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Abstract
In this paper we have proposed a stochastic model for studying the dynamics of
tuberculosis (TB) by incorporating vaccination of newly born babies. The total
population in this model is subdivided in to four compartments, namely susceptible
S(t), infected I(t), vaccinated newborns V(t), and recovered R(t). First, the developed
model is expressed and analyzed by the deterministic approach. Since this approach
neglects the randomness of the dynamics of the process, it has great limitations in
the modeling process. To avoid this kind of issues, we transform the deterministic
approach into a stochastic one, which is known to play a significant role by providing
additional degree of realism compared to the deterministic approach. The analysis of
the model is done employing both approaches. The invariant region, positivity of the
solution, equilibrium points and their stability are checked. According to the analysis,
we came to realize that the basic reproduction number for the stochastic approach is
smaller than the deterministic one. We have conducted various numerical
experiments and obtained interesting simulation results which indicate that a
combination of increased newborn vaccination and appropriate treatment of
infected individuals have a great contribution in combating TB. It is worth mentioning
that the simulation results confirm the conclusion drawn from the qualitative analysis
of the model.
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1 Introduction
Tuberculosis (TB) is a bacterial disease caused by Mycobacterium tuberculosis and is usu-
ally acquired through airborne infection from someone who has active TB (smear-positive
TB) while coughing, sneezing talking, and singing [5, 6]. It usually attacks the lungs and
can also affect other parts of the body like central nervous system, lymphatic system, brain
and spine or kidney. The symptoms for active TB include fever, weight loss, chest pain,
coughing up blood, feeling tired all the time, night sweets, loss of appetite, and anorexia
[4].

Today among infectious diseases TB is a major public health concern in the developing
countries. It affects all countries and age groups, but overall the best estimates for 2018
were that 89% of cases were adults (57% were male, 32% were adult women) and 11% were
children. Furthermore, 8.6% were people living with HIV (72% of them in Africa) [22].
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Most TB cases in 2018 were in the WHO regions of Southeast Asia (44%), Africa (24%)
and the Western Pacific (18%), with smaller percentages in the Eastern Mediterranean
(8%), the Americas (3%), and Europe (3%). Eight countries accounted for two-thirds of the
global total: India (27%), China (9%), Indonesia (8%), the Philippines (6%), Pakistan (6%),
Nigeria (4%), Bangladesh (4%), and South Africa (3%). These and 22 other countries in
WHO’s list of 30 high TB burden countries accounted for 87% of the world’s cases [11].

It is also one of the most serious public health challenges in Ethiopia, killing more than
30 thousand people every year [2]. Ethiopia ranks third in Africa and eighth among the
22 highest tuberculosis burdened countries in the world that collectively account for 80%
of tuberculosis cases (Federal Ministry of Health [10]). It disproportionately affects young
people: 58% of prevalent TB cases in Ethiopia are under 35 years of age, 39% of the esti-
mated 32,000 deaths per year are concentrated among those from 15 to 64 years of age,
leading to losses of family wage earners and parents of small children. This is an additional
direct and indirect burden on Ethiopia’s youth, who are the backbone of the current and
future economy [3].

Individuals can prevent TB by proper treatment, that is, taking all doctor prescribed
medicines for the specified time period, keeping all doctor’s appointments, always cov-
ering the mouth with a tissue when coughing or sneezing, placing the used paper tissues
in a plastic bag, then throwing them away, washing hands after coughing or sneezing,
not visiting other people and not inviting them for a visit, as well as staying home from
work, school or other public places, using a fan or open windows to move around fresh
air, not using public transportation. Vaccination is another preventer [18]. Vaccine which
is used for TB disease is Bacillus Calmette Guerin (BCG). In 1973, BCG vaccine was part
of the immunization program [14]. BCG’s efficacy on preventing pulmonary TB in adults
is highly variable [21]. The BCG vaccination of newborns significantly reduces the risk of
TB by over 50% on average [8]. Newborn usually refers to a baby from birth to about two
months of age [9].

Mathematical modeling has been an important tool in analyzing the spread and control
of infectious diseases and also in making decision as regards the intervention mechanisms
for the control of infectious diseases [1]. Understanding the transmission characteristics
of the infectious diseases in communities, regions, and countries can lead to better ap-
proaches to decrease the transmission of these diseases [17].

Modeling is necessary for the infectious TB for a number of reasons, for example, since
TB has a complex and poorly understood natural history, the fact that it is not easy to
conduct interventional research due to the lag between infection and the disease, the be-
havior of the susceptible population needs to be studied more, economic challenges in
conducting interventions in low and middle income countries, and due to many unan-
swered questions about the impact of interventions [23]. Since transmission of the M.
tuberculosis and infection of TB are influenced by various complex biological processes,
the existence of randomness in the transmission dynamics of the disease could be believed
[12]. Taking into consideration all these factors, today a stochastic model of TB is common
by introducing perturbation in the parameters. Moreover, the authors of [16] constructed
a deterministic SIR type model of TB epidemic and conducted a simulation by using fourth
order Runge–Kutta method. The result shows that the TB spread can be restrained from
an epidemic by sending down the spreading rate and increasing the recovery rate. A way
to decrease the spreading rate is by keeping at a distance a TB-infected individual from
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the susceptible population, while to increase the recovery rate, maximal treatment needs
to be conducted. But they did not analyze the model qualitatively. The work done by [15]
developed two deterministic models of TB spread, which are SIR and SEIR. By imple-
menting Lyapunov function method, it was obtained that the disease would disappear if
the basic reproduction number was less than one, and it would persist if the basic repro-
duction number was greater than one. Additionally, the authors of [7] formulated a series
of mathematical models to study the dynamics of TB. They formulated a distributed delay
model to study the effect of long and variable periods of latency on the disease dynamics,
which showed qualitative behavioral change at a critical value R0 = 1. When R0 < 1, a sta-
ble disease-free equilibrium existed and, for R0 > 1, the disease-free equilibrium became
unstable, and a unique endemic equilibrium existed. But they did not discuss sensitivity
analysis of the basic reproduction number. Another model they formulated considered
the role of nonadherence to drug taking by TB patients on the development and mainte-
nance of antibiotic-resistant TB strain. Moreover, the authors of [13] studied a determin-
istic tuberculosis transmission dynamics model with vaccination and treatment for both
high-risk latent and active TB infected classes. The reproduction number was calculated
and the equilibrium points were described. They showed that the disease-free equilibrium
point P∗

0 is globally asymptotically stable when R0 < 1, so that the disease dies out. Finally,
they showed that an increase in the treatment and vaccination coverage gives rise to a de-
crease in the number of infected TB patients. Since the efficiency of the BCG vaccine is
not complete, they assumed that some portion of vaccinated individuals will be suscep-
tible to bacteria, but they did not consider the immunity waning in the vaccinated host.
Moreover, the authors of [20] also developed a stochastic SVIR epidemic model of TB.
Their investigations covered two important aspects: exponential stability of the disease-
free equilibrium and optimal control of vaccination. Regarding stability, the main result of
their paper has a particularly simple formulation. Essentially, they said that they have al-
most sure exponential stability whenever the basic reproduction number of the underlying
deterministic model is below unity. It will be good to know how an increase in vaccina-
tion rate would lead to better stability of the stochastic model. In their study numerical
simulation enabled them to assess the feasibility of the option they followed for specific
examples. We know that the transmission of different diseases is not the same, so that the
developed model may not work for some diseases.

