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Abstract
To stabilize a nonlinear system dx(t) = f (t, x(t))dt, we stochastically perturb the
deterministic model by using two types of aperiodic intermittent stochastic noise
driven by G-Brownian motion. We demonstrate quasi-sure exponential stability for
the perturbed system and give the convergence rate, which is related to the control
intensity. An application to SIS epidemic model is presented to confirm the
theoretical results.
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1 Introduction
Since Khas’minskii [1] used two white noise sources to stabilize a system, a wide range of
works have appeared on stochastic stabilization problems. Arnold et al. [2] obtained sta-
bilization results by using noisy terms in Stratonovich sense. Mao [3] presented a general
theory on the stabilization by Brownian motion. Huang [4] further developed the gen-
eral theory by Mao and revealed a more fundamental principle. Zhao et al. [5] established
a new type of stability theorem which generalized local Lipschitz and one-sided linear
growth conditions. From the considerations of reducing control cost and time, discon-
tinuous controllers have been designed to stabilize a given system, such as discrete-time
feedback control [6, 7], pinning control [8], impulsive control [9], adaptive control [10],
intermittent control [11], etc. As for intermittent control, the control time is divided into
periodic and aperiodic type. Periodically intermittent control has been studied by many
authors, especially in synchronization problems. Zhang et al. [11] considered a periodic
intermittent Brownian noise perturbation to stabilize and destabilize a given nonlinear
system, the obtained criteria are different. Recently, Liu et al. [12] investigated the aperi-
odically intermittent control which has good performance to quasi-synchronize nonlinear
coupled networks [13].
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Motivated by the idea of stochastic stabilization via intermittent stochastic noise driven
by Brownian motion, we are interested in analyzing whether the presence of intermittent
stochastic perturbation driven by G-Brownian motion can stabilize a nonlinear system,
since G-Brownian motion has powerful applications in modeling uncertainties. It is nec-
essary to mention the pioneering work by Peng [14] who set up the G-framework. He
pointed out that G-Brownian motion has independent increments and can be consistent
with the classical Brownian motion in the sense of no volatility uncertainty. Many works
have been done on G-Brownian motions [15–20], in particular existence and uniqueness
theory for stochastic differential equations driven by G-Brownian motion (G-SDEs), as
well as stability behavior and control theory, has been developed. Fei [16] investigated the
exponential stability of paths for a G-SDE. Ren [19] designed a feedback control based on
discrete-time observations to stabilize a G-SDE system. In [18], the aperiodically intermit-
tent control has been embedded into the drift part, the authors obtained a set of piecewise
Lyapunov-type conditions for the moment exponential stability theory.

As far as we know, there is hardly any literature about stochastic stabilization of deter-
ministic systems via aperiodic intermittent stochastic perturbation driven by G-Brownian
motion. In the present paper, we add two aperiodic intermittent stochastic perturba-
tions driven by G-Brownian motion into a general deterministic nonlinear system. Those
stochastic perturbations can stabilize the nonlinear system. The main contributions are
summarized as follows:

• The control itself is a stochastic perturbation driven by G-Brownian motion, which
contains mean and volatility uncertainties, therefore, expands the general
deterministic intermittent control and the stochastic intermittent control which is
driven by classical Brownian motion.

• The control time is aperiodically intermittent, which improves flexibility to time
nodes and length. The acquired criteria consist of the work and rest width, we can
control the steady rate autonomously by adjusting the work and rest width.

In Sect. 2, we establish the aperiodic intermittent stochastically perturbed system (2.2)
driven by G-Brownian motion, present four notions, two lemmas, and one definition
which will be used in the next section. Stabilization analysis is carried out in Sect. 3. In
Sect. 4, we provide an application on stabilizing an SIS epidemic model by adding a spe-
cial aperiodic intermittent stochastic perturbation driven by G-Brownian motion. This
example clearly shows the power of stabilization by aperiodic intermittent stochastic per-
turbation driven by G-Brownian motion.

