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Abstract
In this paper, stationary distribution of stochastic differential equations (SDEs) with
Markovian switching is approximated by numerical solutions generated by the
stochastic θ method. We prove the existence and uniqueness of stationary
distribution of the numerical solutions firstly. Then, the convergence of numerical
stationary distribution to the underlying one is discussed. Numerical simulations are
conducted to support the theoretical results.
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1 Introduction
In recent years, a lot of research has been done about the stationary distributions of SDEs.
Since SDEs cannot be solved explicitly, studying stationary distribution of the numerical
solutions of SDEs has become essential. Stationary distributions of numerical solutions
are widely used to approximate those of the underlying equations. We know that there are
two books worth reading, one presents the knowledge about the numerical solutions of
SDEs, see [9]. The other introduces some basic knowledge of SDEs in detail [13]. As far
as we are concerned, there are actually plenty of papers in this aspect. In [20], almost sure
and moment exponential stability of Euler–Maruyama discretizations for hybrid stochas-
tic differential equations was studied. The Milstein method was discussed in [28]. The
truncated Euler–Maruyama method was used to approximate stationary distributions of
SDEs with and without Markovian switching in [11]. Numerical stationary distribution
and its convergence by the semi-implicit Euler–Maruyama method was studied, see [12].
And then stationary distribution of the stochastic θ method for nonlinear SDEs was dis-
cussed in [8]. On the basis of this paper, we can consider that equations do not have sta-
tionary distributions, after a period of switching, equations still have a unique stationary
distribution.

When some emergencies affect the rate of population growth, such as earthquakes, de-
bris flows, and other natural disasters, simple SDEs are not efficient to model these prob-
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lems. Therefore, SDEs with Markovian switching were applied to handle these problems.
So far, various dynamical properties of SDEs with Markovian switching, such as moment
boundedness, stability, and ergodicity, have been investigated extensively, see for exam-
ple [2, 4, 6, 14, 18, 19, 21, 24–26, 32, 33, 36] and the references therein. There are two
monographs providing detailed introduction to SDEs with Markovian switching [15, 29].

In a series of papers [3, 7, 16, 17, 27, 30, 31], approximations of stationary distributions
of SDEs with different types of Markovian switchings were investigated by the Euler–
Maruyama method. Both the drift and diffusion coefficients of the SDEs in these papers
satisfy the global Lipschitz condition. Although the classical Euler–Maruyama method is
easy to use in computation and implementation, the numerical solutions of SDEs with
super-linear coefficients may diverge to infinity in finite time. To tackle this drawback, Li
used the backward Euler–Maruyama method to prove the numerical invariant measure
under one-sided Lipschitz condition for those SDEs with Markovian switching, see [10].

The stochastic θ method is an extension of the Euler–Maruyama method and the back-
ward Euler–Maruyama, and its proving process is more complicated. In [23], stability of
the stochastic θ method with non-random variable step sizes for bilinear, nonautonomous,
homogenous test equations was investigated. The abilities to preserve the almost sure and
the mean square exponential stabilities of hybrid SDEs were discussed in [5] and [34]. In
[22], asymptotic boundedness of the stochastic θ method was studied. As far as authors’
knowledge, the stochastic θ method has not been used to discuss the stationary distribu-
tions of SDEs with Markovian switching. We investigate the numerical stationary distri-
bution by the stochastic θ method.

Throughout the paper, we mainly study the stationary distributions, and the required
assumptions on the coefficient are based on the choices of θ . The rest of this paper is
organized as follows. Section 2 introduces mathematical preliminaries. We obtain the ex-
istence and uniqueness of the stationary distribution of the numerical solutions in Sect. 3.
Section 4 shows numerical simulation to verify our theoretical results. Section 5 concludes
the paper.

We highlight some main contributions of this paper as follows:
• When θ ∈ [0, 1/2), both of the drift and diffusion coefficients satisfy the global

Lipschitz; when θ ∈ [1/2, 1], the drift coefficient only satisfies the one-side Lipschitz
condition. Under these assumptions, it is difficult to prove the stationary distributions
of SDEs with Markovian switching by the Euler–Maruyama method and the
backward Euler–Maruyama.

• We study the stationary distributions of SDEs with Markovian switching by the
stochastic θ method. This is a generalization of the Euler–Maruyama method and the
backward Euler–Maruyama.

• Compared to the traditional Euler method, the numerical results of the stochastic θ

method are more precise. Compared to the backward Euler–Maruyama method, the
stochastic θ method can effectively save time and cost. In conclusion, the stochastic θ

method is a more efficient numerical method to approximate to stationary
distribution of exact solutions.

Let us begin to develop our new theory on the stationary distributions of SDEs with
Markovian switching.
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2 Mathematical preliminaries
In this paper, let (�,F ,P) be a complete probability space with filtration {Ft}t≥0 satisfying
the usual conditions that it is right-continuous and increasing, while F0 contains all P-null
sets. Let | · | denote the Euclidean norm in R

n. The transpose of a vector or matrix M is
denoted by MT and the trace norm of a matrix M is denoted by |M| =

√
trace(MT M).

To keep symbols simple, let B(t) = (B1
t , . . . , Bd

t )T , t ≥ 0, be a d-dimensional Brownian
motion. Let R(t), t ≥ 0, denote a continuous-time Markov chain on the probability apace
taking values in a finite state space S = {1, 2, . . . , N} with the generator � = (γij)N×N given
by

P
{

R(t + �) = j|R(t) = i
}

=

⎧
⎨

⎩
γij� + o(�), i �= j,

1 + γij� + o(�), i = j,

where � > 0. Here, γij ≥ 0 is the transition rate from i to j if i �= j, while

γii = –
∑

i�=j

γij.

We assume that the transition probability matrix Q is irreducible and conservative (see
[1]). So the Markov chain {R(t)}t≥0 has a unique stationary distribution η := (η1,η2, . . . ,
ηN ) � 0 ∈ R

1×N , which can be determined by solving the linear equation

ηQ = 0, subject to
N∑

i=1

ηi = 1.

We consider the n-dimensional stochastic differential equation with Markovian switch-
ing (SDEwMS) of the Itô type

dX(t) = f
(
X(t), R(t)

)
dt + g

(
X(t), R(t)

)
dB(t), t ≥ 0, (2.1)

with the initial value x(0) = x0 ∈ R
n and R(0) = i ∈ S, where f : Rn × S → R

n and g : Rn ×
S → R

n×d .
Given a stepsize h > 0, let Rk = R(kh), k ≥ 0, {Rk , k = 0, 1, . . .} be a discrete Markov chain,

and P(h) = Pij(h)N×N = exp(hQ), where Q is the generator of Rk , k ≥ 0, The {Rk , k = 0, 1, . . .}
can be simulated as follows: let R0 = i, and give a random pseudo number τ1 obeying the
uniform (0, 1) distribution. Define

R1 =

⎧
⎨

⎩
i1, if i1 ∈ S – {N}, such that

∑i1–1
j=1 Pij(h) ≤ τi <

∑i1
j=1 Pij(h),

N , if
∑N–1

j=1 Pij(h) ≤ τ1,

where let
∑N

j=1 Pij(h) = 0. In other words, the probability of state s being chosen is given
by P(R1 = s) = Pis(h). Generally, after the computations of R0, R1, . . . , Rk–1, given a random
pseudo number τk obeying a uniform (0, 1) distribution, define Rk :

Rk =

⎧
⎨

⎩
ik , if ik ∈ S – {N}, such that

∑ik –1
j=1 PRk–1j(h) ≤ τk <

∑ik
j=1 PRk–1j(h),

N , if
∑N–1

j=1 PRk–1j(h) ≤ τk .
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This procedure can be carried out independently to obtain more trajectories. Now we can
define the stochastic θ method for SDEs with Markovian switching.