In this paper we developed an SVIRS stochastic model for the spread of tuberculosis
considering vaccination of newborns. The paper is organized as follows. Section 2 intro-
duces the formulation and description of the proposed tuberculosis model. In Sect. 3,
the analysis of the model is discussed. Section 4 discusses a numerical simulation for the
model. Finally, Sect. 5 contains discussion and conclusions.

2 Model formulation and description
The proposed model divides the entire population into four compartments or classes ac-
cording to their disease status: susceptible S(t), infected I(t), vaccinated V (t), and recov-
ered R(t).

The susceptible class, S(t), consists of individuals of all age groups in the population
who have not come into effective contact with the Mycobacterium. The infected class,
I(t), consists of individuals of all age groups infected with TB in the active stage; from
the infected class an individual gets treatment and moves to the recovered class R(t). The
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vaccinated class, V (t), consists of individuals who had been vaccinated when they were
newborns and still possess partial immunity against TB.

The vaccinated class is increased by birth with the recruitment π of probability p (0 ≤
p ≤ 1).

The susceptible class is increased by birth with recruitment rate π of probability (1 – p)
and from vaccinated class V with rate b (b ≥ 0), as well as from the recovered class R with
rate α.

In all subclasses, μ1 is the natural death rate, μ2 the disease-induced death rate for in-
dividuals in compartment I , β is the probability that susceptible (S) and vaccinated (V )
individuals become infected by one infectious individual per contact per unit of time.

And then, the rate at which the susceptible individuals are infected is βc; the rate at
which the vaccinated individuals are infected is γβc. Here 0 ≤ γ ≤ 1. If γ = 0 then the vac-
cination protection efficacy is 100%, if γ = 1 then the vaccination protection effectiveness
is 0, and 1–γ represents the reduction in infection risk due to vaccination effectiveness.
Also r is the rate at which an infected individual leaves the infectious compartment I and
joins the class R.

The model is based on the SVIRS transmission model. The total population size at time
t is denoted by N(t), and therefore we have N(t) = S(t) + V (t) + I(t) + R(t).

2.1 Assumptions
1. Here we assume a homogeneous mixing of individuals in the population which

means that every uninfected individual has an equal likelihood of being infected
when coming into adequate contact with infectious individuals and that transmission
of the infection occurs with a standard incidence rate.

2. We also assume that some recruits will emerge in the susceptible class, S, at a rate
(1 – p)π and the vaccinated class V at a rate pπ .

3. The efficacy of the BCG vaccine is not complete so that some portion of vaccinated
individuals will be infected by bacteria.

4. Due to the immunity waning in the vaccinated host, some portion of vaccinated
individuals will be susceptible to bacteria with rate b.

5. Due to loss of immunity, we assume that recovered individuals move to the
susceptible class at rate α.

6. We further assume that all parameters used in this model are positive.
Considering the definitions, assumptions, and interrelations between the variables and

the parameters, the basic dynamics of TB with vaccination for newborns is illustrated as
a flow diagram in Fig. 1.

From the above flow diagram, the following system of differential equations is obtained:

⎧
⎪⎪⎨

⎪⎪⎩

ds
dt = (1 – p)π + bV + αR – μ1S – βcSI, dV

dt = pπ – γβcVI – (b + μ1)V ,
dI
dt = βcSI + γβcVI – (μ1 + μ2 + r)I,
dR
dt = rI – αR – μ1R,

(1)

with initial conditions

S(0) = S0 ≥ 0, V (0) = V0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0.
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Figure 1 Flow diagram of the model

The deterministic approach has some limitations in the mathematical modeling of trans-
mission of an infectious disease because biological processes involved in the dynamics of
TB are stochastic rather than deterministic, so neglecting their built-in randomness may
lead to misleading and erroneous results [12].

Stochastic differential equation (SDE) models play a significant role in various branches
as they provide some additional degree of realism compared to their deterministic coun-
terparts. Recently, many authors have introduced parameter perturbation into epidemic
models and have studied their dynamics.

Therefore, in this study taking account of the effect of randomly fluctuating environ-
ment, we incorporate white noise in each equation of model (1). Suppose that some
stochastic environmental factor acts simultaneously on each individual in the population.
We use Wi(t) for the mutually independent standard Brownian motions with Wi(0) = 0
and σi (i = 1, 2, 3, 4), the intensities of white noise. By introducing stochastic perturbation,
the stochastic version corresponding to the deterministic model (1) takes the following
form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS = [(1 – p)π + bV + αR – μ1S – βcSI] dt + σ1S dW1(t),

dV = [pπ – γβcVI – (b + μ1)V ] dt + σ2V dW2(t),

dI = [βCSI + γβcVI – (μ1 + μ2 + r)I] dt + σ3I dW3(t),

dR = [rI – αR – μ1R] dt + σ4R dW4(t).

(2)

3 Qualitative analysis of the model
In this section, the invariant region, positivity of solution, disease-free equilibrium point,
endemic equilibrium point, basic reproduction number, as well as local and global stability
of disease-free equilibrium point are discussed.

3.1 Positivity of solution
In this subsection, we show all solutions of the models (1) and (2) remain positive for future
time if their respective initial values are positive.

Theorem 1 Let the initial data be ((S0, V0, I0, R0) > 0) ∈ �. Then, the solution set {S(t), V (t),
I(t), R(t)} of system (1) is positive for all t ≥ 0.

Proof From the third equation of model system (1),

dI
dt

= βCSI + γβCVI – (μ1 + μ2 + r)I
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�⇒ dI
dt

≥ –(μ1 + μ2 + r)I

�⇒ dI
I

≥ –(μ1 + μ2 + r) dt

�⇒
∫ dI

I
≥

∫

–(μ1 + μ2 + r) dt, integrating both sides

�⇒ ln I ≥ –(μ1 + μ2 + r)t + k, where k is a constant

�⇒ eln(I) ≥ e(–(μ1+μ2+r)t+k)

�⇒ I(t) ≥ e–(μ1+μ2+r)t .ek

�⇒ I(t) ≥ A.e–(μ1+μ2+r)t , where ek = A

�⇒ I(t) > I(0).e–(μ1+μ2+r)t , since A = I(0) at t = 0

�⇒ I(t) > I(0).0, since lim
t→∞ e–(μ1+μ2+r)t = 0

�⇒ I(t) > 0.

