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Abstract
In this paper, the bifurcation and new exact solutions for the (2 + 1)-dimensional
conformable time-fractional Zoomeron equation are investigated by utilizing two
reliable methods, which are generalized (G′/G)-expansion method and the integral
bifurcation method. The exact solutions of the (2 + 1)-dimensional conformable
time-fractional Zoomeron equation are obtained by utilizing the generalized
(G′/G)-expansion method, these solutions are classified as hyperbolic function
solutions, trigonometric function solutions, and rational function solutions. Giving
different parameter conditions, many integral bifurcations, phase portraits, and
traveling wave solutions for the equation are obtained via the integral bifurcation
method. Graphical representations of different kinds of the exact solutions reveal that
the two methods are of significance for constructing the exact solutions of fractional
partial differential equation.
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1 Introduction
It is well known that the fractional partial differential equations (FPDEs) [1–11] have re-
ceived considerable attention [12–19] due to their wide use to describe various complex
physical phenomena in the domain of science and engineering. Among the research of the
FPDEs, analyzing the bifurcations and the exact traveling wave solutions of FPDEs have
been widely investigated as an important subject. Recently, many effective methods have
been established and developed to analyze the dynamical behavior of the FPDEs. These
methods include the (G′/G)-expansion method, the integral bifurcations, the Lie symme-
try analysis method, the exp-function method, the Kudryashov method, and so on.

It is worth noting that the (G′/G)-expansion method, which was first introduced in [20],
has made significant achievements in searching for the exact traveling wave solutions of
partial differential equations (PDEs). But the exact solutions of FPDEs have been devel-
oped very slowly compared to the exact traveling solutions of PDEs. Most of the methods
directly transform an FPDE into an ordinary differential equation by a fractional com-
plex transformation. But the Jumarie’s fractional chain rule does not hold. Therefore, the
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fractional complex transformation cannot be used to obtain the exact traveling solutions
of FPDEs when the Riemann–Liouville derivative is used. Recently, Khalil and coworkers
[21] introduced the conformable fractional derivative. After that, some scholars [22–25]
have begun to discuss the exact solutions of FPDEs in the sense of the conformable frac-
tional derivative. In this paper, we will introduce the procedure of the generalized (G′/G)-
expansion method for FPDEs, and will discuss the exact traveling wave solutions of the
(2 + 1)-dimensional conformable time-fractional Zoomeron equation by the generalized
(G′/G)-expansion method together with conformable fractional derivative.

The bifurcation method first proposed by Liu and Li [26] is one of the most powerful
tools to study the dynamic behavior of PDEs, especially in the analysis of the bifurcation
and exact traveling wave solutions [27–30]. As far as we know, the bifurcation method has
not been used to investigate the exact traveling wave solutions of FPDEs in the sense of
the conformable fractional derivative. In the paper, we will introduce the procedure of bi-
furcation approach for constructing the exact traveling wave solutions of FPDEs. By using
this method, we will analyze the bifurcation and exact solutions of the (2 + 1)-dimensional
conformable time-fractional Zoomeron equation.

The Zoomeron equation is a very convenient model which displays the novel phenom-
ena related with boomerons and trappons, this equation is usually used to describe the
evolution of a single scalar field. Recently, Odabasi [31] studied the following (2 + 1)-
dimensional conformable time-fractional Zoomeron equation:

∂2αu
∂t2α

[
uxy

u

]
–

∂2u
∂x2

[
uxy

u

]
+ 2

∂αu
∂tα

[
u2]

x = 0, 0 < α ≤ 1, (1.1)

where ∂αu
∂tα is the conformable fractional derivative of u depending on the variable t. Od-

abasi applied the modified trial equation method to obtain the exact solutions of the
(2 + 1)-dimensional conformable time-fractional Zoomeron equation. Kumar and Kaplan
[32] applied the extended exp(–�(ξ ))-expansion technique and the exponential rational
functional technique to find the explicit and exact solutions of the (2+1)-dimensional con-
formable time-fractional Zoomeron equation. Hosseini et al. [33] adopted the exp(–�(ξ ))-
expansion approach and modified Kudryashov method to search for the exact solutions
of the (2 + 1)-dimensional conformable time-fractional Zoomeron equation.

