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Abstract
In this paper, a fractional-order model of a financial risk dynamical system is proposed
and the complex behavior of such a system is presented. The basic dynamical
behavior of this financial risk dynamic system, such as chaotic attractor, Lyapunov
exponents, and bifurcation analysis, is investigated. We find that numerical results
display periodic behavior and chaotic behavior of the system. The results of
theoretical models and numerical simulation are helpful for better understanding of
other similar nonlinear financial risk dynamic systems. Furthermore, the adaptive
fuzzy control for the fractional-order financial risk chaotic system is investigated on
the fractional Lyapunov stability criterion. Finally, numerical simulation is given to
confirm the effectiveness of the proposed method.
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1 Introduction
Chaotic systems have received more attention due to their potential applications in eco-
nomics and management, such as equity market indices: cases from the United Kingdom
[1], monetary aggregates [2], business cycle [3], firm growth and R&D investment [4],
chaotic behavior in foreign direct investment, and foreign capital investments [5, 6].

Some nonlinear models have been established to investigate the complex economic dy-
namics such as Goodwin’s accelerate model [7], Van der Pol’s models [8], Duffing–Holmes
model [9], Kaldoria model [10], and IS-LM model [11]. In recent years, chaotic economics
has obtained intensive attention and has been raised to engineering applications for un-
derstanding the complex behavior of the real financial market. In [12], Chen studied the
chaos behavior in a financial system with the help of fractional order. In [13], Gao and Ma
introduced a new finance chaotic system and exhibited Hopf bifurcation in the qualitative
analysis of the finance system. In [14], Wang et al. described a finance chaotic system with
delayed fractional order. In [15], Yu et al. used speed feedback control and linear feedback
control for stabilizing hyperchaotic finance system to unstable equilibrium. In [16], Wang
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et al. designed the sliding mode controller (SMC) for an uncertain chaotic fractional-order
economic system. In [17], Vaidyanathan et al. devised a new finance chaotic system and
discussed its passivity-based synchronization with circuit realization of the system. The
study of economic dynamics with the approach fractional order can be seen in references
[18, 19].

In this work, a financial risk chaotic system is proposed and its properties are elucidated.
In Sect. 2, we present the properties and dynamics of a new fractional-order financial
risk chaotic system and investigate the properties numerically via Lyapunov exponents
and bifurcation diagram. Section 2 also contains the results of simulation and analysis of
the new fractional-order financial risk chaotic system. Section 3 describes the adaptive
fuzzy control for the fractional-order financial risk chaotic system. Section 4 contains the
conclusions of this work.

2 Model of fractional-order financial risk system
At present, there are many different definitions for the fractional calculus, such as G-L def-
inition, R-L definition, and Caputo definition. The Caputo fractional derivative is widely
used in the engineering application fields. The main reason is that this definition is in
the order of differential and integral, thus it a clearer physical meaning. In this work, we
utilized the Caputo definition, which is defined by [20]

Dqf =
1

�(n – q)

∫ t

0
(t – τ )n–q–1f (n)(τ ) dτ (m – 1 < q < m),

Dqf =
dn

dtn f (t) (q = n),
(1)

where q is the order of fractional derivative, m is the lowest integer which is not less than
q, and � is the gamma function

�(x) =
∫ ∞

0
tx–1e–t dt. (2)

In 2013, Xiao-Dan et al. [21] reported a financial risk chaotic system:

⎧⎪⎪⎨
⎪⎪⎩

ẋ = δ(y – x) + yz,

ẏ = rx – y – xz,

ż = xy – bz.

(3)

In (3), x, y, z describe occurrence value risk, analysis value risk, and control value risk
in the current market, respectively. The parameter δ denotes the analysis risk efficiency,
r denotes the transmission rate of previous risk, and b denotes the distortion coefficient
of risk control. Three state variables x, y, and z must be positive, because risk in financial
markets always exists as the market occurs. The system (3) is chaotic when the parameter
values are taken as δ = 10, r = 28, and b = 8

3 . We take the initial conditions of system (3) as
(10, 10, 10).
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The mathematical description of the commensurate fractional-order model of the fi-
nancial risk chaotic system (3) can be expressed as follows:

⎧⎪⎪⎨
⎪⎪⎩

dq1 x
dtq1 = δ(y – x) + yz,
dq2 y
dtq2 = rx – y – xz,
dq3 z
dtq3 = xy – bz.