Hence, this proves that I(t) > 0 for all t ≥ 0.
From the first equation of model system (1),

dS
dt

= (1 – p)π + bV + αR – μ1S – βCSI =
[
(1 – p)π + bV + αR

]
– (βCI + μ1)S

�⇒ dS
dt

≥ –(βCI + μ1)S

�⇒ dS
S

≥ –(βCI + μ1) dt

�⇒ dS
S

≥ –(λ + μ1) dt, where λ = βCI > 0

�⇒
∫ dS

S
≥

∫

–(λ + μ1) dt, integrating both sides

�⇒ ln S ≥ –(λ + μ1)t + k, where k is a constant

�⇒ eln(S) ≥ e(–(λ+μ1)t+k)

�⇒ S(t) ≥ e–(λ+μ1)t .ek

�⇒ S(t) ≥ A.e–(λ+μ1)t , where ek = A

�⇒ S(t) > S(0).e–(λ+μ1)t , since A = S(0) at t = 0

�⇒ S(t) > S(0) > 0, since lim
t→∞ e–(λ+μ1)t = 0

�⇒ S(t) > 0.

This proves that S(t) > 0 for all t ≥ 0. Similarly it can be shown that the remaining vari-
ables of the system are positive for all t ≥ 0. �

3.2 Invariant region
In this subsection, we obtain a region in which the solutions of (1) and (2) are bounded.
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Theorem 2 The feasible solution set {S, V , I, R} of the model remains bounded in the region
� = {(S, V , I, R)εR4

+ : 0 ≤ N ≤ π
μ1

}.

Proof For this model the total human population is N = S + V + I + R. Then, after differen-
tiating N with respect to time and substituting the expression for dS

dt , dV
dt , dI

dt , dR
dt and from

Eq. (1), we obtain

dN
dt

= π – μ1N – μ2I. (3)

If there is no infected individual in the population (i.e., I = 0), Eq. (3) becomes

dN
dt

≤ π – μ1N . (4)

Solving equation (4) gives us, 0 ≤ N ≤ π
μ1

.
Therefore � = {(S, V , I, R)εR4

+ : 0 ≤ N ≤ π
μ1

} is an invariant set for the systems (1) and
(2). �

3.3 Disease-free equilibrium point
In this subsection we determine the equilibrium point at which the disease is eradicated
from the population.

We consider the state where there is no infection, i.e., I = R = 0.
By taking the second equation of model (1) and making it equal to zero, we have

pπ – γβCVI – (b + μ1)V = 0. (5)

Since I = 0 in our consideration, Eq. (4) becomes

pπ – (b + μ1)V = 0 �⇒ (b + μ1)V = pπ �⇒ V =
pπ

(b + μ1)
,

hence V 0 =
pπ

(b + μ1)
.

Similarly, by taking the first equation of the model (1) and making it equal to zero, we
have

(1 – p)π + bV + αR – μ1S – βCSI = 0. (6)

Since I = R = 0 in our consideration, Eq. (6) becomes (1 – p)π + bV –μ1S = 0, and solving
for S, we obtain

S =
[ b
μ1

+ (1 – p)]π
b + μ1

.

Hence,

S0 =
[(1 – p) + b

μ1
]π

b + μ1
.

Therefore, our model has DEF given by E0 = (S0, V 0, I0, R0) = (
[(1–p)+ b

μ1
]π

b+μ1
, pπ

b+μ1
, 0, 0).
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3.4 Endemic equilibrium point
In this subsection we obtain the equilibrium point at which the disease persists in the
population.

The endemic equilibrium (EE) of the system (1) is obtained by equating all equations of
the model to zero:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1 – p)π + bV + αR – μ1S – βCSI = 0,

pπ – γβCVI – (b + μ1)V = 0,

βCSI + γβCVI – (μ1 + μ2 + r)I = 0,

rI – αR – μ1R = 0.

(7)

Adding all the equations of system (7) gives π –μ1N –μ2I = 0, and solving for I , we have

I∗ =
π – μ1N

μ2
. (8)

From the fourth equation in (6), we have,

rI – αR – μ1R = 0

�⇒ rI – (α + μ1)R = 0

�⇒ (α + μ1)R = rI

�⇒ R =
rI

α + μ1
=

r[ π–μ1N
μ2

]
α + μ1

=
r[π – μ1N]
μ2(α + μ1)

,

from (8). Hence,

R∗ =
r[π – μ1N]
μ2(α + μ1)

. (9)

From the second equation in (6), we have

pπ – γβCVI – (b + μ1)V = 0

�⇒ pπ – (γβCVI + b + μ1)V = 0

�⇒ (γβCI + b + μ1)V = pπ

�⇒ V =
pπ

γβCI + b + μ1
=

pπ

γβC( π–μ1N
μ2

) + b + μ1
,

from (8).
Hence,

V ∗ =
pπ

γβC( π–μ1N
μ2

) + b + μ1
. (10)

From the first equation in (7) we have

(1 – p)π + bV + αR – μ1S – βCSI = 0
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�⇒ (1 – p)π + bV + αR – (μ1 + βCI)S = 0

�⇒ (μ1 + βCI)S = (1 – p)π + bV + αR

�⇒ S =
(1 – p)π + bV + αR

μ1 + βCI

�⇒ S∗ =
(1 – p)π + bV ∗ + αR∗

μ1 + βCI∗ ,

from (8), (9), and (10).
Hence,

S∗ =
(1 – p)π + bV ∗ + αR∗

μ1 + βCI∗ . (11)

Therefore, by (8), (9), (10), and (11) our model has EE given by

E∗ =
(
S∗, V ∗, I∗, R∗)

=
(

(1 – p)π + bV ∗ + αR∗

μ1 + βCI∗ ,
pπ

γβC( π–μ1N
μ2

) + b + μ1
,
π – μ1N

μ2
,

r[π – μ1N]
μ2(α + μ1)

)

.

3.5 Basic reproduction number
The basic reproduction number (R0) is defined as the average number of secondary infec-
tions caused by a typical infected individual during his entire period of infectiousness.

There are two types of basic reproduction, the deterministic and stochastic R0.

3.5.1 Basic reproduction number for deterministic model
By the principle of next generation matrix [19], we consider the following equation from
the model (1):

dI
dt

= βCSI + γβCVI – (μ1 + μ2 + r)I.

The next generation matrices are given by

f = [βCSI + γβCVI], v =
[
(μ1 + μ2 + r)I

]

The next step is obtaining the Jacobian matrices of f and v by differentiating with respect
to I and at the disease-free equilibrium E0.

The Jacobian matrices of f and v is obtained as F and V , respectively, where

F =
[

∂f
∂I

]

= [βCS + γβCV ], V =
[

∂v
∂I

]

= [μ1 + μ2 + r].