The main objective of the paper is to employ the generalized (G′/G)-expansion method
and bifurcation method to construct exact traveling wave solutions of the (2 + 1)-
dimensional conformable time-fractional Zoomeron equation. The remainder of the ar-
ticle is structured as follows: In Sect. 2, we review the definition of the conformable frac-
tional derivative, and introduce two effective methods for constructing the exact traveling
wave solutions of FPDEs. Then in Sect. 3, we discuss the exact solutions of the (2 + 1)-
dimensional conformable time-fractional Zoomeron equation by using the generalized
(G′/G)-expansion method and bifurcation method, respectively. Moreover, we obtain the
bifurcation and phase portraits of this equation. Finally, we give a brief conclusion in
Sect. 4.

2 Mathematical preliminaries
2.1 The conformable fractional derivative
The definition of the conformable fractional derivative is defined as in [34].
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Definition 2.1 Let f : [0,∞) → R. Then, the conformable fractional derivative of f of
order α is defined as

Dα
t f (t) = lim

ε→0

f (t + εt1–α) – f (t)
ε

, ∀t ∈ (0, +∞),α ∈ (0, 1], (2.1)

the function f is α-conformably differentiable at a point t if the limit in equation (2.1)
exists.

Remark 2.1 The conformable fractional derivative possesses the following properties:
(i) Dα

t (tμ) = μtμ–α , ∀μ ∈ R.
(ii) Dα

t (af (t) + bg(t)) = aDα
t f (t) + bDα

t g(t), ∀a, b ∈ R.
(iii) Dα

t (f ◦ g)(t) = t1–αg(t)α–1g ′(t)Dα
t (f (t))|t=g(t).

The conformable fractional derivative has many important properties. The detailed
proof is given in the Appendix.

2.2 Description of the methods
Consider the following conformable FPDE:

F
(

u,
∂αu
∂tα

,
∂u
∂x

,
∂u
∂y

,
∂2αu
∂t2α

,
∂2u
∂x2 ,

∂2u
∂y2 , . . .

)
= 0, 0 < α ≤ 1, (2.2)

where t, x, y ∈ R, u = u(t, x, y) ∈ R, F is a polynomial in u and its partial fractional-order
derivatives.

Introduce a traveling wave transformation

u(t, x) = u(ξ ), ξ = kx + my –
ltα

α
, (2.3)

where k, m and l are arbitrary constants.
Equation (2.2) is reduced to the following integer-order ordinary differential equation:

P
(
u, u′, u′′, . . .

)
= 0, (2.4)

where P is a polynomial in u and its derivatives, notation (′) means the derivative with
respect to ξ . If it is possible, we should integrate several times equation (2.4) and take the
integral constants as zero.

2.2.1 The generalized (G′/G)-expansion method
Step 1. Assume that the solution of equation (2.4) can be expressed as

u(ξ ) =
N∑

i=0

ai

(
d +

G′

G

)i

+
N∑

i=1

bi

(
d +

G′

G

)–i

, (2.5)

where d is an arbitrary constant, while ai (i = 0, 1, 2, . . . , N) and bi (i = 1, 2, . . . , N) are to
be determined later. Then G = G(ξ ) satisfies the following nonlinear ordinary differential
equation:

AGG′′ = BGG′ + C
(
G′)2 + DG2, (2.6)

where A, B, C, and D are real parameters.
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Step 2. The positive integer N can be computed by balancing the highest order derivative
and nonlinear term appearing in equation (2.4).

Step 3. Substituting equation (2.5) together with equation (2.6) into equation (2.4), we
get polynomials in (d + G′

G )N (N = 0,±1,±2, . . . ). Setting all the coefficients of the resulting
polynomial to zero, we obtain algebraic equations.

Step 4. By solving the algebraic equations obtained in Step 3, we can obtain the values
of the constants ai (i = 0, 1, 2, . . . ) and bi (i = 1, 2, . . . , N). Replacing their values in equation
(2.5), we construct the exact solutions of equation (2.2).