The stochastic θ method to SDEwMS (2.1) is defined by

Xk+1 = Xk + θ f (Xk+1, Rk)h + (1 – θ )f (Xk , Rk)h + g(Xk , Rk)�Bk , k ≥ 0, (2.2)

where �Bk = B(tk+1) – B(tk) is the Brownian motion increment, and given a step size h > 0,
let tk = kh for k ≥ 0 and Rk = R(tk). Set Zk = (Xk , Rk). Then {Zk}k≥0 is a Markov process. We
will instead use notation Zx,i

k = (Xx,i
k , Ri

k) to highlight the initial values. Let Pk((x, i), ·× ·) be
the probability measure induced by Zx,i

k , namely

Pk
(
(x, i), A × B

)
= P

{
Zx,i

k ∈ A × B
}

, ∀A ∈ B
(
Rn), B ⊂ S.

Denote the family of all probability measures on R
n × S by P(Rn × S). Define by L the

family of mappings F : Rn × S →R satisfying

∣∣F(x, j) – F(y, l)
∣∣≤ |x – y| + |j – l| and

∣∣F(x, j)
∣∣≤ 1,

for any x, y ∈R
n, j, l ∈ S. For P1,P2 ∈P(Rn × S), define metric dL by

dL(P1,P2) = sup
F∈L

∣∣∣∣∣

N∑

j=1

∫

Rn
F(x, j)P1(dx, j) –

N∑

j=1

∫

Rn
F(x, j)P2(dx, j)

∣∣∣∣∣
.

The weak convergence of probability measures can be illustrated in terms of metric dL.
That is, a sequence of probability measures {Pk}k≥1 in P(Rn × S) converge weakly to a
probability measure P ∈P(Rn × S) if and only if

lim
k→∞

dL(Pk ,P) = 0.

Then we define the stationary distribution for {Xk}k≥0 by using the concept of weak con-
vergence.

Definition 2.1 For any initial value (x, i) ∈ R
n × S and a given step size h > 0, Z(t) =

(X(t), R(t)) is said to have a stationary distribution 	h(· × ·) ∈ P(Rn × S) if the k-step
transition probability measure Pk((x, i), · × ·) converges weakly to 	h(· × ·) as k → ∞ for
every (x, i) ∈R

n × S, that is,

lim
k→∞

(
sup
F∈L

∣∣E
(
F
(
Zx,i(t)

))
– E	h (F)

∣∣
)

= 0,

where

E	h (F) =
N∑

j=1

∫

Rn
F(x, j)	h(dx, j).

In [31], the authors presented a very general theory on the existence and uniqueness of
the stationary distribution for any one step numerical methods. We adapt it here and state
the theory for the stochastic θ method as follows.
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Theorem 2.2 Assume that the following three requirements are fulfilled.
• For any ε > 0 and (x, i) ∈R

n × S, there exists a constant R = R(ε, x, i) > 0 such that

P
(∣∣Xx,i

k
∣∣≥ R

)
< ε for any k ≥ 0. (2.3)

• For any ε > 0 and any compact subset K of Rn, there exists a positive integer
k∗ = k∗(ε, K) such that

P
(∣∣Xx,i

k – Xy,i
k
∣∣ < ε

)≥ 1 – ε for any k ≥ k∗ and any (x, y, i) ∈ K × K × S. (2.4)

• For any ε > 0, n ≥ 1 and any compact subset K of Rn, there exists R = R(ε, n, K) > 0
such that

P

(
sup

0≤k≤n

∣∣Xx,i
k
∣∣≤ R

)
> 1 – ε for any (x, i) ∈ K × S. (2.5)

Then the numerical solutions generated by the stochastic θ method {Xk}k≥0 has a unique
stationary distribution 	h.

Remark 2.3 Although the theory is very general, the conditions in it are in the sense of
probability which are not easy to check. In this paper, we give some coefficients related
assumptions and prove the existence and uniqueness of the stationary distribution of the
solutions generated by the stochastic θ method under those assumptions.

Now, we present the assumptions on the drift and diffusion coefficients.

Assumption 2.4 Assume that there exists a constant μi such that, for any x, y ∈ R
n and

i ∈ S,

〈
x – y, f (x, i) – f (y, i)

〉≤ μi|x – y|2.

Assumption 2.5 Assume that there exists a constant σ > 0 such that, for any x, y ∈ R
n

and i ∈ S,

∣∣g(x, i) – g(y, i)
∣∣2 ≤ σ |x – y|2.

We give two new assumptions as follows.

Assumption 2.6 There exist constants μi and a > 0 such that, for any x ∈R
n and i ∈ S,

〈
x, f (x, i)

〉≤ μi|x|2 + a.

Assumption 2.7 There exist positive constants σ and b such that, for any x ∈ R
n and

i ∈ S,

∣∣g(x, i)
∣∣2 ≤ σ |x|2 + b. (2.6)
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Lemma 2.8 Let Assumptions 2.4 and 2.5 hold and maxi∈S θhμi < 1, the stochastic θ method
(2.2) is well defined.

Proof It is useful to write (2.2) as

Xk+1 – θ f (Xk+1, Rk)h = Xk + (1 – θ )f (Xk , Rk)h + g(Xk , Rk)�Bk .

Define a function G : Rn × S →R
n by G(x) = x – f (x, i)θh. Since

〈
x – y, G(x) – G(y)

〉≥ 〈
x – y, x – y – θh

(
f (x, i) – f (y, i)

)〉

≥ |x – y|2 – θhμi|x – y|2

= (1 – θhμi)|x – y|2 > 0,

for maxi∈S θhμi < 1, we know that G has the inverse function G–1 : Rn → R
n. And G(x) is

monotone. The stochastic θ method (2.2) can be written as

Xk+1 = G–1(Xk + (1 – θ )f (Xk , Rk)h + g(Xk , Rk)�Bk
)
. (2.7)

Thus, the stochastic θ method (2.2) is well defined. �

Lemma 2.9 For any Borel set x ∈ R
n, A ⊂R

n, j ∈ S. Then

P
(
(Xk+1, Rk) ∈ A × j|Xk = x, Rk = i

)
= P(X1, R1 ∈ A × j|X0 = x, R0 = i). (2.8)

Proof If Xk = x, Rk = i and X0 = x, R0 = i, by (2.2) we see

Xk+1 – θ f (Xk+1, Rk)h = x + (1 – θ )f (x, i)h + g(x, i)�Bk

and

X1 – θ f (X1, R1)h = x + (1 – θ )f (x)h + g(x)�B0.