2 Preliminaries
Consider a nonlinear system

dx(t) = f
(
t, x(t)

)
dt, t ≥ 0, (2.1)

with initial value x(t0) = x0 ∈ Rn. We add two aperiodic intermittent stochastic perturba-
tions driven by G-Brownian motion to the nonlinear system, then the system becomes

dx(t) = f
(
t, x(t)

)
dt + h

(
t, x(t)

)
d〈B〉(t) + σ

(
t, x(t)

)
dB(t), (2.2)
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where

h(t, x(t)) =

⎧
⎨

⎩
h1(t, x(t)), t ∈ [th

i , th
i + ch

i ),

0, t ∈ [th
i + ch

i , th
i+1),

(2.3)

σ (t, x(t)) =

⎧
⎨

⎩
σ1(t, x(t)), t ∈ [tσ

j , tσ
j + cσ

j ),

0, t ∈ [tσ
j + cσ

j , tσ
j+1),

(2.4)

with i, j ∈ N . Here

f , h1,σ1 : [t0,∞) × Rn → Rn and f , h1,σ1 ∈ M2
G(0, T).

Also B(t) is a one-dimensional G-Brownian motion with G(a) = 1
2 Ê[aB2

1] = 1
2 (δ̄2a+ – δ2a–),

where δ̄2 = Ê[B2
1], δ2 = –Ê[–B2

1]; 〈B〉(t) is the quadratic variation process of the G-
Brownian motion, which is also a continuous process with independent and stationary
distribution, thus can still be regarded as a Brownian motion. Under the perturbation of h
type, the time span [th

i , th
i+1) contains the work time [th

i , th
i +ch

i ) and the rest time [th
i +ch

i , th
i+1)

as shown in Fig. 1, ch
i denotes the ith h-type noise width. Similarly, the time span [tσ

i , tσ
i+1)

contains the work time [tσ
i , tσ

i + cσ
i ) and the rest time [tσ

i + cσ
i , tσ

i+1), cσ
i denote the ith σ -type

noise width. Naturally, those two noise widths satisfy 0 ≤ ch
i ≤ th

i+1 – th
i ; 0 ≤ cσ

i ≤ tσ
i+1 – tσ

i .
For the aperiodically intermittent perturbation strategy, the start time and the noise width
might be different, but the total perturbation time ratio should be fixed in the long term.
Mathematically, we assume there exist two positive scalars ωh, ωσ such that the above time
nodes satisfy the following assumptions:

∑n
i=0 ch

i

th
n+1 – t0

= ωh,

∑n
j=0 cσ

j

tσ
n+1 – t0

= ωσ .

(2.5)

We call ωh the h-type perturbation time ratio and ωσ the σ -type perturbation time ratio.
Throughout this paper, f1, h1, and σ1 satisfy the local Lipschitz condition and one-

sided growth condition xT f (t, x) + xT h1(t, x) + 1
2σ 2

1 (t, x) ≤ K0‖x‖2, where K0 > 0. Clearly,
h(t, x) and σ (t, x) also satisfy the local Lipschits condition and one-sided growth condition.

Figure 1 Sketch of the aperiodically intermittent control strategy



Zhong et al. Advances in Difference Equations        (2020) 2020:699 Page 4 of 12

Moreover, we assume f (t, 0) ≡ 0, h(t, 0) ≡ 0, σ (t, 0) ≡ 0 for stochastic stability analysis,
which guarantees the existence of a trivial solution x(t; t0, 0) ≡ 0.

Letting V ∈ C1,2([t0,∞) × Rn; R+), we introduce some new notations as follows:

F(t, x) =
Vt(t, x) + Vx(t, x)f (t, x)

V (t, x)
,

H1(t, x) =
σ T (t, x)Vxx(t, x)σ (t, x)

2V (t, x)
,

H2(t, x) =
Vx(t, x)h(t, x)

V (t, x)
,

R(t, x) =
[Vx(t, x)σ (t, x)]2

V 2(t, x)
.