The Jacobian matrices F and V at the disease-free equilibrium pointE0 are

F =
[

βC
[(1 – p) + b

μ1
]π

b + μ1
+ γβC

pπ

b + μ1

]

,

V =
[
(μ1 + μ2 + r)

]
and V –1 =

[
1

μ1 + μ2 + r

]

.
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Then the product of F and V –1 becomes

FV –1 =
[

βC
[(1 – p) + b

μ1
]π

b + μ1
+ γβC

pπ

b + μ1

]

∗
[

1
μ1 + μ2 + r

]

=
[ [(1 – p) + b

μ1
+ γ p]βCπ

b + μ1

]

∗
[

1
μ1 + μ2 + r

]

�⇒ FV –1 =
[ [(1 – p) + b

μ1
+ γ p]βCπ

(b + μ1)(μ1 + μ2 + r)

]

.

The eigenvalue of FV –1 can be obtained from

∣
∣
∣
∣

[(1 – p) + b
μ1

+ γ p]βCπ

(b + μ1)(μ1 + μ2 + r)
– λ

∣
∣
∣
∣ = 0,

�⇒ λ =
[(1 – p) + b

μ1
+ γ p]βCπ

(b + μ1)(μ1 + μ2 + r)
=

βCπ [(1 – p) + b
μ1

+ γ p]
(b + μ1)(μ1 + μ2 + r)

.

Hence by the principle of next generation matrix, the dominant eigenvalue is the basic
reproduction number.

Therefore, RD
0 =

βCπ [(1–p)+ b
μ1

+γ p]
(b+μ1)(μ1+μ2+r) .

3.5.2 Basic reproduction number for stochastic model
We take the second equation of the model system (2) ,which is,

dI =
[
βCSI + γβCVI – (μ + d + r)I

]
dt + σ3I dW3(t). (12)

Using Ito’s formula for a twice differentiable function f (I) = ln(I), its expansion in Taylor
series is

df
(
t, I(t)

)
=

∂f
∂t

dt +
∂f
∂I

dI +
1
2

∂2f
∂I2 (dI)2 +

∂2f
∂t∂I

dt dI +
1
2

∂2f
∂t2 (dt)2,

�⇒ df
(
t, I(t)

)
= 0.dt +

1
I
[[

βCSI + γβCVI – (μ1 + μ2 + r)I
]

dt + σ3I dW3(t)
]
]

–
1

2I2

[[
βCSI + γβCVI – (μ1 + μ2 + r)I

]
dt + σ3I dW3(t)

]2

+
∂f

∂t∂I
dt

[[
βCSI + γβCVI – (μ1 + μ2 + r)I

]
dt + σ3I dW3(t)

]
+ 0(dt)2

�⇒ df
(
t, I(t)

)
=

[[
βCS + γβCV – (μ1 + μ2 + r)

]
dt + σ3 dW3(t)

]

–
1

2I2

[
a2(dt)2 + 2ab dt dW2(t) + b2(dW2(t)

)2],

where a = βCSI + γβCVI – (μ1 + μ2 + r)I and b = σ3I ,

�⇒ df
(
t, I(t)

)
=

[
βCS + γβCV – (μ1 + μ2 + r)

]
dt + σ3 dW3(t) –

1
2I2

[
b2(dW2(t)

)2]

�⇒ df
(
t, I(t)

)
=

[
βCS + γβCV – (μ1 + μ2 + r)

]
dt + σ3 dW3(t) –

1
2I2

[
σ 2

3 I2]dt.
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Since in the limit dt → 0, (dt)2 and dt dW2 (t) →0 faster than (dW2(t))2, which is
dtfor(dW2(t))2 (due to the variance of Wiener process),

�⇒ df
(
t, I(t)

)
=

[
βCS + γβCV – (μ1 + μ2 + r)

]
dt + σ3 dW3(t) –

1
2
σ 2

3 dt

�⇒ df
(
t, I(t)

)
=

[

βCS + γβCV – (μ1 + μ2 + r) –
1
2
σ 2

3

]

dt + σ3 dW3(t)

�⇒ df
(
t, I(t)

)
=

[

βCS + γβCV –
1
2
σ 2

3 – (μ1 + μ2 + r)
]

dt + σ3 dW3(t).

The next generation matrices are F = [βCS + γβCV – 1
2σ 2

3 ]and V = [μ1 + μ2 + r].
Now F and V at the disease-free equilibrium become:

F =
[

βC[(1 – p) + b
μ1

]π
b + μ1

+
γβC[pπ ]

b + μ1
–

1
2
σ 2

3

]

and V = [μ1 + μ2 + r].

Thus

V –1 =
1

(μ1 + μ2 + r)
.

The product of F and V –1 is obtained as

FV –1 =
[

βC[(1 – p) + b
μ1

]π
b + μ1

+
γβC[pπ ]

b + μ1
–

1
2
σ 2

3

]

∗ 1
(μ1 + μ2 + r)

=
[

βCπ [(1 – p) + b
μ1

+ γ p]
b + μ1

–
1
2
σ 2

3

]

∗ 1
(μ + d + r)

=
βCπ [(1 – p) + b

μ1
+ γ p]

(b + μ1)(μ1 + μ2 + r)
–

σ 2
3

2(μ1 + μ2 + r)
.

The eigenvalue of FV –1 can be obtained from

∣
∣
∣
∣

βCπ [(1 – p) + b
μ1

+ γ p]
(b + μ1)(μ1 + μ2 + r)

–
σ 2

3
2(μ1 + μ2 + r)

– λ

∣
∣
∣
∣ = 0

�⇒ λ =
βCπ [(1 – p) + b

μ1
+ γ p]

(b + μ1)(μ1 + μ2 + r)
–

σ 2
3

2(μ1 + μ2 + r)
.

By the principle of next generation matrix, the dominant eigenvalue is the basic reproduc-
tion number.

Hence,

RS
0 =

βCπ [(1 – p) + b
μ1

+ γ p]
(b + μ1)(μ1 + μ2 + r)

–
σ 2

3
2(μ1 + μ2 + r)

�⇒ RS
0 = RD

0 –
σ 2

3
2(μ1 + μ2 + r)

.

Therefore, RS
0 < RD

0 because the stochastic version approximate reality closer than the
deterministic one.
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3.6 Local stability of disease-free equilibrium point
3.6.1 Local stability of disease-free equilibrium for deterministic model
Theorem 3 The disease-free equilibrium point for the deterministic model is locally
asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof To prove the stability of the disease-free equilibrium pint for the deterministic
model, we obtain the Jacobian matrix of the system at the disease-free equilibrium (E0).