Because �Bk and �B0 are identical in probability law, comparing the two equations above,
we know that Xk+1 – θ f (Xk+1, Rk)h and X1 – θ f (X1, R1)h have the identical probability law.
Then, due to Lemma 2.8, we have that (Xk+1, Rk) and (X1, R1) are identical in probability
law under Xk = x, Rk = i and X0 = x, R0 = i. Therefore, the assertion holds. For any x ∈ R

n

and i ∈ S any Borel set A ⊂R
n, define

Pm,k
(
(x, i), A × {j}) := P

(
Xk ∈ A × {j}|Xm = (x, i)

)
, k ≥ m ≥ 0. �

To prove Theorem 2.11, we cite the following classical result (see, for example, Lem-
ma 9.2 on page 87 of [13]).

Lemma 2.10 Let h(x,ω) be a scalar bounded measurable random function of x, indepen-
dent of Fs. Let ζ be an Fs-measurable random variable. Then

E
(
h(ζ ,ω)|Fs

)
= H(ζ ),

where H(x) = Eh(x,ω).
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Theorem 2.11 The solution {Zk}k≥0 generated by the stochastic θ method (2.2) is a homo-
geneous Markov process with transition probability kernel P((x, i), A × {j}).

Proof The homogeneous property follows Lemma 2.9, so we only need to show the
Markov property. Define

Y x,i
k+1 = G–1(x + (1 – θ )f (x, i)h + g(x, i)�Bk

)

for x ∈R
n and k ≥ 0, i ∈ S. By (2.7) we know that Xk+1 = Y Xk ,Rk

k+1 and Rk+1 = ζ
Rk
k+1. Let Gtk+1 =

σ {B(tk+1) – B(tk)}. Clearly, Gtk+1 is independent of Ftk . Moreover, Y x,i
k+1 depends completely

on the increment B(tk+1) – B(tk), so it is Gtk+1 -measurable. Hence, Y x,i
k+1 is independent of

Ftk . Applying Lemma 2.10 with h((x, i),ω) = IA(Y x,i
k+1) and h(i,ω) = I{j}(Ri

k+1), we compute
that

P
(
Zk+1 ∈ A × {j}|Ftk

)

= E
(
IA×{j}(Zk+1)|Ftk

)
= E

(
IA×{j}

(
Y Xk ,Rk

k+1 , ζ Rk
k+1
)|Ftk

)

= E
(
IA
(
Y Xk ,Rk

k+1
)|Ftk

)
E
(
I{j}
(
ζ

Rk
k+1
)|Ftk

)
= E

(
IA
(
Y x,i

k+1
)|x=Xk ,i=Rk

)
E
(
I{j}
(
ζ i

k+1
)|i=Rk

)

= P
((

Y x,i
k+1 ∈ A

)|x=Xk ,i=Rk

)
P
((

ζ i
k+1 = j

)|i=Rk

)
= P

((
Y x,i

k+1, ζ i
k+1
) ∈ A × {j}|x=Xk ,i=Rk

)

= P
(
Zk+1 ∈ A × {j}|Zk

)
.

The proof is complete. �

Therefore, we see thatP(·, ·) is the one-step transition probability andPk(·, ·) is the k-step
transition probability.

We state a simple version of the discrete-type Gronwall inequality in the next lemma
(see, for example, [15, Theorem 2.5 on page 56]).

Lemma 2.12 Let {un} and {wn} be nonnegative sequences and α be a nonnegative constant.
If

un ≤ α +
n–1∑

k=0

ukwk for n ≥ 0,

then

un ≤ α exp

( n–1∑

k=0

wk

)

.

3 Main results
In this section, we present the main results of this paper. Since different choices of the
parameter θ in (2.2) require different requirements on the coefficients f and g , we divide
this section into three parts. At first, we discuss the case when θ ∈ [1/2, 1] in Sect. 3.1.
The convergence of the numerical stationary distribution to the underlying counterpart
is discussed in Sect. 3.2. And the situation when θ ∈ (0, 1/2] is presented in Sect. 3.3.
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3.1 θ ∈ [1/2, 1]
To prove Lemma 3.3 and Lemma 3.4, let us introduce two assumptions.

Assumption 3.1 Let, for any i ∈ S, there exist a constant αi ∈R, the inequality

(p – 2)
〈
x – y, f (x, i) – f (y, i)h

〉∣∣g(x, i) – g(y, i)
∣∣2

–
2(p – 2)(1 – θ )

θ2

〈
x – y, g(x, i) – g(y, i)

〉〈
Fk , g(x, i) – g(y, i)

〉≤ αi|Fk|4

holds, where

Fk+1 =
∣∣Xx,i

k+1 – Xy,i
k+1
∣∣ – θ

∣∣f
(
Xx,i

k+1, Ri
k
)

– f
(
Xy,i

k+1, Ri
k
)∣∣h.

Assumption 3.2 Let, for any i ∈ S, there exist a constant αi ∈R and β > 0, the inequality

(p – 2)
〈
x, f (x, i)h

〉∣∣g(x, i)
∣∣2 –

2(p – 2)(1 – θ )
θ2

〈
x, g(x, i)

〉〈
Fk , g(x, i)

〉≤ αi|Fk|4 + β|Fk|2

holds, where

Fk+1 = Xk+1 – θ f (Xk+1, Rk)h.

For simplicity, define

ξi = 2μi + αi, ξ = (ξ1, . . . , ξN )T , ε = |ηξ |, (3.1)

where assume ηξ < 0.
Now we are ready to present the two main lemmas in this subsection.

Lemma 3.3 Given Assumptions 2.6, 2.7, and 3.2. Then, for h ∈ (0, h1), the solutions gener-
ated by the stochastic θ method (2.2) obey

E|Xk|p ≤ C
(
1 + |F0|p

)
, k = 1, 2, 3, . . . ,

where C is a constant that cannot rely on k.

Proof From (2.2), we have

∣∣Xk+1 – θ f (Xk+1, Rk)h
∣∣2

=
∣∣Xk – θ f (Xk , Rk)h

∣∣2 + 2
〈
Xk , f (Xk , Rk)h

〉
+ (1 – 2θ )

∣∣f (Xk+1, Rk)
∣∣2h2

+
∣∣g(Xk , Rk)�Bk

∣∣2 +
2
θ

〈
Xk , g(Xk , Rk)�Bk

〉

–
2(1 – θ )

θ

〈
Xk – θ f (Xk , Rk)h, g(Xk , Rk)�Bk

〉
.
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Due to the fact that θ ∈ [ 1
2 , 1], 1 – 2θ ≤ 0, we get

∣∣Xk+1 – θ f (Xk+1, Rk)h
∣∣2

=
∣∣Xk – θ f (Xk , Rk)h

∣∣2 + 2
〈
Xk , f (Xk , Rk)h

〉
+
∣∣g(Xk , Rk)�Bk

∣∣2

+
2
θ

〈
Xk , g(Xk , Rk)�Bk

〉
–

2(1 – θ )
θ

〈
Xk – θ f (Xk , Rk)h, g(Xk , Rk)�Bk

〉
.