Definition 2.1 The trivial solution of the intermittent G-stochastic system (2.2) in Rn is
said to be quasi-sure exponentially stable, if for any x0 �= 0 and t ≥ t0,

lim sup
t→∞

1
t

log
∥
∥x(t; t0, x0)

∥
∥ < 0 q.s.

Lemma 2.1 Under the conditions imposed above, system (2.2) has a unique global solution
x(t; t0, x0). The solution obeys

P
(
x(t; t0, x0) �= 0 for t ≥ 0

)
= 1, for all x0 �= 0.

Proof The global existence of a unique solution follows from Theorem 4.5 in Li et al.
[21], the nonzero property follows from the same method as in Mao [3] (see Lemma 3.2,
p. 120). �

Lemma 2.2 Let N(t) be G-Ito stochastic integral, τn be a sequence of positive numbers with
τn → ∞. Then for all ω ∈ � there exists a random integer n0(ω) such that for all n ≥ n0,

N(t) ≤ γn

2
〈
N(t)

〉
+

2
γn

log(n) on t0 ≤ t ≤ τn.

Proof According to Lemma 2.6 in Fei et al. [16],

N(t) ≤ ε

2
〈
N(t)

〉
+

θ

ε
log(n),

We choose γn = ε, θ = 2, g(n) = n, and the conclusion of Lemma 2.2 can be obtained nat-
urally. �

Remark 2.1 If ti+1 – ti = T , ci = δ for all i ∈ N , and δ̄ = δ, then the system (2.2) becomes a
periodic intermittent system. This agrees with system 1 in Zhang et al. [11]. Our results
can be regarded as a generalization of Zhang et al. [11].

3 Main results
In this section, we will establish the quasi-sure exponential stability theorem based on ape-
riodic intermittent stochastic noise driven by G-Brownian motions. Since x0 = 0 implies
x(t; t0, 0) = 0, we only need to concentrate on x0 �= 0.



Zhong et al. Advances in Difference Equations        (2020) 2020:699 Page 5 of 12

Theorem 3.1 (Stabilization theorem) Assume that there exists a function V ∈ C1,2([t0,
∞) × Rn; R+), and constants p > 0, c1 > 0, c3 ≥ 0, c4 ≥ 0, c5 ≥ 0, c2 ∈ R such that for t ≥ t0,

(i) c1‖x‖p ≤ V (t, x),

(ii) Vt(t, x) + Vx(t, x)f (t, x) ≤ c2V (t, x),

(iii) σ T
1 (t, x)Vxx(t, x)σ1(t, x) ≤ c3V (t, x),

(iv) Vx(t, x)h1(t, x) ≤ c4V (t, x),

(v)
∥
∥Vx(t, x)σ1(t, x)

∥
∥2 ≥ c5V 2(t, x).

Then the solution x(t; t0, x0) satisfies

lim sup
t→∞

1
t

log
∥∥x(t; t0, x0)

∥∥ ≤ –
c5ωσ δ2 – c3ωhδ̄

2 – 2c4ωσ δ̄2 – 2c2

2p
q.s. (3.1)

In particular, if c5ωσ δ2 – c3ωσ δ̄2 – 2c4ωhδ̄
2 – 2c2 > 0, then the solution x(t; t0, x0) of system

(2.2) is quasi-sure exponentially stable.