The Jacobian matrix of the system (1) is

J =

⎡

⎢
⎢
⎢
⎣

∂K1
∂S

∂K1
∂V

∂K1
∂I

∂K1
∂R

∂K2
∂S

∂K2
∂V

∂K2
∂I

∂K2
∂R

∂K3
∂S

∂K3
∂V

∂K3
∂I

∂K3
∂R

∂K4
∂S

∂K4
∂V

∂K4
∂I

∂K4
∂R

⎤

⎥
⎥
⎥
⎦

where

K1 = (1 – p)π + bV + αR – μ1S – βCSI = 0,

K2 = pπ – γβCVI – (b + μ1)V = 0,

K3 = βCSI + γβCVI – (μ1 + μ2 + r)I = 0, and

K4 = rI – αR – μ1R = 0, so that

J =

⎡

⎢
⎢
⎢
⎣

–(βCI + μ1) b –βCS α

0 –(γβCI + b + μ1) –γβCV 0
βCI γβCI [βCS + γβCV – (μ1 + μ2 + r)] 0

0 0 r –(α + μ1)

⎤

⎥
⎥
⎥
⎦

.

The Jacobian matrix of the system at the disease-free equilibrium is

J
(
E0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

–μ1 b –βCπ [
[(1–p)+ b

μ1
]π

b+μ1
] α

0 –(b + μ1) – γβCpπ

b+μ1
0

0 0 [βCπ [
[(1–p)+ b

μ1
]π

b+μ1
] + γβCpπ

b+μ1
– (μ1 + μ2 + r)] 0

0 0 r –(α + μ1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The eigenvalues of J (E0) can be obtained from |J(E0) – λI| = 0, that is,

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

–μ1 – λ b –βCπ [
[(1–p)+ b

μ1
]π

b+μ1
] α

0 –(b + μ1) – λ – γβCpπ

b+μ1
0

0 0 βCπ [
[(1–p)+ b

μ1
]π

b+μ1
] + γβCpπ

b+μ1
– (μ1 + μ2 + r) – λ 0

0 0 r –(α + μ1) – λ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0,

–(d + λ)

∣
∣
∣
∣
∣
∣
∣

–(b + μ1 + λ) – γβCpπ

b+μ1
0

0 βCπ [
[(1–p)+ b

μ1
]π

b+μ1
] + γβCpπ

b+μ1
– (μ1 + μ2 + r + λ) 0

0 r –(α + μ1 + λ)

∣
∣
∣
∣
∣
∣
∣

= 0.
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Then,

–(μ1 + λ)
[
–(b + μ1 + λ)

]

∣
∣
∣
∣
∣
∣

βCπ [(1–p)+ b
μ1

]
b+μ1

+ γβCpπ

b+μ1
– (μ1 + μ2 + r + λ) 0

r –(α + μ1 + λ)

∣
∣
∣
∣
∣
∣

= 0,

–(μ1 + λ)
[
–(b + μ1 + λ)

]
[[

βCπ [(1 – p) + b
μ1

]
b + μ1

+
γβCpπ

b + μ1
– (μ1 + μ2 + r + λ)

]

× [
–(α + μ1 + λ)

]
]

= 0 (13)

�⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–(μ1 + λ) = 0,

–(b + μ1 + λ) = 0,

[
βCπ [(1–p)+ b

μ1
]

b+μ1
+ γβCpπ

b+μ1
– (μ1 + μ2 + r + λ)][–(α + μ1 + λ)] = 0.

(14)

From the first equation in (14), we have –(μ1 + λ) = 0 �⇒ λ1 = –μ1 < 0.
From the second equation in (14), we have–(b + μ1 + λ) = 0 �⇒ λ2 = –(b + μ1) < 0.
From the third equation in (14), we have

[
βCπ [(1 – p) + b

μ1
]

b + μ1
+

γβCpπ

b + μ1
– (μ1 + μ2 + r + λ)

]
[
–(α + μ1 + λ)

]
= 0

�⇒
[

βCπ [(1 – p) + b
μ1

+ γ p]
b + μ1

]
[
–(α + μ1 + λ)

]

+ [μ1 + μ2 + r + λ][α + μ1 + λ] = 0

�⇒ –
[

βCπ [(1 – p) + b
μ1

+ γ p]
b + μ1

]

[α + μ1]

–
[

βCπ [(1 – p) + b
μ1

+ γ p]
b + μ1

]

λ + μ2(α + μ1) + μ2λ + μ1(α + μ1) + μ1λ

+ r(α + μ1) + rλ + (α + μ1)λ + λ2 = 0

�⇒ λ2 +
[

βCπ [(1 – p) + b
μ1

+ γ p]
b + μ1

+ μ2 + 2μ1 + r + α

]

λ + (α + μ1)

×
[

–
βCπ [(1 – p) + b

μ1
+ γ p]

b + μ1
+ μ2 + μ1 + r

]

= 0

�⇒ λ2 + Bλ + c = 0, where B =
βCπ [(1 – p) + b

μ1
+ γ p]

b + μ1
+ μ2 + 2μ1 + r + α

and

C = (α + μ1)
[

–
βCπ [(1 – p) + b

μ1
+ γ p]

b + μ1
+ μ2 + μ1 + r

]

= 0.

According to Routh–Hurwitz stability criterion formula for the second-degree polyno-
mial, one needs both roots in the open left half-plane (and then the system of the char-
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acteristic equation is stable) which is true if and only if both coefficients are greater than
zero [20].

Since B > 0, we want to show C > 0. Now

C > 0 if
[

–
βCπ [(1 – p) + b

μ1
+ γ p]

b + μ1
+ μ1 + μ2 + r

]

> 0

�⇒ βCπ [(1 – p) + b
μ1

+ γ p]
b + μ1

– (μ1 + μ2 + r) < 0

�⇒ βCπ [(1 – p) + b
μ1

+ γ p]
b + μ1

< (μ1 + μ2 + r)

�⇒ βCπ [(1 – p) + b
μ1

+ γ p]
(b + μ1)(μ1 + μ2 + r)

<
(μ1 + μ2 + r)
(μ1 + μ2 + r)

�⇒ βCπ [(1 – p) + b
μ1

+ γ p]
(b + μ1)(μ1 + μ2 + r)

< 1

�⇒ RD
0 < 1.

Therefore, the disease-free equilibrium (E0)is locally asymptotically stable if RD
0 < 1. �

3.6.2 Local stability of disease free equilibrium point for stochastic model
Theorem 4 For the extinction of disease from a community, RS

0 should be less than1 (i.e.,
RS

0 < 1).
If RS

0 < 1, then for any given initial value (S(0), V (0), I(0), R(0)) = (S0, V0, I0, R0) ∈ R4
+, I(t)

obeys limt→∞ sup 1
t ln(I(t)) ≤ (μ1 + μ2 + r)(RS

0 – 1) < 0 a.s.
Namely, I(t) tends to zero exponentially almost surely. In other words, the disease dies

out with probability one.

Proof By using Eq. (12),

df
(
t, I(t)

)
=

[

βCS + γβCV –
1
2
σ 2

3 – (μ1 + μ2 + r)
]

dt + σ3 dW3(t)

�⇒ d ln(I) =
[

βCS + γβCV –
1
2
σ 2

3 – (μ1 + μ2 + r)
]

dt + σ3 dW3(t).