2.2.2 The bifurcation method
Step 1. Let du

dξ
= y. Equation (2.4) can be transformed into the following two-dimensional

system:

⎧⎨
⎩

du
dξ

= y,
dy
dξ

= R(u, y),
(2.7)

where R(u, y) is an integral expression.
Step 2. Solve system (2.7) is an integral system, which has the first integral

H(u, y) = h, (2.8)

where h is an integral constant.
Step 3. By employing the first integral H(u, y) and analyzing the orbit properties in the

phase plane, we can obtain the exact solutions of equation (2.2).

3 Applications
By employing the transformation u(t, x, y) = u(ξ ), ξ = kx + my + ltα

α
, the (2 + 1)-dimensional

conformable time-fractional Zoomeron equation can be reduced to an ordinary differen-
tial equation having form

kml2
[

u′′

u

]′′
– k3m

[
u′′

u

]′′
– 2kl

[
u2]′′ = 0. (3.1)

Integrating equation (3.1) twice with respect to ξ , we obtain

km
(
l2 – k2)u′′ – 2klu3 – ρu = 0, (3.2)

where ρ is a constant of integration.

3.1 Exact solutions of equation (1.1) using the generalized (G′/G)-expansion
method

Balancing u′′ and u3 in equation (3.2), we obtain N = 1. Therefore, the solution form of
equation (3.2) is

u(ξ ) = a1

(
d +

G′

G

)
+ a0 + b1

(
d +

G′

G

)–1

. (3.3)
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Substituting (3.3) into (3.2) yields a polynomial in (d + G′
G )N (N = 0, 1, 2, 3) and (d + G′

G )–N

(N = 1, 2, 3). Collecting the coefficients of the resulting polynomial, we obtain a system of
nonlinear algebraic equations:

(
d +

G′

G

)3

: km
(
l2 – k2) · 2a1(C – A)2

A2 – 2kla3
1 = 0;

(
d +

G′

G

)2

: km
(
l2 – k2) · 3a1(C – A)[B – 2d(C – A)]

A2 – 2kl · 3a0a2
1 = 0;

(
d +

G′

G

)1

: km
(
l2 – k2){2a1(C – A)[(C – A)d2 + D – Bd]

A2 +
a1[B – 2d(C – A)]2

A2

}

– 2kl
(
3a2

1b1 + 3a2
0a1

)
– ρa1 = 0;

(
d +

G′

G

)0

: km
(
l2 – k2){a1[B – 2d(C – A)][(C – A)d2 + D – Bd]

A2

+
b1(C – A)[B – 2d(C – A)]

A2

}
– 2kl

(
a3

0 + 6a0a1b1
)

– ρa0 = 0;

(
d +

G′

G

)–1

: km
(
l2 – k2){b1[B – 2d(C – A)]2

A2 +
2b1(C – A)[d2(C – A) + D – Bd]

A2

}

– 2kl
(
3a1b2

1 + 3a2
0b1

)
– ρb1 = 0;

(
d +

G′

G

)–2

: km
(
l2 – k2)3b1[B – 2d(C – A)][(C – A)d2 + D – Bd]

A2 – 3kl · 3a0b2
1 = 0;

(
d +

G′

G

)–3

: km
(
l2 – k2)2b1[d2(C – A) + D – Bd]2

A2 – 2klb3
1 = 0.

Solving this system of algebraic equations using the computer algebra software Maple,
we get the following results:

Case 1. b1 = 0, a0 = ∓mψ(l2–k2)(B+2dψ)
2l|Aψ |

√
l

m(l2–k2) , a1 = ±
√

m(l2–k2)
l

|ψ |
|A| , ρ = – km(l2–k2)(B2+4Dψ)

2A2 .

Case 2. b1 = ±
√

m(l2–k2)
l

|d2ψ–D+Bd|
|A| , a0 = ∓m(l2–k2)(B+2dψ)(d2ψ–D+Bd)

2l|A(d2ψ–D+Bd)|
√

l
m(l2–k2) , ρ =

– km(l2–k2)(B2+4Dψ)
2A2 .