(4)

In (4), q1, q2, and q3 are the fractional orders of the respective states. a, b, c are constant
positive parameters of the system. For numerical simulation of fractional-order model (4)
of the financial risk chaotic systems, the Adams–Bashforth–Moulton predictor-corrector
scheme is used [22–27].

The dynamic evolution graphs of the system are obtained by means of bifurcation dia-
gram and Lyapunov exponents. They show dynamics of the system with the variation of
system parameters. Particularly, Lyapunov exponents in the q-r parameter plane can give
us a clear view of the state of the system.

The dynamical behavior of the financial risk chaotic system can be characterized by
its Lyapunov exponents which are computed numerically by Wolf algorithm [28]. The
Lyapunov exponents of the financial risk chaotic system are obtained as L1 = 1.251, L2 = 0,
and L3 = –14.9197, while the Kaplan–Yorke dimension of the financial risk chaotic system
is obtained as DKY = 3.0839.

In this study, we analyze bifurcation behavior of the fractional-order financial risk sys-
tem (4) in many cases.

Case (A) Here, we fix q2 = 1, q3 = 1, and q1 varies from 0.4 to 1. The bifurcation diagram
is shown in Fig. 1(a). According to Fig. 1(a), chaotic behavior can be seen for q1 ∈ [0.63, 1]
and for q1 ≤ 0.62, system (4) exhibits periodic motion.

Case (B) Here, we fix q1 = 1, q3 = 1, and q2 varies from 0.7 to 1. The system exhibits
chaotic behavior for q1 ∈ [0.9, 1]. The system shows periodic behavior for q1 < 0.9. This
has been confirmed in the bifurcation diagram analysis (see Fig. 1(b)).

Case (C) Here, we fix q1 = 1, q2 = 1. Let the derivative order q3 vary from 0.7 to 1. It is
shown in Fig. 1(c) that the system is chaotic over the interval q3 ∈ [0.9, 1] and the system
behavior becomes periodic motion for q3 < 0.9.

Case (D) Here, we fix q1 = q2 = q3 = q. The dynamical properties of the system with r and
q varying are analyzed. The bifurcation diagram and LEs for derivative order q ∈ [0.9, 1]
are shown in Figs. 1(d) and 2(a). The chaotic zone covers most of the range q ∈ [0.944, 1],
excepting a periodic window near q ≤ 0.943. In addition, for q1 = q2 = q3 = 0.98 and
vary the system parameter r from 5 to 30. The resulting bifurcation diagram is shown in
Fig. 3(a), and LCE result is presented in Fig. 2(b). The largest increases with the increase
of r, and when r is larger than 10.18, the system is chaotic. Also, q1 = q2 = q3 = 0.95 and r
varying from 5 to 30 are shown in Fig. 3(b).

Complexity of the fractional-order financial risk chaotic system with derivative q and
control parameter r varying is analyzed, where the step size of q is 0.001 and in the range
of q ∈ [0.9, 1]. In addition, step size of r is 0.25 and in the range of r ∈ [5, 30]. LEs in the
q – r plane are shown in Fig. 4(a)–4(d).



Sukono et al. Advances in Difference Equations        (2020) 2020:674 Page 4 of 12

Figure 1 Bifurcation diagrams of the fractional-order financial risk system with derivative order varying (a) q1
varying, q2 = 1, q3 = 1 and r = 28; (b) q2 varying, q1 = 1, q3 = 1 and r = 28; (c) q3 varying, q1 = 1, q2 = 1 and
r = 28; (d) q1 = q2 = q3 = q varying and r = 28

Figure 2 LEs of the fractional-order financial risk system (a) LEs with q varying; (b) LEs with r varying

3 Adaptive fuzzy control for the fractional-order financial risk chaotic system
3.1 Fuzzy logic system
Fuzzy logic system includes singleton fuzzification, sum-product inference, and center
off-sets defuzzification, which can be expressed by

f (x) =

∑N
j=1 θj

∏n
i=1 μFj

i
(xi)∑N

j=1[
∏n

i=1 μFj
i
(xi)]