By integrating both sides, we have

ln(I) = ln(I0) +
∫ t

0

[

βCS + γβCV –
1
2
σ 2

3 – (μ1 + μ2 + r)
]

dt +
∫ t

0
σ3 dW3(t)

�⇒ ln(I) = ln(I0) +
[

βCS + γβCV –
1
2
σ 2

3 – (μ1 + μ2 + r)
]

t +
∫ t

0
σ3 dW3(t)

�⇒ ln(I) ≤ ln(I0) +
[

βCπ [(1 – p) + b
μ1

+ γ p]
b + μ1

–
1
2
σ 2

3 – (μ1 + μ2 + r)
]

t

+
∫ t

0
σ3 dW3(t); at disease-free equilibrium point E0

�⇒ ln(I) ≤ ln(I0) +
[

βCπ [(1 – p) + b
μ1

+ γ p]
b + μ1

–
1
2
σ 2

3 – (μ1 + μ2 + r)
]

t



Tilahun et al. Advances in Difference Equations        (2020) 2020:658 Page 15 of 24

+ G(t), (15)

where for the martingale G(t) =
∫ t

0 σ3 dW3(t),by the strong law of large numbers for mar-
tingales (X. Mao, 1997), we have limt→∞ sup G(t)

t = 0 almost surely.
Dividing both sides of (15) by t and letting t → ∞,

lim
t→∞ sup

1
t

ln
(
I(t)

) ≤ βCπ [(1 – p) + b
μ1

+ γ p]
b + μ1

–
1
2
σ 2

3 – (μ1 + μ2 + r)

= (μ1 + μ2 + r)
[
βCπ [(1 – p) + b

μ1
+ γ p]

(b + μ1)(μ1 + μ2 + r)
–

σ 2
3

2(μ1 + μ2 + r)
– 1

]

= (μ1 + μ2 + r)
(
RS

0 – 1
)

< 0

�⇒ (
RS

0 – 1
)

< 0.

Hence, RS
0 < 1.

Therefore, for the extinction of disease from a community RS
0 should be less than 1. �

Theorem 5 For persistence of disease in the community, RS
0 should be greater than 1 (i.e.,

RS
0 > 1). If RS

0 > 1, then for any given initial value I(0)ε(0, π
d ), the solution of the stochastic

differential equation model (2) obeys

lim
t→∞ sup

(
I(t)

) ≥ ξ almost surely, (16)

where ξ is a positive root of g(I) = βC(N – (V + I + R)) + γβC(N – (S + I + R)) – 1
2σ 2

3 – (μ1 +
μ2 + r) = 0.

Proof In view of RS
0 > 1, we have

g(0) = βC
(
N – (V + R)

)
+ γβC

(
N – (S + R)

)
+ –

1
2
σ 2

3 – (μ1 + μ2 + r),

g(0) = βCS + γβCV –
1
2
σ 2

3 – (μ1 + μ2 + r),

g(0) =
βCπ [(1 – p) + b

μ1
+ γ p]

b + μ1
–

1
2
σ 2

3 – (μ1 + μ2 + r)

= (μ1 + μ2 + r)
[

βCπ [(1 – p) + b
μ1

+ γ p]
(b + μ1)(μ1 + μ2 + r)

–
σ 2

3
2(μ1 + μ2 + r)

– 1
]

= (μ1 + μ2 + r)
(
RS

0 – 1
)

> 0.

And

g(N) = –βC(V + R) – γβC(S + R) –
1
2
σ 2

3 – (μ1 + μ2 + r)

= –βCS – γβCV –
1
2
σ 2

3 – (μ1 + μ2 + r)

= –
[

βCS + γβCV +
1
2
σ 2

3 + (μ1 + μ2 + r)
]
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= –(μ1 + μ2 + r)
[

βCπ [(1 – p) + b
μ1

+ γ p]
(b + μ1)(μ1 + μ2 + r)

+
σ 2

3
2(μ1 + μ2 + r)

+ 1
]

= –(μ1 + μ2 + r)
[

RD
0 +

σ 2
3

2(μ1 + μ2 + r)
+ 1

]

= –(μ1 + μ2 + r)
[

RS
0 +

σ 2
3

(μ1 + μ2 + r)
+ 1

]

= –(μ1 + μ2 + r)
[
(
RS

0 + 1
)

+
σ 2

3
(μ1 + μ2 + r)

]

< 0.

Then g(I) admits a zero ξε (0, π
d ), moreover, g(I) is decreasing around ξ , so we can easily

show that for any sufficiently small ε > 0, we have

g(ξ + ε) < 0 < g(ξ – ε). (17)

We now prove assertion (16). If it is not true, then there is a sufficiently small ε > 0
such that p (�1) > 0 where �1 = {limt→∞ sup(I(t) ≤ ξ – 2ε}, hence for every ωε�1 there is
T(ω) > 0 such that

0 ≤ I(t,ω) ≤ g(ξ – ε), for all t ≥ T(ω). (18)

It therefore follows from (17) and (18) that

g
(
I(t,ω)

) ≥ g(ξ – ε), ∀t ≥ T(ω). (19)

Moreover, by the strong law of large numbers for martingales, there is a �2 ⊂ � with
P(�2) = 1 such that for every ω ∈ �2, limt→∞ sup G(t)

t = 0 almost surely.
Now, fix any ω ∈ �1 ∩ �2. It then follows from (19) that, for t ≥ T (ω),

log I(t,ω) = log I(0) +
∫ T(ω)

0
g
(
I(S)

)
ds +

∫ t

T(ω)
g
(
I(S)

)
ds + G(t)

≥ log I(0) +
∫ T(ω)

0
g
(
I(S)

)
ds + g(ξ – ε)

(
t – T(ω)

)
+ G(t).

This yields, limt→∞ inf 1
t log I(t,ω) ≥ g(ξ – ε) > 0, where limt→∞ I(t,ω) = ∞.

This contradicts (17) and the required assertion (16) must therefore hold, i.e.,
limt→∞ sup(I(t) ≥ ξ almost surely. �

3.7 Global stability of disease-free equilibrium point
Theorem 6 If RD

0 < 1, then the DFE is globally asymptotically stable in the feasible region
�.