Substituting these solutions into (3.3), we obtain the traveling wave solutions as follows:

u(ξ ) = ∓mψ(l2 – k2)(B + 2dψ)
2l|Aψ |

√
l

m(l2 – k2)

±
√

m(l2 – k2)
l

|ψ |
|A|

(
d +

G′(ξ )
G(ξ )

)
, (3.4)

u(ξ ) = ∓m(l2 – k2)(B + 2dψ)(d2ψ – D + Bd)
2l|A(d2ψ – D + Bd)|

√
l

m(l2 – k2)

±
√

m(l2 – k2)
l

|d2ψ – D + Bd|
|A|

(
d +

G′(ξ )
G(ξ )

)–1

, (3.5)

where G′(ξ )
G(ξ ) is defined in Sect. 2, ξ = kx + my + ltα

α
.
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Figure 1 Kink wave solution of equation (1.1) for u11 (t, x, y) when α = 1
2 , A = B = l = 2, C = D = k = 1,m = 3

Family 1. When B 
= 0, ψ = A – C, and μ = B2 + 4Dψ > 0, we have the traveling wave
solutions as follows:

u1(t, x, y)

= ∓mψ(l2 – k2)(B + 2dψ)
2l|Aψ |

√
l

m(l2 – k2)
±

√
m(l2 – k2)

l
|ψ |
|A|

[
d +

B
2ψ

+
√

μ

2ψ

C1 sinh(
√

μ

2A (kx + my + ltα
α

)) + C2 cosh(
√

μ

2A (kx + my + ltα
α

))

C1 cosh(
√

μ

2A (kx + my + ltα
α

)) + C2 sinh(
√

μ

2A (kx + my + ltα
α

))

]
, (3.6)

u2(t, x, y)

= ∓m(l2 – k2)(B + 2dψ)(d2ψ – D + Bd)
2l|A(d2ψ – D + Bd)|

√
l

m(l2 – k2)

±
√

m(l2 – k2)
l

|d2ψ – D + Bd|
|A|

[
d +

B
2ψ

+
√

μ

2ψ

C1 sinh(
√

μ

2A (kx + my + ltα
α

)) + C2 cosh(
√

μ

2A (kx + my + ltα
α

))

C1 cosh(
√

μ

2A (kx + my + ltα
α

)) + C2 sinh(
√

μ

2A (kx + my + ltα
α

))

]–1

, (3.7)

where C1 and C2 are arbitrary constants.
In particular, if C1 
= 0, ψ > 0, l2 > k2, m > 0, A > 0, l > 0, and C2 = 0 in equation (3.6), we

obtain the kink wave solutions

u11 (t, x, y) =
√

m(l2 – k2)(B2 + 4Dψ)
2A

√
l

tanh

(√
B2 + 4Dψ

2A

(
kx + my +

ltα

α

))
. (3.8)

Family 2. When B 
= 0, ψ = A – C, and μ = B2 + 4Dψ < 0, we obtain the following exact
solutions:

u3(t, x, y)

= ∓mψ(l2 – k2)(B + 2dψ)
2l|Aψ |

√
l

m(l2 – k2)
±

√
m(l2 – k2)

l
|ψ |
|A|

[
d +

B
2ψ

+
√–μ

2ψ

–C1 sin(
√–μ

2A (kx + my + ltα
α

)) + C2 cos(
√–μ

2A (kx + my + ltα
α

))

C1 cos(
√–μ

2A (kx + my + ltα
α

)) + C2 sin(
√–μ

2A (kx + my + ltα
α

))

]
. (3.9)
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Figure 2 Periodic wave solution of equation (1.1) for u31 (t, x, y) when α = 1
2 , l = A =m = 2, k = B = C = 1,

D = –1

u4(t, x, y)

= ∓m(l2 – k2)(B + 2dψ)(d2ψ – D + Bd)
2l|A(d2ψ – D + Bd)|

√
l

m(l2 – k2)

±
√

m(l2 – k2)
l

|d2ψ – D + Bd|
|A|

[
d +

B
2ψ

+
√–μ

2ψ

–C1 sin(
√–μ

2A (kx + my + ltα
α

)) + C2 cos(
√–μ

2A (kx + my + ltα
α

))