, (5)
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Figure 3 Bifurcation diagrams of the fractional-order financial risk system with parameter r varying
(a) q1 = q2 = q3 = 0.98 and r varying; (b) q1 = q2 = q3 = 0.95 and r varying

Figure 4 q – r plane of the fractional-order financial risk system (a) LEs 1, r, q plane, (b) r, q plane, (c) LEs 2, r, q
plane, and (d) LEs 3, r, q plane

where x is the input, f (x) is the output. The membership of jth rule is μFj
i
(xi), and the

centroid of the jth consequent set is θj. Then (5) can be rewritten as follows:

f (x) = θTψ(x), (6)

where θ = [θ1, . . . , θN ], ψ(x) = [p1(x), p2(x), . . . , pN (x)]T and the fuzzy basis function is

pj(x) =
∏n

i=1 μ
Fj

i
(xi)

∑N
j=1[

∏n
i=1 μ

Fj
i
(xi)]

.
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Lemma 1 ([29]) Suppose that f (x) is a continuous function and x ∈ �, where � is a com-
pact set. For (6), there exists a fuzzy system such that

sup
x∈�

∣∣f (x) – θTψ(x)
∣∣ ≤ ε, (7)

where ε > 0.

3.2 Controller design and stability analysis
Adaptive fuzzy control of the commensurate fractional-order model of financial risk
chaotic system (4) is as follows:

⎧⎪⎪⎨
⎪⎪⎩

dq1 x
dtq1 = δ(y – x) + yz + u1,
dq2 y
dtq2 = rx – y – xz + u2,
dq3 z
dtq3 = xy – bz + u3.

(8)

Let f1(x1) = δy + yz, f2(y2) = –xz + rx, and f3(z3) = xy be unknown as nonlinear functions,
respectively. Then system (8) can be rewritten as

⎧⎪⎪⎨
⎪⎪⎩

dq1 x
dtq1 = –δx + f1(x1) + u1,
dq2 y
dtq2 = –y + f2(y2) + u2,
dq3 z
dtq3 = –bz + f3(z3) + u3.

(9)

Based on Lemma 1, the unknown functions can be respectively approximated by a fuzzy
logic system as follows:

f̂i(, θi) = θT
i ψi, i = 1, 2, 3. (10)

Let the optimal parameter estimation of fuzzy systems be θ∗
i = min[sup |fi – f̂i(, θi)|],

where θ∗
i is a constant.

Let the parameter error and optimal estimation error of the fuzzy system be respectively

θ̃i = θi – θ∗
i , (11)

εi = fi – f̂i
(
, θ∗

i
)
. (12)

Based on [30], we can suppose that |εi| ≤ ε∗
i , where ε∗

i is a positive constant.
The estimation error of the unknown nonlinear function can be written as

f̂ (, θ ) – f = f̂ (, θ ) – f̂
(
, θ∗) + f̂

(
, θ∗) – f

= f̂ (, θ ) – f̂
(
, θ∗) – ε

= θTψ – θ∗Tψ – ε

= ˜θTψ – ε.

(13)

Based on the above discussion, the controllers can be designed as

u1 = –k1x – θT
1 ψ1(x1) – ε̂∗

1 sign(x), (14)
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u2 = –k2y – θT
2 ψ2(y2) – ε̂∗

2 sign(y), (15)

u3 = –k3y – θT
3 ψ3(z3) – ε̂∗

3 sign(z), (16)

where ki > 0, ε̂∗
i is an estimate of the unknown constant ε∗

i for i = 1, 2, 3.
In this subsection, we propose the fractional-order parameters adaptive laws as follows:

dqθ̂1

dtq = μ1xψ1(x1), (17)

dqε̂∗
1

dtq = σ1
∣∣xT ∣∣, (18)

dqθ̂2

dtq = μ2yψ2(y2), (19)

dqε̂∗
2

dtq = σ2
∣∣yT ∣∣, (20)

dqθ̂3

dtq = μ3zψ3(z3), (21)

dqε̂∗
3

dtq = σ3
∣∣zT ∣∣, (22)

where μi,σi > 0, i = 1, 2, 3.
To check the stability of the controlled system, some results of stability analysis of

fractional-order systems are given in advance as follows.