Denote

Fk+1 = Xk+1 – θ f (Xk+1, Rk)h.

Then we have

|Fk+1|2 ≤ |Fk|2 + 2
〈
Xk , f (Xk , Rk)h

〉
+
∣∣g(Xk , Rk)�Bk

∣∣2

+
2
θ

〈
Xk , g(Xk , Rk)�Bk

〉
–

2(1 – θ )
θ

〈
Fk , g(Xk , Rk)�Bk

〉
,

1 + |Fk+1|2 ≤ 1 + |Fk|2
{

1 +
1

1 + |Fk|2
[

2
〈
Xk , f (Xk , Rk)h

〉
+
∣∣g(Xk , Rk)�Bk

∣∣2

+
2
θ

〈
Xk , g(Xk , Rk)�Bk

〉
–

2(1 – θ )
θ

〈
Fk , g(Xk , Rk)�Bk

〉]}

≤ 1 + |Fk|2
{

1 + ϑk(Rk , θ )
}

,

where

ϑk(Rk , θ ) =
1

1 + |Fk|2
[

2
〈
Xk , f (Xk , Rk)h

〉
+
∣∣g(Xk , Rk)�Bk

∣∣2

+
2
θ

〈
Xk , g(Xk , Rk)�Bk

〉
–

2(1 – θ )
θ

〈
Fk , g(Xk , Rk)�Bk

〉]
.

Noting that

(1 + u)
p
2 ≤ 1 +

p
2

u +
p(p – 2)

8
u2 +

p(p – 2)(p – 4)
48

u3, u ≥ –1,

and ϑk(Rk , θ ) > –1, then we have

E
((

1 + |Fk+1|2
) p

2 |Ftk

)

≤ (
1 + |Fk|2

) p
2 E

(
1 +

p
2
ϑk(Rk , θ ) +

p(p – 2)
8

ϑ2
k (Rk , θ )

+
p(p – 2)(p – 4)

48
ϑ3

k (Rk , θ )
∣∣∣Ftk

)
.

(3.2)

Hence

E
(
ϑk(Rk , θ )|Ftk

)
=

2〈Xk , f (Xk , Rk)h〉 + |g(Xk , Rk)|2h
1 + |Fk|2 ,
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where E(�Bk|Ftk ) = 0 and E(|�Bk|2|Ftk ) = h is used, and we have E(|�Bk|2i|Ftk ) = Chi,
E(|�Bk|2i–1|Ftk ) = Chi– 1

2 . i = 2, 3, . . . , we compute

E
(
ϑ2

k (Rk , θ )|Ftk

)

≥ 4〈Xk , f (Xk , Rk)h〉|g(Xk , Rk)|2h – 8(1–θ )
θ2 〈Xk , g(Xk , Rk)〉〈Fk , g(Xk , Rk)〉h

(1 + |Fk|2)2 ,

E
(
ϑ3

k (Rk , θ )|Ftk

)≤ Ch2.

(3.3)

Substituting these three estimates into (3.2), we get

E
((

1 + |Fk+1|2
) p

2 |Ftk

)

≤ (
1 + |Fk|2

) p
2

{
1 +

p
2

[
2〈Xk , f (Xk , Rk)h〉 + |g(Xk , Rk)|2h

1 + |Fk|2
]

+
p(p – 2)

8

[4〈Xk , f (Xk , Rk)h〉|g(Xk , Rk)|2h – 8(1–θ )
θ2 〈Xk , g(Xk , Rk)〉〈Fk , g(Xk , Rk)〉h

(1 + |Fk|2)2

]

+
p(p – 2)(p – 4)

48
Ch2

}

≤ (
1 + |Fk|2

) p
2
{

1 +
p
2
[
(2μrk + σ )h + αrk h + C1h2]

}
+ C2h

≤ (
1 + |Fk|2

) p
2
{

1 +
p
2
[
(2μrk + αrk )h + σh + C1h2]

}
+ C2h.

Letting h1 be a constant such that h1 ∈ (0, h], C1h1 ≤ 3ε
4 , σ ≤ 1

8ε and (|ξ |+ 7
8ε)h1 < 1 (where

|ξ | = maxi∈S |ξi|), we arrive at, for h ∈ (0, h1],

E
((

1 + |Fk+1|2
) p

2 |Ftk

)≤ (
1 + |Fk|2

) p
2

[
1 +

p
2

(
ξrk +

7
8
ε

)
h
]

+ C2h.

Since this holds for all k ≥ 0, we also compute

E
((

1 + |Fk+1|2
)p/2|Ftk–1

)

≤ E
((

1 + |Fk|2
)p/2|Ftk–1

)[
1 +

p
2

(
ξrk +

7
8
ε

)
h
]

+ C2h

≤ (
1 + |Fk|2

)p/2
k∏

i=k–1

[
1 +

p
2

(
ξri +

7
8
ε

)
h
]

+ C2h
[

1 +
p
2

(
ξri +

7
8
ε

)
h
]

+ C2h.

Repeating this procedure yields

E
((

1 + |Fk+1|2
)p/2|F0

)≤ (
1 + |F0|2

)p/2
k∏

i=0

[
1 +

p
2

(
ξri +

7
8
ε

)
h
]

+ C2h
k∑

j=1

E

[

E

( k∏

i=k–j+1

(
1 +

p
2

(
ξri +

7
8
ε

)
h
)∣∣∣Fk–j

)]

+ C2h
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≤ (
1 + |F0|2

)p/2
k∏

i=0

[
1 +

p
2

(
ξri +

7
8
ε

)
h
]

+ C2h
k∑

j=1

E

[ j∏

i=1

(
1 +

p
2

(
ξri +

7
8
ε

)
h
)]

+ C2h.

Then we have

E
((

1 + |Fk+1|2
)p/2|F0

)≤ (
1 + |F0|2

)p/2
E

[

exp

( k∑

i=0

log

(
1 +

p
2

(
ξri +

7
8
ε

)
h
))]

+ C2h
k∑

j=1

E

[

exp

( j∑

i=1

log

(
1 +

p
2

(
ξri +

7
8
ε

)
h
))]

+ C2h

= A1 + A2 + C2h.

We reduce h to ensure that

p
2

(
ξi +

7
8
ε

)
h > –1, i ∈ S.

With the inequality

log(1 + x) ≤ x, x ≥ –1,

we derive that

lim
j→∞

1
j

j∑

i=1

log

(
1 +

p
16

(8ξri + 7ε)h
)

=
∑

i∈S

ηi log

(
1 +

p
16

(8ξri + 7ε)h
)

≤ ph
16

∑

i∈S

ηi(8ξri + 7ε) = –
εph
16

, a.s.

which implies

lim
j→∞ exp

(
εphj
32

+
j∑

i=1

log

(
1 +

p
16

(8ξri + 7ε)h
))

= 0, a.s.