C1 cos(
√–μ

2A (kx + my + ltα
α

)) + C2 sin(
√–μ

2A (kx + my + ltα
α

))

]–1

. (3.10)

In particular, if C1 
= 0, ψ > 0, l2 > k2, m > 0, A > 0, l > 0, and C2 = 0 in equation (3.9), we
obtain the periodic wave solutions

u31 (t, x, y) = –
√

–m(l2 – k2)(B2 + 4Dψ)
2A

√
l

tan

(√
–(B2 + 4Dψ)

2A

(
kx + my +

ltα

α

))
. (3.11)

Family 3. When B 
= 0, ψ = A – C, and μ = B2 + 4ψD = 0, we obtain

u5(t, x, y)

= ∓mψ(l2 – k2)(B + 2dψ)
2l|Aψ |

√
l

m(l2 – k2)

±
√

m(l2 – k2)
l

|ψ |
|A|

[
d +

B
2ψ

+
C2

C1 + C2(kx + my + ltα
α

)

]
, (3.12)

u6(t, x, y)

= ∓m(l2 – k2)(B + 2dψ)(d2ψ – D + Bd)
2l|A(d2ψ – D + Bd)|

√
l

m(l2 – k2)

±
√

m(l2 – k2)
l

|d2ψ – D + Bd|
|A|

[
d +

B
2ψ

+
C2

C1 + C2(kx + my + ltα
α

)

]–1

. (3.13)
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Family 4. When B = 0, ψ = A – C, and 	 = ψD > 0, we obtain following traveling wave
solutions:

u7(t, x, y)

= ∓mψ(l2 – k2)(B + 2dψ)
2l|Aψ |

√
l

m(l2 – k2)
±

√
m(l2 – k2)

l
|ψ |
|A|

[
d

+
√

	

ψ

C1 sinh(
√

	
A (kx + my + ltα

α
)) + C2 cosh(

√
	

A (kx + my + ltα
α

))

C1 cosh(
√

	
A (kx + my + ltα

α
)) + C2 sinh(

√
	

A (kx + my + ltα
α

))

]
, (3.14)

u8(t, x, y)

= ∓m(l2 – k2)(B + 2dψ)(d2ψ – D + Bd)
2l|A(d2ψ – D + Bd)|

√
l

m(l2 – k2)

±
√

m(l2 – k2)
l

|d2ψ – D + Bd|
|A|

[
d

+
√

	

ψ

C1 sinh(
√

	
A (kx + my + ltα

α
)) + C2 cosh(

√
	

A (kx + my + ltα
α

))

C1 cosh(
√

	
A (kx + my + ltα

α
)) + C2 sinh(

√
	

A (kx + my + ltα
α

))

]–1

. (3.15)

Family 5. When B = 0, ψ = A – C, and 	 = ψD < 0, we have

u9(t, x, y)

= ∓mψ(l2 – k2)(B + 2dψ)
2l|Aψ |

√
l

m(l2 – k2)
±

√
m(l2 – k2)

l
|ψ |
|A|

[
d

+
√

–	

ψ

–C1 sin(
√

–	
A (kx + my + ltα

α
)) + C2 cos(

√
–	
A (kx + my + ltα

α
))

C1 cos(
√

–	
A (kx + my + ltα

α
)) + C2 sin(

√
–	
A (kx + my + ltα

α
))

]
, (3.16)

u10(t, x, y)

= ∓m(l2 – k2)(B + 2dψ)(d2ψ – D + Bd)
2l|A(d2ψ – D + Bd)|

√
l

m(l2 – k2)

±
√

m(l2 – k2)
l

|d2ψ – D + Bd|
|A|

[
d

+
√

–	

ψ

–C1 sin(
√

–	
A (kx + my + ltα

α
)) + C2 cos(

√
–	
A (kx + my + ltα

α
))

C1 cos(
√

–	
A (kx + my + ltα

α
)) + C2 sin(

√
–	
A (kx + my + ltα

α
))

]–1

. (3.17)

3.2 Bifurcation, phase portraits, and exact solutions for equation (1.1) using the
bifurcation method

Let du
dξ

= y. Then, equation (3.2) is equivalent to the following 2-dimensional system:

⎧⎨
⎩

du
dξ

= y,
dy
dξ

= –βu3 – γ u,
(3.18)
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Figure 3 The phase portraits of system (3.18) for βγ 
= 0

which has the first integral

H(u, y) =
1
2

y2 +
β

4
u4 +

γ

2
u2 = h, (3.19)

where β = 2l
m(k2–l2) and γ = ρ

km(k2–l2) .

