every λ ∈ (0, λ̄), let zλ
2 be the solution of the Dirichlet problem

⎧⎨
⎩–∇[φ(�u(t))] = vλ

2(t), t ∈ T,

u(1) = u(N) = 0.

Claim There exists λ(μ) ∈ (0, λ̄] such that, for all λ ∈ (0,λ(μ)), Fλ,μ has no fixed points on
∂Vλ

2 and

deg
(
I – Fλ,μ, Vλ

2 , 0
)

= 1.

We first prove that

deg
(
I – zλ

2, Vλ
2 , 0

)
= 1.

It suffices to verify that zλ
2 ∈ Vλ

2 . Arguing as in Step 2, we easily see that |�zλ
2|∞ < 1 – δ and

zλ
2 � αλ

2 in T. Furthermore, we have

∣∣zλ
2
∣∣∞ ≤ c′

0�λ ≤ c1λ < rλ.

Next we consider the homotopy H : [0, 1] × D̄ → Y defined by

H(k, u) = K
(
kNλ,μ(u) + (1 – k)vλ

2
)
.

Obviously, H is completely continuous. Observe that

H(0, u) = zλ
2 , H(1, u) = Fλ,μ(u)

for all u ∈ D̄.
Fix now k ∈ [0, 1], and suppose that u ∈ V̄λ

2 is a fixed point of H(k, ·). We will prove that
u ∈ Vλ

2 . Arguing as in step 2 we easily show that u ≥ 0 in T and min
T̂2

u > 0. Let us prove
that u � α̃λ

2 in T. Since u(t) ≥ 0, t ∈ T and α̃λ
2 (t) < 0, t ∈ T̂ \ T̂2, we only need to verify that

u(t) > αλ
2 (t), t ∈ T̂2. Note that

kf̄ (·, u) + (1 – k)vλ
2 ≥ kλa1up1 + (1 – k)λā

(·,αλ
2
) ≥ λa1

(
αλ

2
)p1 , t ∈ T.

Applying Lemma 2.1, we get

αλ
2 (t) ≤ u(t) – min{t3,t4} u < u(t), t ∈ T̂2.
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Moreover, as

∣∣kf̄ (·, u) + (1 – k)vλ
2
∣∣∞ ≤ �,

Lemma 2.3 yields

|�u|∞ < 1 – δ.

Finally, we verify that |u|∞ < rλ if λ is sufficiently small. Since both |u|∞ ≤ rλ and |αλ
2|∞ ≤

rλ hold, we have

kf̄ (·, u) + (1 – k)vλ
2 ≤ k

(
λa2|u|p2∞ + μb2|u|q2∞

)
+ (1 – k)λa2

∣∣α̃λ
2
∣∣p2
∞

≤ k(a2(c1 + 1)p2λp2+1 + μb2(c1 + 1)q2λq2 + (1 – k)a2(c1 + 1)p2λp2+1

≤ a2(c1 + 1)p2λp2+1 + μb2(c1 + 1)q2λq2 ≤ c2λ
1+ε , t ∈ T,

where c2 > 0 is a constant independent of λ and ε = min{p2, q2 – 1}. Applying Lemma 2.3,
we obtain

|u|∞ ≤ c3λ
1+ε ,

where c3 > 0 is a constant independent of λ. Let λ(μ) ∈ (0, λ̄) be such that

λ(μ) ≤
(

c1 + 1
c3

) 1
ε

.

Then, for each λ ∈ (0,λ(μ)), the inequality |u|∞ < rλ holds and hence u ∈ Vλ
2 . The homo-

topy invariance of the degree implies then that

deg
(
I – Fλ,μ, Vλ

2 , 0
)

= 1.

This concludes the proof the claim.
Note that Vλ

1 and Vλ
2 are disjoint because of the choice of λ. Therefore problem (3.1)

has at least two positive solutions u1 and u2 such that u1 � αλ
1 and |u2|∞ < rλ. Finally we

define, for all λ ∈ (0,λ(μ)),

Vλ
3 =

{
u ∈ Y : u1 � α̃λ

2, |�u|∞ < 1 – δ
}

.

We also set Wλ = Vλ
3 \ (Vλ

1 ∪ V λ
2 ). Fix λ ∈ (0,λ(μ)). Arguing as in the first part of the pre-

vious claim, we easily verify that

deg
(
I – Fλ,μ, Vλ

3 , 0
)

= 1.

By the excision and the additivity properties of the degree, we obtain

deg
(
I – Fλ,μ, Wλ, 0

)
= –1.
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Hence, there exists a fixed point u3 of Fλ,μ such that |u3|∞ > rλ and for which the condition
u3 � α̃λ

1 in T̂ does not hold. Therefore u3 is a positive solution of (3.1) which differs both
from u1 and from u2. We conclude that, for every μ > μ∗, λ ∈ (0,λ(μ)), problem (3.1) has
at least three positive solutions. �

Finally, we give an example to illustrate the conclusion of Theorem 3.1.
Consider the Dirichlet problem

⎧⎨
⎩–∇[φ(�u(t))] = 3

2λu 1
2 + 2μu2, t ∈ T,

u(1) = u(N) = 0.
(3.6)

In this case, a(t, u) = 3
2 u 1

2 , b(t, u) = 2u2.
Take a1 = 1, p1 = 1

2 . It is easy to check that the assumptions of (i) of Theorem 3.1 are sat-
isfied. Hence, when μ = 0, for every λ > 0, problem (3.6) has at least one positive solution.

Take b1 = 1, p1 = 2. It is easy to check that the assumptions of (ii) of Theorem 3.1 are
satisfied. Hence, when λ = 0, there exists μ∗ > 0 such that, for every μ > μ∗, problem (3.6)
has at least one positive solution.

Take b2 = 3, p2 = 2. It is easy to check that the assumptions of (iii) of Theorem 3.1 are
satisfied. Hence, when λ = 0, then there exists μ∗ > 0 such that, for every μ > μ∗, problem
(3.6) has at least two positive solutions.

Take a2 = 2, p2 = 1
2 . It is easy to check that all the assumptions of (iv) of Theorem 3.1 are

satisfied. Then there exist μ∗ > 0 and a function λ(·) : (μ∗, +∞) → R such that, for every
μ > μ∗, λ ∈ (0,λ(μ)), problem (3.6) has at least three positive solutions.
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