Lemma 2 ([30]) Let V = 1
2 x2 + 1

2 y2, where x, y ∈ R and x, y have a continuous first deriva-
tive, respectively. If there exists a constant h > 0 satisfying

dqV
dtq ≤ –hx2, (23)

then one has

x2 ≤ 2V (0)Eq
(
–2htq), (24)

where Eq(–2htq) is the Mittag-Leffler function.

Lemma 3 ([30]) Let V = 1
2 xT x + 1

2 yT y, where x, y ∈ Rn and x, y have a continuous first
derivative, respectively. There exists a constant k > 0 such that

dqV
dtq ≤ –kxT x. (25)

Then ‖x‖, ‖y‖ are bounded and x asymptotically approaches zero, where ‖ε‖ represents
Euclid from.

Lemma 4 ([31–34]) If x ∈ Rn is a continuous differentiable function, one holds

1
2

dqxT x
dtq

≤ xT dqx
dtq . (26)
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In order to facilitate, we write the fractional order of system (8) as q. From what has been
discussed above we can obtain the following:

dqx
dtq = –δx + f1(x1) + u1

= –δx + f1(x1) – f̂1(x1, θ1) + f̂1(x1, θ1) + u1

= –δx – θ̃T
1 ψ1(x1) + ε1(x1) – k1x – θT

1 ψ1(x1) – ε̂∗
1 sign(x) + θT

1 ψ1(x1)

= –a1x – θ̃T
1 ψ1(x1) + ε1(x1) – ε̂∗

1 sign(x),

(27)

where a1 = δ + k1.
Multiply both sides of the equation (26) by xT , one has

xT dqx
dtq = –a1xT x – xT θ̃T

1 ψ1(x1) + xTε1(x1) – xT ε̂∗
1 sign(x)

≤ –a1xT x + ε∗
1
∣∣xT ∣∣ – ε̂∗

1
∣∣xT ∣∣ – xT θ̃T

1 ψ1(x1)

= –a1xT x – ε̃∗
1
∣∣xT ∣∣ – xT θ̃T

1 ψ1(x1).

(28)

Similar, we can obtain

yT dqy
dtq = –a2yT y – ε̃∗

2
∣∣yT ∣∣ – yT θ̃T

2 ψ2(x2), (29)

zT dqz
dtq = –a3zT z – ε̃∗

3
∣∣zT ∣∣ – zT θ̃T

3 ψ3(z3), (30)

where a2 = 1 + k2, a3 = b + k3.

Theorem 1 Under given initial conditions, the variables x, y, and z of fractional-order
system (8) converge to zero under the action of adaptive controller (14), (15), (16) and
fractional-order parameter adaptive laws (17), (18), (19), (20), (21), (22), and all variables
in the closed-loop system are bounded.

Proof Let the Lyapunov function be

V1 =
1
2

xT x +
1

2μ1
θ̃T

1 θ̃1 +
1

2σ1
ε̃∗T

1 ε̃∗
1 , (31)

where θ̃1 = θ̂1 – θ∗
1 and ε̃∗

1 = ε̂∗
1 – ε∗

1 .
Based on Lemma 4, (17), (18), and (28), we can obtain

dqV1

dtq = xT dqx
dtq +

1
μ1

θ̃T
1

dqθ̃1

dtq +
1
σ1

ε̃∗T
1

dqε̃∗
1

dtq

≤ –a1xT x – ε̃∗
1
∣∣xT ∣∣ – xT θ̃T

1 ψ1(x1) + xT θ̃T
1 ψ1(x1) + ε̃∗T

1
∣∣xT ∣∣

≤ –a1xT x,

(32)

where a1 > 0. We know from Lemma 3 that x asymptotically approaches zero, namely
limt→∞ ‖x‖ = 0.
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Choose the Lyapunov function as

V2 =
1
2

yT y +
1

2μ2
θ̃T

2 θ̃2 +
1

2σ2
ε̃∗T

2 ε̃∗
2 , (33)

where θ̃2 = θ̂2 – θ∗
2 and ε̃∗

2 = ε̂∗
2 – ε∗

2 .
Based on Lemma 4, (19), (20), and (29), we can obtain

dqV2

dtq = yT dqy
dtq +

1
μ2

θ̃T
2

dqθ̃2

dtq +
1
σ2

ε̃∗T
2

dqε̃∗
2

dtq

≤ –a2yT y – ε̃∗
2
∣∣yT ∣∣ – yT θ̃T

2 ψ2(y2) + yT θ̃T
2 ψ2(y2) + ε̃∗T

2
∣∣yT ∣∣

≤ –a2yT y,

(34)

where a2 > 0. We know from Lemma 3 that y asymptotically approaches zero, namely
limt→∞ ‖y‖ = 0.