Proof Fix any x0 �= 0 and write x(t; t0, x0) = x(t). By Lemma 2.1, x(t) �= 0 for all t ≥ t0 q.s.
Applying Itô’s formula, for t ≥ t0, we get

log V
(
t, x(t)

)
= log V (t0, x0) +

∫ t

t0

F
(
s, x(s)

)
ds +

∫ t

t0

H1
(
s, x(s)

)
d〈B〉(s)

+
∫ t

t0

H2
(
s, x(s)

)
d〈B〉(s) –

1
2

∫ t

t0

R
(
s, x(s)

)
d〈B〉(s) + N(t),

(3.2)

where

N(t) =
∫ t

t0

Vx(s, x(s))σ (s, x(s))
V (s, x(s))

dB(s)

is a continuous martingale. By Lemma 2.2, taking an arbitrary ε ∈ (0, 1), for all ω ∈ � q.s.,
there exists an integer n0(ω, P) such that if n ≥ n0, then

N(t) ≤ 2
ε

log(n) +
ε

2

∫ t

t0

R
(
s, x(s)

)
d〈B〉(s)

holds for all t0 ≤ t ≤ t0 + n. Substituting this into (3.2), we have

log V
(
t, x(t)

)
= log V (t0, x0) +

∫ t

t0

F
(
s, x(s)

)
ds +

∫ t

t0

H1
(
s, x(s)

)
d〈B〉(s)

+
∫ t

t0

H2
(
s, x(s)

)
d〈B〉(s) –

1
2

(1 – ε)
∫ t

t0

R
(
s, x(s)

)
d〈B〉(s) +

2
ε

log(n).

Then we consider t in a different time interval. Obviously, there exist two positive integers
n1, n2 such that t ∈ [th

n1 , th
n1+1]∩ [tσ

n2 , tσ
n2+1]. Depending on h- and σ -type noise widths, there

are four possible cases which need to be discussed.



Zhong et al. Advances in Difference Equations        (2020) 2020:699 Page 6 of 12

Case 1. For all ω ∈ � and n > n0, t ∈ [th
n1 , th

n1 + ch
n1 ) ∩ [tσ

n2 , tσ
n2 + cσ

n2 ), we have

log V
(
t, x(t)

)
= log V (t0, x0) +

∫ t

t0

F
(
s, x(s)

)
ds

+
∫ tσ0 +cσ0

t0

H1
(
s, x(s)

)
d〈B〉(s) +

∫ tσ1

tσ0 +cσ0
H1

(
s, x(s)

)
d〈B〉(s)

+ · · · +
∫ t

tσn2

H1
(
s, x(s)

)
d〈B〉(s)

+
∫ th

0 +ch
0

t0

H2
(
s, x(s)

)
d〈B〉(s) +

∫ th
1

th
0 +ch

0

H2
(
s, x(s)

)
d〈B〉(s)

+ · · · +
∫ t

th
n1

H2
(
s, x(s)

)
d〈B〉(s)

–
1
2

(1 – ε)
[∫ tσ0 +cσ0

t0

R
(
s, x(s)

)
d〈B〉(s) +

∫ tσ1

tσ0 +cσ0
R
(
s, x(s)

)
d〈B〉(s)

+ · · · +
∫ t

tσn2

R
(
s, x(s)

)
d〈B〉(s)

]
+

2
ε

log(n).

Substituting conditions (ii), (iii), (iv), and (v) into the above equation, we obtain

log V
(
t, x(t)

)
= log V (t0, x0) + c2(t – t0) +

1
2

c3δ̄
2[cσ

0 + 0 + · · · +
(
t – tσ

n2

)]

+ c4δ̄
2[ch

0 + 0 + · · · +
(
t – th

n1

)]

–
1
2

(1 – ε)c5δ
2[cσ

0 + 0 + · · · +
(
t – tσ

n2

)]
+

2
ε

log(n)

≤ log V (t0, x0) + c2(t – t0) +
2
ε

log(n)

+
1
2

c3δ̄
2

n2∑

i=0

cσ
i + c4δ̄

2
n1∑

i=0

ch
i –

1
2

(1 – ε)c5δ
2

n2–1∑

i=0

cσ
i ,

which implies that

1
t

log V
(
t, x(t)

) ≤ 1
t

[
log V (t0, x0) + c2(t – t0) +

2
ε

log(n)
]

+
c3δ̄

2 ∑n2
i=0 cσ

i
2tσ

n2

+
c4δ̄

2 ∑n1
i=0 ch

i
2th

n1

–
(1 – ε)c5δ

2 ∑n2–1
i=0 cσ

i
tn2+1

.