Let f (u) = –βu3 – γ u. If βγ < 0, we obtain three zeros of f (u): u1 = –
√

– γ

β
, u2 = 0, and

u3 =
√

– γ

β
. If βγ > 0, we obtain one zero of f (u), namely u4 = 0. We assume that Pi(ui, 0) (i =

1, 2, 3) is the equilibrium points of system (3.18). Clearly, the eigenvalue of system (3.18)
at this point is λ1,2 =

√
f ′(u). By the bifurcation theory, we derive the phase portraits of

system (3.18) shown in Fig. 3.
I. The case β < 0, γ > 0.
In this case, there exist three equilibrium points of system (3.18), where P1(–

√
– γ

β
, 0)

and P3(
√

– γ

β
, 0) are saddle points, while P2(0, 0) is a center. Two heteroclinic orbits con-

nect P1(–
√

– γ

β
, 0) and P3(

√
– γ

β
, 0); moreover, a family of periodic orbits enclose P2(0, 0) in

Fig. 3(a) defined by equation (3.19).
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(i) Suppose that h ∈ (0, – γ 2

4β
). Then a family of periodic orbits of system (3.18) are defined

by the algebraic equation

y = ±
√

–
β

2

√
u4 +

2γ

β
u2 –

4h
β

= ±
√

–
β

2

√(
φ2

1h – u2
)(

φ2
2h – u2

)
, (3.20)

where φ1h =
√

– γ

β
– 1

β

√
γ 2 + 4βh, φ2h =

√
– γ

β
+ 1

β

√
γ 2 + 4βh.

By employing (3.20) and the first equation of (3.18), we integrate them along the periodic
orbits and obtain

∫ u

0

dϕ√
(φ2

1h – ϕ2)(φ2
2h – ϕ2)

= ±
√

–
β

2
(ξ – ξ0). (3.21)

Hence, we can obtain two families of periodic traveling wave solutions, namely

u1(t, x, y) = ±φ1hsn
(

φ2h

√
–

β

2

(
kx + my +

ltα

α
– ξ0

)
,
φ1h

φ2h

)
. (3.22)

Remark 3.1 In (3.22), u1(t, x, y) represents Jacobi elliptic function solutions. When φ1h
φ2h

→
0, sn(φ2h

√
– β

2 (kx + my + ltα
α

– ξ0), φ1h
φ2h

) = sin(φ2h

√
– β

2 (kx + my + ltα
α

– ξ0)). When φ1h
φ2h

→ 1,

sn(φ2h

√
– β

2 (kx + my + ltα
α

– ξ0), φ1h
φ2h

) = tanh(φ2h

√
– β

2 (kx + my + ltα
α

– ξ0)).

(ii) Suppose that h = – γ 2

4β
. Then we have φ1h = φ2h =

√
– γ

β
and obtain two families of kink

solitary wave solutions,

u2(t, x, y) = ±
√

–
γ

β
tanh

(√
γ

2

(
kx + my +

ltα

α
– ξ0

))
. (3.23)

II. The case β > 0, γ < 0.
In this case, P1(–

√
– γ

β
, 0) and P3(

√
– γ

β
, 0) are center points, while P2(0, 0) is a saddle

point.
(i) Suppose that h ∈ (– γ 2

4β
, 0). Two families of periodic orbits of system (3.18) are defined

by the algebraic equation

y = ±
√

β

2

√
–u4 –

2γ

β
u2 +

4h
β

= ±
√

β

4

√(
u2 – χ2

1h
)(

χ2
2h – u2

)
, (3.24)

where χ1h =
√

– γ

β
– 1

β

√
γ 2 + 4βh, χ2h =

√
– γ

β
+ 1

β

√
γ 2 + 4βh.