By virtue of the Fatou lemma, we have

lim
j→∞ supE

[

exp

(
εphj
32

+
j∑

i=1

log

(
1 +

p
16

(8ξri + 7ε)h
))]

= 0.

There is a positive integer N such that

E

[

exp

( j∑

i=1

log

(
1 +

p
16

(8ξri + 7ε)h
))]

≤ exp

(
–

εph
32

j
)

, ∀j > N . (3.4)
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So

A1 ≤ (
1 + |F0|2

) p
2

(
1 +

p
16

(8ξr0 + 7ε)h
)

exp

(
–

εph
32

k
)

, ∀k > N . (3.5)

Then we know

N∑

j=1

E

[

exp

( j∑

i=1

log

(
1 +

p
2

(
ξri +

7
8
ε

)
h
))]

≤
N∑

j=1

(
1 +

p
2

(
|ξ | +

7
8
ε

)
h
)i

≤ C2.

Together with (3.4), it implies

A2 ≤ C2h
∞∑

j=N+1

E

[

exp

( j∑

i=1

log

(
1 +

p
2

(
ξri +

7
8
ε

)
h
))]

≤ C2h
k∑

j=N+1

exp

(
–

εph
32

j
)

, ∀k > N .

(3.6)

Using (3.6) and (3.5), we obtain

E
((

1 + |Fk+1|2
)p/2)≤ C2h + C2

(
1 + |F0|2

)p/2
exp

(
–

εph
32

(
k ∨ (N + 1)

))

+ C2h
k∨(N+1)∑

j=N+1

exp

(
–

εph
32

j
)

≤ C3
(
1 + |F0|p

)
, ∀k > 0.

Then a ≥ 0,

|Fk+1|2 =
∣∣Xk+1 – θ f (Xk+1, Rk)

∣∣2 = |Xk+1|2 – 2
〈
Xk+1, θ f (Xk+1, Rk)h

〉
+ θ2∣∣f (Xk+1, Rk)

∣∣2

≥ |Xk+1|2 – 2θh
(
μrk |Xk+1|2 + a

)

≥ |Xk+1|2 – 2θhμrk |Xk+1|2 – 2aθh

≥ |Xk+1|2 – 2θhμrk |Xk+1|2.

Letting μrk �= 1
2θh , |μ̃| := maxi∈S |μi|, we have

E
(|Xk+1|p

)≤ E((1 + |Fk+1|2)p/2)
1 – 2θhμrk

≤ E((1 + |Fk+1|2)p/2)
1 – 2θh|μ̃|

since

E|Xk|p ≤ C3
(
1 – 2θh|μ̃|)–1(1 + |F0|p

)

≤ C
(
1 + |F0|p

)
.

The proof is complete. �
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Lemma 3.4 Let Assumptions 2.4, 2.5, and 3.1 hold. Then, for h ∈ (0, h1) and any two initial
values x, y ∈R

n with x �= y, the solutions generated by the stochastic θ method (2.2) satisfy

E
∣∣Xx,i

k – Xy,i
k
∣∣p ≤ C

(
1 + |F0|p

)
e– pkhε

16 ,

where ε is defined as (3.1).

Proof From (2.2), we have

∣∣∣∣Xx,i
k+1 – Xy,i

k+1
∣∣ – θh

∣∣f
(
Xx,i

k+1, Ri
k
)

– f
(
Xy,i

k+1, Ri
k
)∣∣∣∣2

=
∣∣∣∣Xx,i

k – Xy,i
k
∣∣ – θhf

(
Xx,i

k , Ri
k
)

– f
(
Xy,i

k , Ri
k
)∣∣2 + 2

〈
Xx,i

k – Xy,i
k , f

(
Xx,i

k , Ri
k
)

– f
(
Xy,i

k , Ri
k
)
h
〉

+ (1 – 2θ )
∣∣f
(
Xx,i

k+1, Ri
k
)

– f
(
Xy,i

k+1, Ri
k
)∣∣2h2 +

∣∣g
(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)
�Bk

∣∣2

+
2
θ

〈
Xx,i

k – Xy,i
k , g

(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)
�Bk

〉

–
2(1 – θ )

θ

〈
Xk – θ f (Xk , Rk)h, g

(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)
�Bk

〉
.

Due to the fact that θ ∈ [ 1
2 , 1], 1 – 2θ ≤ 0, we get

∣∣∣∣Xx,i
k+1 – Xy,i

k+1
∣∣ – θh

∣∣f
(
Xx,i

k+1, Ri
k
)

– f
(
Xy,i

k+1, Ri
k
)∣∣∣∣2

=
∣∣∣∣Xx,i

k – Xy,i
k
∣∣ – θh

∣∣f
(
Xx,i

k , Ri
k
)

– f
(
Xy,i

k , Ri
k
)∣∣∣∣2

+ 2
〈
Xx,i

k – Xy,i
k , f

(
Xx,i

k , Ri
k
)

– f
(
Xy,i

k , Ri
k
)
h
〉

+
∣∣g
(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)
�Bk

∣∣2 +
2
θ

〈
Xx,i

k – Xy,i
k , g

(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)
�Bk

〉

–
2(1 – θ )

θ

〈∣∣Xx,i
k – Xy,i

k
∣∣ – θh

∣∣f
(
Xx,i

k , Ri
k
)

– f
(
Xy,i

k , Ri
k
)∣∣,

g
(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)
�Bk

〉
.

Denote

Fk+1 =
∣∣Xx,i

k+1 – Xy,i
k+1
∣∣ – θ

∣∣f
(
Xx,i

k+1, Ri
k
)

– f
(
Xy,i

k+1, Ri
k
)∣∣h,

|Fk+1|2 ≤ |Fk|2 + 2
〈
Xx,i

k – Xy,i
k , f

(
Xx,i

k , Ri
k
)

– f
(
Xy,i

k , Ri
k
)
h
〉

+
∣∣g
(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)
�Bk

∣∣2

+
2
θ

〈
Xx,i

k – Xy,i
k , g

(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)
�Bk

〉

–
2(1 – θ )

θ

〈
Fk , g

(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)
�Bk

〉
,

1 + |Fk+1|2 ≤ 1 + |Fk|2
{

1 + ϑk(Rk , θ )
}

,

where

ϑk(Rk , θ ) =
1

1 + |Fk|2
[

2
〈
Xx,i

k – Xy,i
k , f

(
Xx,i

k , Ri
k
)

– f
(
Xy,i

k , Ri
k
)
h
〉

+
∣∣g
(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)
�Bk

∣∣2
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+
2
θ

〈
Xx,i

k – Xy,i
k , g

(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)
�Bk

〉

–
2(1 – θ )

θ

〈
Fk , g

(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)
�Bk

〉]
.