By Eq. (2.5), we deduce

lim sup
t→∞

1
t

log V
(
t, x(t)

) ≤ c2 +
c3ωσ δ̄2

2
+ c4ωhδ̄

2 –
1
2

(1 – ε)c5ωσ δ2.

Using condition (i) and letting ε → 0, it follows that

lim sup
t→∞

1
t

log
∥
∥x(t, t0, x0)

∥
∥ ≤ –

c5ωσ δ2 – c3ωhδ̄
2 – 2c4ωσ δ̄2 – 2c2

2p
q.s.
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Case 2. For all ω ∈ � and n > n0, t ∈ [th
n1 , th

n1 + ch
n1 ) ∩ [tσ

n2 + cσ
n2 , tσ

n2+1), the integral interval
length of σ (t, x(t)) has changed compared to Case 1. Hence we have

log V
(
t, x(t)

)
= log V (t0, x0) +

∫ t

t0

F
(
s, x(s)

)
ds

+
∫ tσ0 +ch

0

t0

H1
(
s, x(s)

)
d〈B〉(s) +

∫ tσ1

th
0 +cσ0

H1
(
s, x(s)

)
d〈B〉(s)

+ · · · +
∫ tσn2 +cσn2

tσn2

H1
(
s, x(s)

)
d〈B〉(s) +

∫ t

tσn2 +cσn2

H1
(
s, x(s)

)
d〈B〉(s)

+
∫ th

0 +ch
0

t0

H2
(
s, x(s)

)
d〈B〉(s) +

∫ tσ1

th
0 +ch

0

H2
(
s, x(s)

)
d〈B〉(s)

+ · · · +
∫ t

th
n1

H2
(
s, x(s)

)
d〈B〉(s)

–
1
2

(1 – ε)
[∫ tσ0 +cσ0

t0

R
(
s, x(s)

)
d〈B〉(s) +

∫ tσ1

tσ0 +cσ0
R
(
s, x(s)

)
d〈B〉(s)

+ · · · +
∫ tσn2 +cσn2

tσn2

R
(
s, x(s)

)
d〈B〉(s)

+
∫ t

tσn2 +cσn2

R
(
s, x(s)

)
d〈B〉(s)

]
+

2
ε

log(n).

By conditions (ii), (iii), (iv), and (v), we obtain

log V
(
t, x(t)

)
= log V (t0, x0) + c2(t – t0) +

1
2

c3δ̄
2[cσ

0 + 0 + · · · + cσ
n2

]

+ c4δ̄
2[ch

0 + 0 + · · · +
(
t – th

n1

)]

–
1
2

(1 – ε)c5δ
2[cσ

0 + 0 + · · · +
(
t – th

n1

)]
+

2
ε

log(n)

≤ log V (t0, x0) + c2(t – t0) +
2
ε

log(n)

+
1
2

c3δ̄
2

n2∑

i=0

cσ
i + c4δ̄

2
n1∑

i=0

ch
i –

1
2

(1 – ε)c5δ
2

n2∑

i=0

cσ
i .

Using the same method as in Case 1, we conclude

lim sup
t→∞

1
t

log
∥∥x(t, t0, x0)

∥∥ ≤ –
c5ωσ δ2 – c3ωhδ̄

2 – 2c4ωσ δ̄2 – 2c2

2p
q.s.