Proof Let X = (S, V , I, R)T and consider a Lyapunov function V (x) = [(1 – p) + b
μ1

+ γ p]I .
Direct calculation leads to

dV
dt

=
[

(1 – p) +
b
μ1

+ γ p
]

dI
dt
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=
[

(1 – p) +
b
μ1

+ γ p
]
[
βCSI + γβCVI – (μ1 + μ2 + r)I

]

=
[

(1 – p) +
b
μ1

+ γ p
]
(
βCS + γβCV – (μ1 + μ2 + r)

)
I

≤
[

(1 – p) +
b
μ1

+ γ p
]
(
βCS0 + γβCV 0 – (μ1 + μ2 + r)

)
I

=
[

(1 – p) +
b
μ1

+ γ p
]
(
βCS0 + γβCV 0 – (μ1 + μ2 + r)

)
I

=
[

(1 – p) +
b
μ1

+ γ p
]

(μ1 + μ2 + r)
(

βC
S0 + γ V 0

μ1 + μ2 + r
– 1

)

I

=
[

(1 – p) +
b
μ1

+ γ p
]

(μ1 + μ2 + r)
(

βCπ [(1 – p) + b
μ1

+ γ p]
(b + μ1)(μ1 + μ2 + r)

– 1
)

I

=
[

(1 – p) +
b
μ1

+ γ p
]

(μ1 + μ2 + r)
(
RD

0 – 1
)
I < 0, whenever RD

0 < 1.

Therefore, the DFE is globally asymptotically stable in the feasible region � if RD
0 < 1. �

3.8 Sensitivity analysis of basic reproduction number
Sensitivity analysis for the basic reproduction number R0 is being investigated to iden-
tify the parameters that have high impact on expansion or control of the disease in the
community.

To perform this, we use normalized sensitivity index, ϒ
R0
m = ∂R0

∂m ∗ m
R0

, where m is any
parameter in R0.

For m = β ,

ϒ
R0
β =

∂R0

∂β
∗ β

R0
=

Cπ [(1 – p) + b
μ1

+ γ p]
(a + μ1)(μ1 + μ2 + r)

∗ β(b + μ1)(μ1 + μ2 + r)
βCπ [(1 – p) + b

μ1
+ γ p]

= 1 > 0.

For m = c,

ϒR0
c =

∂R0

∂c
∗ c

R0
=

βπ [(1 – p) + b
μ1

+ γ p]
(a + μ1)(μ1 + μ2 + r)

∗ C(b + μ1)(μ1 + μ2 + r)
βCπ [(1 – p) + b

μ1
+ γ p]

= 1 > 0.

For m = π ,

ϒR0
π =

∂R0

∂π
∗ π

R0
=

βC[(1 – p) + b
μ1

+ γ p]
(a + μ1)(μ1 + μ2 + r)

∗ π (b + μ1)(μ1 + μ2 + r)
βCπ [(1 – p) + b

μ1
+ γ p]

= 1 > 0.

For m = γ ,

ϒR0
γ =

∂R0

∂γ
∗ γ

R0
=

βCπp
(a + μ1)(μ1 + μ2 + r)

∗ γ (b + μ1)(μ1 + μ2 + r)
βCπ [(1 – p) + b

μ1
+ γ p]

=
γ p

(1 – p) + b
μ1

+ γ p
> 0.
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For m = b,

ϒ
R0
b =

∂R0

∂b
∗ b

R0
=

βCπ [ b+μ1
μ1

(1 – p) + b
μ1

+ γ p]
(b + μ1)2(μ1 + μ2 + r)

∗ b(b + μ1)(μ1 + μ2 + r)
βCπ [(1 – p) + b

μ1
+ γ p]

=
bp(1 – γ )

(1 – p) + b
μ1

+ γ p
,

hence, ϒR0
b = bp(1–γ )

(1–p)+ b
μ1

+γ p
> 0.

For m = p,

ϒR0
p =

∂R0

∂p
∗ p

R0
=

βCπ (γ – 1)
(b + μ1)(μ1 + μ2 + r)

∗ p(b + μ1)(μ1 + μ2 + r)
βCπ [(1 – p) + b

μ1
+ γ p]

=
p(γ – 1)

(1 – p) + b
μ1

+ γ p
< 0.

For m = μ2,

ϒR0
μ2 =

∂R0

∂μ2
∗ μ2

R0
=

–(b + μ1)βCπ [(1 – p) + b
μ1

+ γ p]
(b + μ1)2(μ1 + μ1 + r)2 ∗ μ2(b + μ1)(μ1 + μ2 + r)

βCπ [(1 – p) + b
d + γ p]

=
–μ2

μ1 + μ2 + r
< 0.

For m = r,

ϒR0
r =

∂R0

∂r
∗ r

R0
=

–(b + μ1)βCπ [(1 – p) + b
μ1

+ γ p]
(b + μ1)2(μ1 + μ2 + r)2 ∗ r(b + μ1)(μ1 + μ2 + r)

βCπ [(1 – p) + b
μ1

+ γ p]

=
–r

μ1 + μ2 + r
< 0.

For m = μ1,

ϒR0
μ1 =

∂R0

∂μ1
∗ μ1

R0

=
– βCπb

μ2
1

(b + μ1)(μ1 + μ2 + r) – (b + μ2 + r + 2μ1)[βCπ [(1 – p) + b
μ1

+ γ p]]

(b + μ1)2(μ1 + μ2 + r)2

× μ1(b + μ1)(μ1 + μ2 + r)
βCπ [(1 – p) + b

μ1
+ γ p]

.

For m = d,

ϒ
R0
d =

–[b(b + μ1)(μ1 + μ2 + r) + μ2
1βcπ (b + μ2 + r + 2μ1)[(1 – p) + b

μ1
+ γ p]]

μ1[(1 – p) + b
μ1

+ γ p](b + μ1)(μ1 + μ2 + r)
< 0.

From Table 1, we see that parameter β is with positive indices, which shows us that
when we increase the value of β keeping other parameters constant then it increases the
value of R0 implying the disease expands in the community. Since the parameter c (con-
tact rate) is positive and if we increase the value of c keeping other parameters constant,
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Table 1 Sensitivity index table

Parameter symbol Parameter description Sensitivity index

β the probability that susceptible (S) and vaccinated (V)
individuals become infected by one infectious individual per
contact per unit of time

+ve

c Contact rate +ve
π The recruitment rate +ve
γ 0≤ γ ≤ 1 (factor in the contact rate of vaccinated members) +ve
b The immunity waning rate in the vaccinated host +ve
p The fraction of the newborn vaccinated (vaccination coverage) –ve
μ2 Disease-induced death rate –ve
r Recovery rate for infectious individual –ve
μ1 Natural death rate –ve

then the value of R0 increases and as a result the disease expands in the population. Since
the parameter π (the recruitment rate) is positive, increasing the value of π keeping other
parameters constant, the value of R0 is increased implying the disease expands in the com-
munity. Since the parameter γ (efficacy of vaccination) is positive, increasing the value of
γ while keeping other parameters constant, the value of R0 is increased and as a result the
disease expands in the population. And the parameter b (the immunity waning rate in the
vaccinated host) is positive, so when we increase the value of b keeping other parameters
constant, then it increases the value of R0 implying the disease expands in the community.
We see that the parameter p (the fraction of the newborn vaccinated) is negative and when
we increase the value of p keeping other parameters constant, it decreases the value of R0

and then disease is eliminated from the community.
While increasing the value of μ2 (disease-induced death rate) keeping other parame-

ters constant, the value of R0 is decreased and as a result disease is eliminated from the
community as it has a negative index. The parameter r (treatment rate for infectious in-
dividual) is negative and when we increase the value of r by keeping other parameters
constant, the value of R0 is increased and the disease is eliminated from the population.
And μ1 (natural death rate) has negative index which shows us that when we increase the
value of μ1 keeping other parameters constant, then it decreases the value of R0 implying
that the disease is eliminated from the community.