Integrating them along the periodic orbits, we obtain two families of periodic traveling
wave solutions, namely

u3(t, x, y) = ±χ2hdn
(

χ2h

√
β

2

(
kx + my +

ltα

α
– ξ0

)
,

√
χ2

2h – χ2
1h

χ2h

)
. (3.25)
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(ii) Suppose that h = 0. Then we obtain two bell solitary wave solutions

u4(t, x, y) = ±
√

–
2γ

β
sech

(√
–γ

(
kx + my +

ltα

α
– ξ0

))
. (3.26)

(iii) Suppose that h ∈ (0, +∞). Then the function (3.19) can be rewritten as the following
algebraic expression:

y = ±
√

β

2

√
–u4 –

2γ

β
u2 +

4h
β

= ±
√

β

2

√(
χ2

3h + u2
)(

χ2
4h – u2

)
, (3.27)

where χ3h =
√

γ

β
+ 1

β

√
γ 2 + 4βh, χ4h =

√
– γ

β
+ 1

β

√
γ 2 + 4βh.

Integrating them along the periodic orbits, we obtain two families of periodic traveling
wave solutions, namely

u5(t, x, y) = χ4hcn
(√

β(χ2
3h + χ2

4h)
2

(
kx + my +

ltα

α
– ξ0

)
,

χ4h√
χ2

3h + χ2
4h

)
. (3.28)

4 Conclusion
By using the generalized (G′/G)-expansion method and bifurcation theory method, we
obtain exact traveling wave solutions, bifurcation, and phase portraits for the (2 + 1)-
dimensional conformable time-fractional Zoomeron equation under the given parameter
conditions. Many exact solutions have been obtained, which include hyperbolic function
solutions, Jacobi elliptic function solutions, trigonometric function solutions, and rational
function solutions. Compared with the previous work, the solution method obtained in
the paper has not been reported. Furthermore, two methods we employ here can be used
to analyze the exact solutions and bifurcation for other FPDE.

Appendix
In [35], Atangana et al. have proved some important properties of the conformable frac-
tional derivative. Next, we give the proof details, which are taken from [35].

Proof To prove Remark 2.1(i), let ε = tα–1h in Definition 2.1. Then,

Dα
t f (t) = lim

ε→0

f (t + εt1–α) – f (t)
ε

= lim
h→0

f (t + h) – f (t)
htα–1

= t1–α lim
h→0

f (t + h) – f (t)
h

= t1–α df
dt

(t);

when f (t) = tμ, μ ∈ R, we obtain

Dα
t tμ = t1–α dtμ

dt
= t1–αμtμ–1 = μtμ–α . (A.1)

To prove Remark 2.1(iii), by Definition 2.1, we have the following:

Dα
t (f ◦ g)(t) = lim

ε→0

(f ◦ g)(t + εt1–α) – (f ◦ g)(t)
ε

.
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Now putting k = εt1–α , we obtain

Dα
t (f ◦ g)(t) = t1–α lim

k→0

(f ◦ g)(t + k) – (f ◦ g)(t)
k

, (A.2)

with

lim
k→0

(f ◦ g)(t + k) – (f ◦ g)(t)
k

.

So we obtain

lim
k→0

(f ◦ g)(t + k) – (f ◦ g)(t)
k

= lim
k→0

f (g(t) + k) – f (g(t))
k

, (A.3)

If k = ε(g(t))1–α , then formula (A.3) can be transformed to

lim
k→0

(f ◦ g)(t + k) – (f ◦ g)(t)
k

=
(
g(t)

)α–1
lim
ε→0

f (g(t) + ε(g(t))1–α) – f (g(t))
ε

. (A.4)

Now replacing (A.4) in (A.2), we obtain the following:

Dα
t (f ◦ g)(t) = t1–αg(t)α–1 lim

ε→0

f (g(t) + ε(g(t))1–α) – f (g(t))
ε

, (A.5)

with, of course, yields

Dα
t
(
f (t)

)|t=g(t) = lim
ε→0

f (g(t) + ε(g(t))1–α) – f (g(t))
ε

. �
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