Consider the Lyapunov function

V3 =
1
2

zT z +
1

2μ3
θ̃T

3 θ̃3 +
1

2σ3
ε̃∗T

3 ε̃∗
3 , (35)

where θ̃3 = θ̂3 – θ∗
3 and ε̃∗

3 = ε̂∗
3 – ε∗

3 .
Based on Lemma 4, (21), (22), and (30), we can obtain

dqV3

dtq = zT dqz
dtq +

1
μ3

θ̃T
3

dqθ̃3

dtq +
1
σ3

ε̃∗T
3

dqε̃∗
3

dtq

≤ –a3zT z – ε̃∗
3
∣∣zT ∣∣ – zT θ̃T

3 ψ3(x3) + zT θ̃T
3 ψ3(z3) + ε̃∗T

3
∣∣zT ∣∣

≤ –a3zT z,

(36)

where a3 > 0. We know from Lemma 3 that z asymptotically approaches zero, namely
limt→∞ ‖z‖ = 0. �

Noting that ε̃∗
i ∈ R, i = 1, 2, 3, so it has ε̃∗

i = ε̃∗T
i .

We know from Lemma 2 that θ̃i, ε̃∗
i are bounded, and θ̂i, ε̂∗

i are also bounded. From the
above proof, x, y, and z are bounded, and the construction of controllers (14), (15), and
(16) shows that ui is bounded for i = 1, 2, 3. So, all signals in a closed loop system (8) are
bounded.

3.3 Simulation studies
In this subsection, we choose fractional-order system (8) as an example.

Let the parameters of the financial risk chaotic system (8) be δ = 10, r = 28, b = 8
3 , with

the initial conditions of system (8) being (2.5, 0.5, 4) and q = 0.95. In the simulation, x, y,
z are the inputs of the fuzzy systems. We choose four Gaussian membership functions
on [–3, 3]. k1 = 15, k2 = 15, k3 = 10 and μi = 700, σi = 0.8 for i = 1, 2, 3. The estimated
value of the approximation error of the fuzzy system is ε̂∗

1(0) = 1, ε̂∗
2(0) = 1, ε̂∗

3(0) = 1.5.
The simulation results are shown in Fig. 5, Fig. 6, and Fig. 7. In Fig. 5, the system variables
have a rapid convergence. Figure 6 shows the smoothness of the control inputs, and Fig. 7
indicates the convergence of the fuzzy parameters under the proposed fractional-order
adaptation laws. It has been shown that good control performance has been obtained.
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Figure 5 Time response of system variables

Figure 6 Control inputs

Figure 7 Fuzzy parameters

4 Conclusion
In this paper, the numerical solution of a fractional-order financial risk chaotic system
was investigated and all parameter values of the system were determined. Dynamical
analysis of the new fractional-order financial risk chaotic system was described by the
phase portraits, Lyapunov exponents spectrum, and bifurcation diagram. We found that
the chaotic behavior exists for the new fractional-order financial risk system in the range
q1 ∈ [0.63, 1], q2 ∈ [0.9, 1], q3 ∈ [0.9, 1], and q ∈ [0.944, 1]. Also, periodic behavior exists for
the fractional-order financial risk system in the range of q1 ≤ 0.62, q2 < 0.9, q3 < 0.9, and
q ≤ 0.943. An adaptive fuzzy approach has been presented in this study to handle the con-
trol problem for the fractional-order financial risk system. Based on the proposed method,
simulation results were given to indicate the effectiveness of the proposed scheme.



Sukono et al. Advances in Difference Equations        (2020) 2020:674 Page 11 of 12

Acknowledgements
The authors are grateful to referees for their careful reading, suggestion, and valuable comments which have improved
the paper substantially.