Case 3. For all ω ∈ � and n > n0, t ∈ [th
n1 + ch

n1 , th
n1+1) ∩ [tσ

n2 , tσ
n2 + cσ

n2 ) for all ω ∈ � and
n > n0. This case is similar to Case 1 except for the additional time interval [th

n1 + ch
n1 , th

n1+1)
of h(t, x(t)). Since h(t, x(t)) = 0, t ∈ [th

n1 + ch
n1 , th

n1+1), log V (t, x(t)) can be written as

log V
(
t, x(t)

)
= log V (t0, x0) + c2(t – t0) +

1
2

c3δ̄
2[cσ

0 + 0 + · · · +
(
t – tσ

n2

)]

+ c4δ̄
2[ch

0 + 0 + · · · + ch
n1

]
–

1
2

(1 – ε)c5δ
2[cσ

0 + 0 + · · · +
(
t – tσ

n2

)]
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+
2
ε

log(n)

≤ log V (t0, x0) + c2(t – t0) +
2
ε

log(n)

+
1
2

c3δ̄
2

n2∑

i=0

cσ
i + c4δ̄

2
n1∑

i=0

ch
i –

1
2

(1 – ε)c5δ
2

n2–1∑

i=0

cσ
i .

Together with conditions (i)–(v), it follows that

lim sup
t→∞

1
t

log
∥
∥x(t, t0, x0)

∥
∥ ≤ –

c5(1 – ε)ωσ δ2 – c3ωhδ̄
2 – 2c4ωσ δ̄2 – 2c2

2p
q.s.

As ε → 0, the following inequality holds:

lim sup
t→∞

1
t

log
∥
∥x(t, t0, x0)

∥
∥ ≤ –

c5ωσ δ2 – c3ωhδ̄
2 – 2c4ωσ δ̄2 – 2c2

2p
q.s.

Case 4. For all ω ∈ � and n > n0, t ∈ [th
n1 + ch

n1 , th
n1+1) ∪ [tσ

n2 + cσ
n2 , tσ

n2+1). This case is similar
to Case 2 except for the time interval of h(t, x(t)). This time log V (t, x(t)) can be divided
into

log V
(
t, x(t)

)
= log V (t0, x0) +

∫ t

t0

F
(
s, x(s)

)
ds

+
∫ tσ0 +ch

0

t0

H1
(
s, x(s)

)
d〈B〉(s) +

∫ tσ1

th
0 +cσ0

H1
(
s, x(s)

)
d〈B〉(s)

+ · · · +
∫ tσn2 +cσn2

tσn2

H1
(
s, x(s)

)
d〈B〉(s) +

∫ t

tσn2 +cσn2

H1
(
s, x(s)

)
d〈B〉(s)

+
∫ th

0 +ch
0

t0

H2
(
s, x(s)

)
d〈B〉(s) +

∫ th
1

th
0 +ch

0

H2
(
s, x(s)

)
d〈B〉(s)

+ · · · +
∫ th

n1 +ch
n1

th
n1

H2
(
s, x(s)

)
d〈B〉(s) +

∫ t

th
n1 +ch

n1

H2
(
s, x(s)

)
d〈B〉(s)

–
1
2

(1 – ε)
[∫ tσ0 +cσ0

t0

R
(
s, x(s)

)
d〈B〉(s) +

∫ tσ1

tσ0 +cσ0
R
(
s, x(s)

)
d〈B〉(s)

+ · · · +
∫ tσn2 +cσn2

tσn2

R
(
s, x(s)

)
d〈B〉(s)

+
∫ t

tσn2 +cσn2

R
(
s, x(s)

)
d〈B〉(s)

]
+

2
ε

log(n).

The latter implies that

log V
(
t, x(t)

)
= log V (t0, x0) + c2(t – t0)

+
1
2

c3δ̄
2[cσ

0 + 0 + · · · + cσ
n2 + 0

]

+ c4δ̄
2[ch

0 + 0 + · · · + ch
n1 + 0

]
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–
1
2

(1 – ε)c5δ
2[cσ

0 + 0 + · · · + cσ
n2 + 0

]
+

2
ε

log(n)

= log V (t0, x0) + c2(t – t0) +
2
ε

log(n)

+
1
2

c3δ̄
2

n2∑

i=0

cσ
i + c4δ̄

2
n1∑

i=0

ch
i –

1
2

(1 – ε)c5δ
2

n2∑

i=0

cσ
i .