4 Numerical results and discussion
In this section, we present and analyze some simulation results for the dynamics of TB
infection represented by models (1) and (2).

For this purpose, we used parameters of the model, namely p, c, r, and β , whose values
are given in Table 2. We vary the values of these parameters and investigate their impact
on the models. In addition, we consider the initial values of the variables of the model at
time t = 0, i.e., S(1), V (0), I(0), and R(0).

4.1 Comparison of deterministic and stochastic trends of TB in the community
Figure 2 depicts the simulation results of the deterministic (left) and stochastic (right)
trends of TB dynamics in the community. One can observe that the solutions of the de-
terministic model equations are smooth in nature whereas those of the stochastic model
exhibit zigzagging behavior. The stochastic curves indicate the randomness of the increase
and decrease of the number of people in each compartment. In fact, this is what happens
in real-life phenomena and the behavior shown in the stochastic curves is not a surprise
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Table 2 Parameter values

Variable/Parameter Value Source

S(0) 20 assumed
V(0) 10 assumed
I(0) 15 assumed
R(0) 5 assumed
π 2.8 [2]
μ1 0.0453 [20]
μ2 0.04 [23]
β 0.07 [13]
c 0.1 [8]
r 0.2 [14]
p 0.5 [12]
γ 0.01 [16]
b 0.4 [8]
α 0.13 [13]
σ1 0.02 [20]
σ2 0.4 [23]
σ3 0.2 [20]
σ4 0.3 [23]

Figure 2 Graph of deterministic (left) and stochastic (right) SVIR tuberculosis model

due to the fact that stochastic models better represent physical situations compared to
deterministic approaches. It can also be observed from these figures that the number of
infected people keeps decreasing as time goes on, smoothly in the deterministic case and
with some ups and downs in the case of the stochastic approach.

4.2 Effect of probability of contact rate on infected population
In this section we try to investigate the impact of the contact rate parameter β on the
number of infected individuals I(t). Figure 3 presents the numerical results obtained by
varying the value of β while keeping other parameters fixed. In the left side of Fig. 3 (i.e.,
deterministic model), when the value of β increased from β = 0.07 to β = 0.1, there is a
significant and regular increase in the number of infected individuals. Moreover, when
β = 0.2, the number of infected people quickly increases to 20 and start to go down a
bit, but still manages to be higher than in the previous two cases. On the other hand, the
results from the stochastic model, depicted in the right-hand side of Fig. 2, are also in-
creasing, maintaining their zigzagging pattern (mimicking real-life case better) due to the
randomness behavior. However, the overall outcome is that the number of infected people
still increases significantly with increasing the value of β . Therefore, we can conclude that,
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Figure 3 Effect of probability of contact rate β on I(t) for deterministic (left) and stochastic (right) SVIR models

Figure 4 Impact of contact rate c on I(t) for deterministic (left) and stochastic (right) SVIR model

even if other parameters are kept constant, the disease expands in the community when
there is an increase in the probability of contact rate.

4.3 Effect of contact rate on TB infected population
In Fig. 4, the numerical results obtained by varying the value of contact rate c are plotted.
We keep the other parameters fixed and vary c to facilitate investigation of the impact of c
on I(t), the number of infected people. It is easy to see that, in both deterministic (left) and
stochastic (right) cases, the curve is higher for larger values of c, implying the expansion
of the disease in the community. That is, the number of infected people increases with
increasing contact rate.

4.4 Effect of recovery rate on TB infected population
In this section, we investigate the impact of recovery rate r on the size of infected pop-
ulation I(t). The experimental results obtained by varying the value of r and keeping the
other parameters constant are depicted in Fig. 5. The numerical results reveal that the
number of infected individuals decreases with increasing the value of recovery rate r. It is
also observed in the aforementioned figure that the decrement of infected individuals is
smooth in the case of deterministic model (left-hand side of Fig. 5) whereas it is irregular
in the stochastic case (right-hand side of Fig. 5). Hence, we can conclude that the incre-
ment in the value of the recovery rate r plays a great role in eliminating the disease from
the community.
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Figure 5 Effect of recovery rate r on I(t) for deterministic (left) and stochastic (right) SVIR model

Figure 6 Effect of vaccination rate p on I(t) for deterministic and stochastic SVIR model

4.5 Effect of vaccination rate on TB infected population
Figure 6 presents numerical results obtained by varying the value of parameter p (vaccina-
tion rate) and keeping the other parameters fixed. In the deterministic case, left-hand side
of Fig. 6, the difference between the number of infected individuals becomes more obvi-
ous as time passes by, obviously the curve I(t) is slightly higher for smaller values of the
vaccination rate p. Therefore, vaccinating the target population has a significant contri-
bution in eliminating the disease. On the contrary, the stochastic case (right-hand side of
Fig. 6) exhibits a very different behavior. For the first few moments, the number of infected
people I(t) is seen to go upwards for all values of vaccination rate (but it is pronounced for
p = 0.5). However, the value of I(t) turns to go down as time goes by. It is worth noticing
that the increment in the value of the vaccination rate plays a vital role in eliminating the
disease in the stochastic case as well.

5 Summary and conclusion
In this paper we have developed deterministic and stochastic models of tuberculosis with
vaccination of newborns. In Sect. 2, we briefly described and formulated the tubercu-
losis infection model. In Sect. 3, we analyzed the models by obtaining the feasible re-
gion, positivity of the solution set, basic reproduction number, equilibrium points, and
described their stability. The sensitivity of basic parameters, interpretation of the sensi-
tivity index and global stability were also analyzed in Sect. 3. In Sect. 4, we presented and
analyzed some simulation results. We started Sect. 4 by comparing the deterministic and
stochastic TB infection trends in the community. According to the numerical results, we
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came to realize that the number of infected people keeps decreasing if one carefully com-
bines vaccination with appropriate treatment. We have also observed that the stochastic
model mimics and better represents real-life phenomena compared to the deterministic
approach. Moreover, we have investigated the impact of the parameters β , c, r and p on
both the deterministic and stochastic model. It was observed that increasing the prob-
ability of contact rate β contributes to the expansion of the disease whereas decreasing
contact rate c, increasing vaccination rate r, and increasing the value of the recovery rate
p all play vital roles in eliminating the disease from the community. Therefore, we recom-
mend a combination of a decrease in contact between infected and susceptible individuals,
increasing vaccination coverage, creating awareness, and proper treatment to effectively
control TB infection.
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