Funding
The author Aceng Sambas was supported by Kementrian Riset dan Teknologi Republik Indonesia/Badan Riset dan Inovasi
Nasional (KEMENRISTEKDIKTI-BRIN) through Project No. 2891/L4/PP/2019 (Penelitian Kerja Sama Antar Perguruan Tinggi).
Shaobo He is funded by the National Natural Science Foundation of China (Grant No. 61901530) and the Natural Science
Foundation of Hunan Province (No. 2020JJ5767). We also would like to thank Universiti Malaysia Terengganu for
supporting this research publication and one form of research collaboration with Universitas Padjadjaran and Universitas
Muhammadiyah Tasikmalaya.

Availability of data and materials
Not applicable in our research.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All the authors contributed to the writing of the present article. They also read and approved the final manuscript.

Author details
1Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang,
Indonesia. 2Department of Mechanical Engineering, Universitas Muhammadiyah Tasikmalaya, Tasikmalaya, Indonesia.
3School of Computer, Science and Technology, Hunan University of Arts and Science, Hunan, China. 4School of Science,
Guangxi University for Nationalities, Guangxi, China. 5School of Electrical and Computing, Vel Tech University, Avadi-600
062, Chennai, India. 6Faculty of Business, Economics and Social Development, Universiti Malaysia Terengganu,
Terengganu, Malaysia.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 14 July 2020 Accepted: 19 November 2020

References
1. Abhyankar, A., Copeland, L.S., Wong, W.: Nonlinear dynamics in real-time equity market indices: evidence from the

United Kingdom. Econ. J. 105(431), 864–880 (1995)
2. Barnett, W., Chen, P.: Deterministic chaos and fractal attractors as tools for nonparametric dynamical econometric

inference: with an application to the divisia monetary aggregates. Math. Comput. Model. 10(4), 275–296 (1988)
3. Hallegatte, S., Ghil, M., Dumas, P., Hourcade, J.C.: Business cycles, bifurcations and chaos in a neo-classical model with

investment dynamics. J. Econ. Behav. Organ. 167(1), 57–77 (2008)
4. Klette, T.J., Griliches, Z.: Empirical patterns of firm growth and R&D investment: a quality ladder model interpretation.

Econ. J. 110(463), 363–387 (2000)
5. Hsiao, F.S., Hsiao, M.C.W.: The chaotic attractor of foreign direct investment—why China?: a panel data analysis.

J. Asian Econ. 15(4), 641–670 (2004)
6. Bouali, S., Buscarino, A., Fortuna, L., Frasca, M., Gambuzza, L.V.: Emulating complex business cycles by using an

electronic analogue. Nonlinear Anal., Real World Appl. 13(6), 2459–2465 (2012)
7. Lorenz, H.W., Nusse, H.E.: Chaotic attractors, chaotic saddles, and fractal basin boundaries: Goodwin’s nonlinear

accelerator model reconsidered. Chaos Solitons Fractals 13(5), 957–965 (2002)
8. Chian, A.C.L., Borotto, F.A., Rempel, E.L., Rogers, C.: Attractor merging crisis in chaotic business cycles. Chaos Solitons

Fractals 24(3), 869–875 (2015)
9. Hosseinnia, S., Ghaderi, R., Mahmoudian, M., Momani, S.: Sliding mode synchronization of an uncertain fractional

order chaotic system. Comput. Math. Appl. 59(5), 1637–1643 (2010)
10. Lorenz, H.W.: Nonlinear Dynamical Economics and Chaotic Motion. Springer, Berlin (1993)
11. Fanti, L., Manfredi, P.: Chaotic business cycles and fiscal policy: an IS-LM model with distributed tax collection lags.

Chaos Solitons Fractals 32(2), 736–744 (2007)
12. Chen, W.C.: Nonlinear dynamics and chaos in a fractional-order financial system. Chaos Solitons Fractals 36(5),

1305–1314 (2008)
13. Gao, Q., Ma, J.: Chaos and Hopf bifurcation of a finance system. Nonlinear Dyn. 58(1), 209–216 (2009)
14. Wang, Z., Huang, X., Shi, G.: Analysis of nonlinear dynamics and chaos in a fractional order financial system with time

delay. Comput. Math. Appl. 62(3), 1531–1539 (2011)
15. Yu, H., Cai, G., Li, Y.: Dynamic analysis and control of a new hyperchaotic finance system. Nonlinear Dyn. 67(3),

2171–2182 (2012)
16. Wang, Z., Huang, X., Shen, H.: Control of an uncertain fractional order economic system via adaptive sliding mode.