Thus we claim

lim sup
t→∞

1
t

log
∥∥x(t, t0, x0)

∥∥ ≤ –
c5ωσ δ2 – c3ωhδ̄

2 – 2c4ωσ δ̄2 – 2c2

2p
q.s.

From the above four cases, for all ω ∈ � and t ∈ [th
n1 , th

n1+1] ∩ [tσ
n2 , tσ

n2+1], the following in-
equality always holds

lim sup
t→∞

1
t

log
∥
∥x(t, t0, x0)

∥
∥ ≤ –

c5ω1δ
2 – c3ω1δ̄

2 – 2c4ω2δ̄
2 – 2c2

2p
q.s.

The proof is complete. �

Remark 3.1 If V (t, x) = ‖x‖2, conditions (i)–(v) in Theorem 3.1 become: (i) xT f (t, x) ≤
s1‖x‖2; (ii) ‖σ1(t, x)‖ ≤ s2‖x‖; (iii) xT h1(t, x) ≤ s3‖x‖2; and (iv) ‖xTσ1(t, x)‖ ≥ s4‖x‖. Then
x(t; t0, x0) satisfies

lim sup
t→∞

1
t

log
∥
∥x(t; t0, x0)

∥
∥ ≤ –

(
s2

4ω1δ
2 – 0.5s2

2ω1δ̄
2 – s3ω2δ̄

2 – s1
)

q.s. (3.3)

In particular, if s2
4ω1δ

2 – 0.5s2
2ω1δ̄

2 – s3ω2δ̄
2 – s1 > 0, the solution x(t; t0, x0) of system (2.2)

is quasi-sure exponentially stale.

Remark 3.2 If h1(t, x) = 0, σ1(t, x) = g1(t, x), and δ̄ = δ = 1, system (2.2) becomes an inter-
mittently stochastically perturbed system driven by Brownian motion. More specially, if
tσ
j+1 – tσ

j = T and cσ
j = δ for all j ∈ N , system (2.2) becomes a periodic intermittent system.

Equation (3.1) becomes

lim sup
t→∞

1
t

log
∥∥x(t; t0, x0)

∥∥ ≤ –
(c5 – c3) δ

T – 2c2

2p
a.s.

This agrees with Theorem 1 in Zhang et al. [11]. Our results can be regarded as a gener-
alization of Zhang et al. [11].

Remark 3.3 According to Eq. (3.1), the Lyapunov exponential of x(t; t0, x0) depends on
perturbation time ratios ωh, ωσ and volatility uncertainties δ, δ̄. Thus h-type perturbation’s
time ratio and volatility uncertainty δ can speed up exponential convergence, if the control
strategy is designed based on our theoretical results.

4 Application to an epidemic system
In this section, we study an application of our theoretical results in Sect. 3 on SIS epidemic
model. A classical deterministic SIS epidemic model partitions the host population into
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the susceptible compartment S and the infectious compartment I . Ordinary differential
equations (ODEs) that describe the change of size in compartments S and I can be written
as

dS
dt

= A – dS + μI – βSI,

dI
dt

= βSI – dI – μI.
(4.1)

Since S, I ≥ 0 and S + I = A
d , the above two ODEs can be rewritten as

dI
dt

= β

(
A
d

– I
)

I – dI – μI.

The dynamics of the SIS epidemic model is completely determined by the basic reproduc-
tion number

R0 =
βA

d(d + μ)
.