Noting that

(1 + u)
p
2 ≤ 1 +

p
2

u +
p(p – 2)

8
u2 +

p(p – 2)(p – 4)
48

u3, u ≥ –1,

and ϑk(Rk , θ ) > –1, we have

E
((

1 + |Fk+1|2
) p

2 |Ftk

)

≤ (
1 + |Fk|2

) p
2 E

(
1 +

p
2
ϑk(Rk , θ ) +

p(p – 2)
8

ϑ2
k (Rk , θ )

+
p(p – 2)(p – 4)

48
ϑ3

k (Rk , θ )
∣∣∣Ftk

)
.

(3.7)

Hence

E
(
ϑk(Rk , θ )|Ftk

)
=

2〈Xx,i
k – Xy,i

k , f (Xx,i
k , Ri

k) – f (Xy,i
k , Ri

k)h〉 + |g(Xx,i
k , Ri

k) – g(Xy,i
k , Ri

k)|2h
1 + |Fk|2 ,

where E(�Bk|Ftk ) = 0 and E(|�Bk|2|Ftk ) = h are used, and we have E(|�Bk|2i|Ftk ) = Chi,
E(|�Bk|2i–1|Ftk ) = Chi– 1

2 , i = 2, 3, . . . . We compute

E
(
ϑ2

k (Rk , θ )|Ftk

)

≥
{

4
〈
Xx,i

k – Xy,i
k , f

(
Xx,i

k , Ri
k
)

– f
(
Xy,i

k , Ri
k
)
h
〉∣∣g
(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)∣∣2h

–
8(1 – θ )

θ2

〈
Xx,i

k – Xy,i
k , g

(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)〉〈

Fk , g
(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)〉

h
}

× 1
(1 + |Fk|2)2 ,

E
(
ϑ3

k (Rk , θ )|Ftk

)≤ Ch2.

(3.8)

Substituting these three estimates into (3.7), we get

E
((

1 + |Fk+1|2
) p

2 |Ftk

)

≤ (
1 + |Fk|2

) p
2

{
1 +

p
2
[
(2μrk + σ )h + αrk h + C1h2]

}

≤ (
1 + |Fk|2

) p
2

{
1 +

p
2
[
(2μrk + αrk )h + σh + C1h2]

}
.

(3.9)

Letting h1 be a constant such that h1 ∈ (0, h], C1h1 ≤ 3ε
4 , σ ≤ 1

8ε and (|ξ |+ 7
8ε)h1 < 1 (where

|ξ | = maxi∈S |ξi|), we arrive at, for h ∈ (0, h1],

E
((

1 + |Fk+1|2
) p

2 |Ftk

)≤ (
1 + |Fk|2

) p
2

[
1 +

p
2

(
ξri

n
+

7
8
ε

)
h
]

.
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Since this holds for all k ≥ 0, we also compute

E
((

1 + |Fk+1|2
) p

2 |Ftk

)≤ (
1 + |F0|2

) p
2 E

[k–1∏

n=0

(
1 +

p
2

h
(

ξri
n

+
7
8
ε

))]

≤ (
1 + |F0|2

) p
2 E

[

exp

( k–1∑

n=0

log

(
1 +

p
2

h
(

ξri
n

+
7
8
ε

)))]

.

We further reduce h to ensure that

p
2

h
(

ξi +
7
8
ε

)
> –1, i ∈ S.

With the inequality

log(1 + x) ≤ x, x > –1.

By the ergodic property of the Markov chain, we derive that

lim
k→∞

1
k

k–1∑

n=0

log

[
1 +

p
2

h
(

ξri
n

+
7
8
ε

)]
=
∑

i∈S

ηi log

[
1 +

p
2

h
(

ξri
n

+
7
8
ε

)]
≤ –

phε

16
, a.s.

Therefore we have

lim
k→∞

[
pkhε

16
+

k–1∑

n=0

log

(
1 +

p
2

h
(

ξri
n

+
7
8
ε

))]

= –∞, a.s.

By the Fatou lemma, we obtain

lim
k→∞

E

[

exp

(
pkhε

16
+

k–1∑

n=0

log

(
1 +

p
2

h
(

ξri
n

+
7
8
ε

)))]

= 0.

We get

E
((

1 + |Fk+1|2
) p

2 |Ftk

)≤ C2
(
1 + |F0|2

) p
2 e– pkhε

16 , ∀k > 0.

Then a ≥ 0,

|Fk+1|2 =
∣∣Xx,i

k+1 – Xy,i
k+1 – θ f

(
Xx,i

k+1, Ri
k
)

– f
(
Xy,i

k+1, Ri
k
)∣∣2

≥ ∣∣Xx,i
k+1 – Xy,i

k+1
∣∣2 – 2θhμrk

∣∣Xx,i
k+1 – Xy,i

k+1
∣∣2 – 2aθh

≥ ∣∣Xx,i
k+1 – Xy,i

k+1
∣∣2 – 2θhμrk

∣∣Xx,i
k+1 – Xy,i

k+1
∣∣2.

(3.10)

Letting μrk �= 1
2θh , |μ̃| := maxi∈S |μi|,

E
(∣∣Xx,i

k+1 – Xy,i
k+1
∣∣p)≤ E((1 + |Fk+1|2)p/2)

1 – 2θhμrk

≤ E((1 + |Fk+1|2)p/2)
1 – 2θh|μ̃| .
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We obtain

E
∣∣Xx,i

k – Xy,i
k
∣∣p ≤ C

(
1 + |F0|p

)
e– pkhε

16 .

The proof is complete. �

Lemma 3.5 Given Assumptions 2.6, 2.7, and 3.2, the solutions generated by the stochastic
θ method (2.2) obey

E

(
sup

0≤k≤n
|Xk|p

)
≤ C, k = 1, 2, 3, . . . ,

where C is a constant that can rely on k.

Combining Lemmas 3.3, 3.4, 3.5 and using Chebyshev’s inequality, we derive the ex-
istence and uniqueness of the stationary distribution of the stochastic θ method with
θ ∈ [1/2, 1] from Theorem 2.2.

3.2 The convergence
Given Assumptions 2.4 to 3.2, the convergence of the numerical stationary distribution to
the underlying stationary distribution is discussed in this subsection.

Recall that the probability measure induced by the numerical solution Xx,i
k is denoted

by Pk((x, i), · × ·); similarly we denote the probability measure induced by the underlying
solution x(t) by P̄t((x, i) · × ·).

Lemma 3.6 Let Assumptions 2.4 to 3.2 hold and fix any initial data (x, i) ∈R
n × S. Then,

for any given T1 > 0 and ε > 0, there exists sufficiently small h∗ > 0 such that

dL

(
P̄kh

(
(x, i), · × ·),Pk

(
(x, i), · × ·)) < ε

provided that h < h∗ and kh ≤ T1.

The result can be derived from the finite time strong convergence of the stochastic θ

method [35].
Now we are ready to show that the numerical stationary distribution converges to the

underlying stationary distribution as time step diminishes.

Theorem 3.7 Given Assumptions 2.4 to 3.2, we have

lim
h→0

dL

(
	h(· × ·),π (· × ·)) = 0.