Neurocomputing 83, 83–88 (2012)
17. Vaidyanathan, S., Sambas, A., Kacar, S., Cavusoglu, U.: A new finance chaotic system, its electronic circuit realization,

passivity based synchronization and an application to voice encryption. Nonlinear Eng. 8, 193–205 (2019)
18. Abd-Elouahab, M.S., Hamri, N.E., Wang, J.: Chaos control of a fractional-order financial system. Math. Probl. Eng. 2010,

Article ID 270646 (2010)
19. Hajipour, A., Tavakoli, H.: Analysis and circuit simulation of a novel nonlinear fractional incommensurate order

financial system. Optik, Int. J. Light Electron Opt. 127(22), 10643–10652 (2016)



Sukono et al. Advances in Difference Equations        (2020) 2020:674 Page 12 of 12

20. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent—II. Geophys. J. Int. 13(5),
529–539 (1967)

21. Xiao-Dan, Z., Xiang-Dong, L., Yuan, Z., Cheng, L.: Chaotic dynamic behavior analysis and control for a financial risk
system. Chin. Phys. B 22(3), 030509 (2013)

22. Petráš, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer, Berlin (2011)
23. Herrmann, R.: Fractional Calculus: An Introduction for Physicists. World Scientific, Singapore (2011)
24. Caponetto, R., Dongola, G., Fortuna, L., Petráš, I.: Fractional Order Systems: Modeling and Control Applications World

Scientific, Singapore (2011)
25. Yang, X.J.: General Fractional Derivatives: Theory, Methods and Applications. CRC Press, New York (2019)
26. Yang, X.J., Peng, Y.Y., Cattani, C., Inc, M.: Fundamental solutions of anomalous diffusion equations with the decay

exponential kernel. Math. Methods Appl. Sci. 42(11), 4054–4060 (2019)
27. Liu, J.G., Yang, X.J., Feng, Y.Y., Cui, P.: On group analysis of the time fractional extended (2 + 1)-dimensional

Zakharov–Kuznetsov equation in quantum magneto-plasmas. Math. Comput. Simul. 178, 407–421 (2020)
28. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D:

Nonlinear Phenom. 16(3), 285–317 (1985)
29. Li-Xin, W.: Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Prentice Hall, New York (1994)
30. Liu, H., Chen, Y., Li, G., Xiang, W., Xu, G.: Adaptive fuzzy synchronization of fractional-order chaotic (hyperchaotic)

systems with input saturation and unknown parameters. Complexity 2017, Article ID 6853826 (2017)
31. Liu, H., Pan, Y., Li, S., Chen, Y.: Adaptive fuzzy backstepping control of fractional-order nonlinear systems. IEEE Trans.

Syst. Man Cybern. Syst. 47(8), 2209–2217 (2017)
32. Qin, X., Li, S., Liu, H.: Adaptive fuzzy synchronization of uncertain fractional-order chaotic systems with different

structures and time-delays. Adv. Differ. Equ. 2019, 174 (2019)
33. Heydari, Z.R., Karimaghaee, P.: Adaptive fuzzy synchronization of uncertain fractional-order chaotic systems with

different structures and time-delays. Adv. Differ. Equ. 2019, 498 (2019)
34. Zhang, S., Liu, H., Li, S.: Robust adaptive control for fractional-order chaotic systems with system uncertainties and

external disturbances. Adv. Differ. Equ. 2018, 412 (2018)


	Dynamical analysis and adaptive fuzzy control for the fractional-order ﬁnancial risk chaotic system
	Abstract
	Keywords

	Introduction
	Model of fractional-order ﬁnancial risk system
	Adaptive fuzzy control for the fractional-order ﬁnancial risk chaotic system
	Fuzzy logic system
	Controller design and stability analysis
	Simulation studies

	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