If R0 ≤ 1, the disease-free equilibrium P0 = ( A
d , 0, 0) is globally asymptotically stable and

the disease always dies out; if R0 > 1, then P0 is unstable and an endemic equilibrium exists
which means the disease will persist. Now, we aim to control the number of infectious even
if R0 > 1.

Adding two aperiodic intermittently stochastic perturbations hSI d〈B〉(t), σ I dB(t) to SIS
epidemic model, it becomes

dI(t) =
[
β

(
A
d

– I
)

I – dI – μI
]

dt + h
(
t, I(t)

)
d〈B〉(t) + σ

(
t, I(t)

)
dB(t), (4.2)

where

h
(
t, x(t)

)
=

⎧
⎨

⎩
hSI, t ∈ [th

i , th
i + ch

i ),

0, t ∈ [th
i + ch

i , th
i+1),

σ
(
t, x(t)

)
=

⎧
⎨

⎩
σ I, t ∈ [tσ

j , tσ
j + cσ

j ),

0, t ∈ [tσ
j + cσ

j , tσ
j+1),

with i, j ∈ N . Letting V (t, I) = I and verifying conditions in Theorem 3.1, we obtain

V (t, I) = I ≥ ‖I‖1;

VI(t, I)f (t, I) = β

(
A
d

– I
)

I – dI – μI ≤
(

βA
d

– d – μ

)
I =

(
βA
d

– d – μ

)
V (t, I);

σ T
1 (t, I)VII(t, I)σ1(t, I) = 0 ≤ 0;

VI(t, I)h1(t, I) = hSI ≤ hA
d

I ≤ hA
d

V (t, I);
∥
∥VI(t, I)σ1(t, I)

∥
∥2 = σ 2I2 ≥ σ 2V 2(t, I).
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Figure 2 A single path of the solution

Comparing with conditions (ii)–(v), we obtain p = 1, c1 = 1, c2 = βA
d – d – μ, c3 = 0, c4 = hA

d ,
c5 = σ 2. Thus the infectious part of the population I(t) satisfies

lim sup
t→∞

1
t

log
∥∥I(t)

∥∥ ≤ βA
d

– d – μ +
hAω2δ̄

2

d
–

ω1σ
2δ2

2
q.s. (4.3)

If R0 > 1, which means βA
d – d – μ > 0, the Lyapunov exponent of I(t) would also be lower

than 0 by adjusting the perturbation parameter ω1, σ , δ. This implies that the disease can
be stabilized by intermittent stochastic perturbation.

Let us provide a numerical example for the stochastic perturbed SIS epidemic model
(4.2) to substantiate the analytic findings. For system (4.2), setting A = 100, β = 0.0002,
d = 0.1, μ = 0.05 and h = 0.1, σ = 0.5, δ̄ = 2, δ = 1, ω2 = 0.1, we can calculate R0 = 4

3 >
1, the endemic equilibrium E∗ is (750, 250), which means I(t) tends to 250, the disease
will persist. To stabilize the deterministic SIS epidemic model (4.1), we choose different
perturbation intensities ω1 to compare the stabilization effects. Figure 2 shows clearly that
the bigger the h-type perturbation intensity ω1, the faster the steady speed.

5 Conclusions
In this paper, stochastic stabilization of a nonlinear system via aperiodic intermittent
stochastic perturbation driven by G-Brownian motion has been investigated. We have de-
rived sufficient conditions for quasi-sure exponential stability for the perturbed system
(2.2), the criterion involves intermittent control strength. As an application, we have de-
signed two special aperiodic intermittent stochastic perturbations to a deterministic SIS
epidemic model, which would stabilize the epidemic system even though R0 > 1. Generally,
we conclude that an aperiodic intermittent stochastic perturbation driven by G-Brownian
motion can stabilize a nonlinear system.

Some interesting topics deserve further investigations. It is also interesting to consider
the case that a random perturbation is a real noise and control time is random. We leave
these questions for further investigations and look forward to solving them in the near
future.
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