Proof Fix any initial value (x, i) ∈R
n × S and set ε > 0 to be an arbitrary real number. Due

to the existence and uniqueness of the stationary distribution of the underlying equation,
there exists �∗ > 0 such that, for any t > �∗,

dL

(
P̄t
(
(x, i), · × ·),π (· × ·)) < ε/3.
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Similarly, by Theorem 2.2, there exists a pair of h∗∗ > 0 and �∗∗ > 0 such that

dL

(
Pk
(
(x, i), · × ·),	h(· × ·)) < ε/3

for all h < h∗∗ and kh > �∗∗. Let � = max(�∗,�∗∗), from Lemma 3.6 there exists h∗ such
that, for any h < h∗ and kh < � + 1,

dL

(
P̄kh

(
(x, i), · × ·),Pk

(
(x, i), · × ·)) < ε/3.

Therefore, for any h < min(h∗, h∗∗), set k = [�h] + 1/h, we see that the assertion holds by
the triangle inequality. �

3.3 θ ∈ [0, 1/2)
We need to add the global Lipschitz and linear growth conditions on the drift coefficient.
It is worth mentioning here that we only need to use the one-sided Lipschitz conditions
in Sect. 3.1.

Assumption 3.8 Assume that there exists a constant K > 0 such that, for any x, y ∈ R
n

and i ∈ S,

∣∣f (x, i) – f (y, i)
∣∣2 ≤ K |x – y|2.

Assumption 3.9 There exist positive constants κ and c such that, for any x ∈ R
n and i ∈ S,

∣∣f (x, i)
∣∣2 ≤ κ|x|2 + c.

In addition, we require the following two assumptions.

Assumption 3.10 Let, for any i ∈ S, there exist a constant αi ∈ R, the inequality

|x – y|2∣∣g(x, i) – g(y, i)
∣∣2 – (p – 2)

∣∣〈x – y, g(x, i) – g(y, i)
〉∣∣2 ≤ αi|x – y|4

holds.

For simplicity, define

ξi = 2μi + αi, ξ = (ξ1, . . . , ξN )T , ε = |ηξ |, (3.11)

where assume ηξ < 0.
The next assumption can be derived from Assumption 3.10.

Assumption 3.11 Let, for any i ∈ S, there exist a constant αi ∈R and d > 0, the inequality

|x|2∣∣g(x, i)
∣∣2 + (p – 2)

∣∣xT g(x, i)
∣∣2 ≤ αi|x|4 + d|x|2

holds.
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Lemma 3.12 Let Assumptions 2.6, 3.9, and 3.11 hold, then for h ∈ (0, h), the solutions gen-
erated by the stochastic θ method (2.2) obey

E|Xk|p ≤ C
(
1 + |X0|p

)
, k = 0, 1, 2, . . . ,

where C is a constant that does not rely on k.

The proof is the same as that of Lemma 3.3.

Lemma 3.13 Let Assumptions 2.4, 3.8, and 3.10 hold. Then, for h ∈ (0, h∗) and any two
initial values x, y ∈ R

n with x �= y, the solutions generated by the stochastic θ method (2.2)
satisfy

E
∣∣Xx,i

k – Xy,i
k
∣∣p ≤ C|x – y|pe– pkhε

16 ,

where C is a constant that does not rely on k and ε is defined as (3.11).

The proof is the same as that of Lemma 3.4.

Lemma 3.14 Let Assumptions 2.6, 3.9, and 3.11 hold, the solutions generated by the
stochastic θ method (2.2) obey

E

(
sup

0≤k≤n
|Xk|p

)
≤ C, k = 1, 2, 3, . . . ,

where C is a constant that does rely on k.

The proof is the same as that of Lemma 3.5.
Combining Lemmas 3.12, 3.13, 3.14 and using Chebyshev’s inequality, we derive the

existence and uniqueness of the stationary distribution of the stochastic θ method with
θ ∈ [0, 1/2) from Theorem 2.2.

4 Simulations
We present two numerical examples in this section to support our theoretical results.

Example 4.1 Consider the SDEs

dX(t) = –2X(t) dt + 2 dB(t) (4.1)

and

dX(t) =
(
–0.5X(t) – 0.5X3(t)

)
dt + dB(t). (4.2)

Let R(t) be a Markov chain with the state space S = {1, 2} and the generator is

Q =

(
–5 5
1 –1

)

,

initial value X(0) = 2, R(0) = 1.
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Figure 1 Equation (4.1)

Figure 2 Equation (4.2)

Figures 1 and 2 show the empirical probability density functions of equation (4.1) and
equation (4.2), we choose step size h = 0.001, T = 10, θ = 1/2, and we simulate 10,000 paths
by MATLAB. It can be seen from Figs. 1 and 2 that with the time advancing the density
functions tend to a stable one, which indicates the existence of the stationary distribution.
Figure 3 shows empirical probability density functions after switching according to tran-
sition probability matrix. The initial value, step size, and the number of paths are the same
as above. From this figure the equations still have a stationary distribution. These three
pictures look very similar, but the distribution trends are different. Figure 4 shows the
difference of three different empirical probability density functions when the termination
time T = 10.

We use the Kolmogorov–Smirnov test (K–S test) to measure the differences between
the empirical distributions. Figure 5 shows the differences between successive empirical
density functions for the SDEs with Markovian switching. We can see from Fig. 5 that the
difference between the empirical distributions gradually decreases, which shows that the
empirical distributions can quickly converge to a stationary distribution.
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Figure 3 Empirical probability density functions after switching

Figure 4 Empirical probability density functions when T = 10

Figure 5 The difference between two adjacent empirical probability density functions after switching
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Figure 6 The difference between two adjacent empirical probability density functions for the
two-dimensional equations after switching

Example 4.2 Consider a two-dimensional SDE

d

[
X1(t)
X2(t)

]

=

[
2X1(t) + X3

1 (t) + X1(t)X2(t)
1 + X2(t) + X3

2 (t) + X2(t)X1(t)

]

dt +

[
X1(t)
X2(t)

]

dB(t), (4.3)

d

[
X1(t)
X2(t)

]

=

[
–X3

1 (t) – 5X1(t) + X2(t) + 5
–X3

2 (t) – X1(t) – 5X2(t) + 5

]

dt +

[
X1(t) – X2(t) + 3

–X1(t) – X2(t) + 3

]

dB(t). (4.4)

Let the initial value X1(0) = 2, X2(0) = 3, and the generator is

Q =

(
–1 1
6 –6

)

.

We set the step size to be 0.01, T = 2, θ = 1/2, and 10,000 paths. It is obvious that the
first function (4.3) has no stationary distribution and the numerical solutions tend to in-
finity. Compared with the first two-dimensional equation, the second one has stationary
distribution. Besides, Fig. 6 shows the differences between successive empirical density
functions for the SDEs with Markovian switching. It shows that the empirical distribu-
tion tends to a stationary one quite fast. That is to say, for the equations without station-
ary distribution, the distribution of these equations can reach a stable state quickly after
switching.

5 Conclusion
This paper studies the numerical stationary distributions generated by the stochastic θ

methods. We study when one or more equations in the switching system do not have
the stationary distribution, equations still have a unique stationary distribution after a
period of switching. Both the drift and diffusion coefficients are required to satisfy the
global Lipschitz condition when θ ∈ [0, 1/2). But some super-linear terms are allowed to
appear in the drift coefficient when θ ∈ [1/2, 1]. Two numerical examples are given to show
the convergence of the numerical stationary distributions to their true counterparts. The
figures also support our theoretical results.
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Appendix

Proof of Lemma 3.3 The proof of equation (3.3) is the following:

E
(
ϑ2

k (Rk , θ )|Ftk

)

≥
{

4
〈
Xk , f (Xk , Rk)h

〉2 +
∣∣g(Xk , Rk)�Bk

∣∣4 +
4
θ2

〈
Xk , g(Xk , Rk)�Bk

〉2

+
4(1 – θ )2

θ2

〈
Fk , g(Xk , Rk)�Bk

〉2 + 4
〈
Xk , f (Xk , Rk)h

〉∣∣g(Xk , Rk)�Bk
∣∣2

+
8
θ

〈
Xk , f (Xk , Rk)h

〉〈
Xk , g(Xk , Rk)�Bk

〉

–
8(1 – θ )

θ

〈
Xk , f (Xk , Rk)h

〉〈
Fk , g(Xk , Rk)�Bk

〉

+
4
θ

〈
Xk , g(Xk , Rk)�Bk

〉∣∣g(Xk , Rk)�Bk
∣∣2

–
4(1 – θ )

θ

〈
Fk , g(Xk , Rk)�Bk

〉∣∣g(Xk , Rk)�Bk
∣∣2

–
8(1 – θ )

θ2

〈
Xk , g(Xk , Rk)�Bk

〉〈
Fk , g(Xk , Rk)�Bk

〉} 1
(1 + |Fk|2)2

≥ 4〈Xk , f (Xk , Rk)h〉|g(Xk , Rk)|2h – 8(1–θ )
θ2 〈Xk , g(Xk , Rk)〉〈Fk , g(Xk , Rk)〉h

(1 + |Fk|2)2 . �

Proof of Lemma 3.4 The proof of equation (3.8) is the following:

E
(
ϑ2

k (Rk , θ )|Ftk

)

≥
{

4
〈
Xx,i

k – Xy,i
k , f

(
Xx,i

k , Ri
k
)

– f
(
Xy,i

k , Ri
k
)
h
〉2 +

∣∣g
(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)
�Bk

∣∣4

+
4
θ2

〈
Xx,i

k – Xy,i
k , g

(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)
�Bk

〉2

+
4(1 – θ )2

θ2

〈
Fk , g

(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)
�Bk

〉2

+ 4
〈
Xx,i

k – Xy,i
k , f

(
Xx,i

k , Ri
k
)

– f
(
Xy,i

k , Ri
k
)
h
〉∣∣g
(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)
�Bk

∣∣2

+
8
θ

〈
Xx,i

k – Xy,i
k , f

(
Xx,i

k , Ri
k
)

– f
(
Xy,i

k , Ri
k
)
h
〉〈

Xx,i
k – Xy,i

k , g
(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)
�Bk

〉

–
8(1 – θ )

θ

〈
Xx,i

k – Xy,i
k , f

(
Xx,i

k , Ri
k
)

– f
(
Xy,i

k , Ri
k
)
h
〉〈

Fk , g
(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)
�Bk

〉

+
4
θ

〈
Xx,i

k – Xy,i
k , g

(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)
�Bk

〉∣∣g
(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)
�Bk

∣∣2

–
4(1 – θ )

θ

〈
Fk , g

(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)
�Bk

〉∣∣g
(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)
�Bk

∣∣2

–
8(1 – θ )

θ2

〈
Xx,i

k – Xy,i
k , g

(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)
�Bk

〉

× 〈
Fk , g

(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)
�Bk

〉} 1
(1 + |Fk|2)2

≥
{

4
〈
Xx,i

k – Xy,i
k , f

(
Xx,i

k , Ri
k
)

– f
(
Xy,i

k , Ri
k
)
h
〉∣∣g
(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)∣∣2h
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–
8(1 – θ )

θ2

〈
Xx,i

k – Xy,i
k , g

(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)〉〈

Fk , g
(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)〉

h
}

× 1
(1 + |Fk|2)2 .

The proof of equation (3.9) is the following:

E
((

1 + |Fk+1|2
) p

2 |Ftk

)

≤ (
1 + |Fk|2

) p
2

×
{

1 +
p
2

[
2〈Xx,i

k – Xy,i
k , f (Xx,i

k , Ri
k) – f (Xy,i

k , Ri
k)h〉 + |g(Xx,i

k , Ri
k) – g(Xy,i

k , Ri
k)|2h

1 + |Fk|2
]

+
p(p – 2)

8(1 + |Fk|2)2

[
4
〈
Xx,i

k – Xy,i
k , f

(
Xx,i

k , Ri
k
)

– f
(
Xy,i

k , Ri
k
)
h
〉∣∣g
(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)∣∣2h

–
8(1 – θ )

θ2

〈
Xx,i

k – Xy,i
k , g

(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)〉〈

Fk , g
(
Xx,i

k , Ri
k
)

– g
(
Xy,i

k , Ri
k
)〉

h
]

+
p(p – 2)(p – 4)

48
Ch2

}

≤ (
1 + |Fk|2

) p
2

{
1 +

p
2
[
(2μrk + σ )h + αrk h + C1h2]

}

≤ (
1 + |Fk|2

) p
2

{
1 +

p
2
[
(2μrk + αrk )h + σh + C1h2]

}
.

The proof of equation (3.10) is the following:

|Fk+1|2 =
∣∣Xx,i

k+1 – Xy,i
k+1 – θ f

(
Xx,i

k+1, Ri
k
)

– f
(
Xy,i

k+1, Ri
k
)∣∣2

=
∣∣Xx,i

k+1 – Xy,i
k+1
∣∣2 – 2

〈
Xx,i

k+1 – Xy,i
k+1, θhf

(
Xx,i

k+1, Ri
k
)

– f
(
Xy,i

k+1, Ri
k
)〉

+ θ2∣∣f
(
Xx,i

k+1, Ri
k
)

– f
(
Xy,i

k+1, Ri
k
)∣∣2

≥ ∣∣Xx,i
k+1 – Xy,i

k+1
∣∣2 – 2θh

(
μrk

∣∣Xx,i
k+1 – Xy,i

k+1
∣∣2 + a

)

≥ ∣∣Xx,i
k+1 – Xy,i

k+1
∣∣2 – 2θhμrk

∣∣Xx,i
k+1 – Xy,i

k+1
∣∣2 – 2aθh

≥ ∣∣Xx,i
k+1 – Xy,i

k+1
∣∣2 – 2θhμrk

∣∣Xx,i
k+1 – Xy,i

k+1
∣∣2. �
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