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Abstract
In this paper, a nonlinear generalized subdivision scheme of arbitrary degree with a
tension parameter is presented, which refines 2D point-normal pairs. The
construction of the scheme is built upon the stationary linear generalized subdivision
scheme of arbitrary degree with a tension parameter, by replacing the weighted
binary arithmetic average in the linear scheme with the circle average. For such a
nonlinear scheme, we investigate its smoothness and get that it can reach C1 with
suitable choices of the tension parameter when degreem ≥ 3. Besides, the nonlinear
scheme can reconstruct the circle and the selection of parameters and initial normal
vectors can effectively control the shape of the limit curves.

Keywords: Linear and nonlinear subdivision schemes; Circle average; Convergence
analysis; Smoothness analysis; Tension parameter

1 Introduction
Subdivision schemes have received extensive attention recently due to their simplicity and
high efficiency. They are broadly classified into two main categories: linear and nonlinear
schemes, according to whether the new points are the linear combinations of old points
in the iterative process. Generally speaking, linear subdivision schemes are simple to be
implemented and easy to be analyzed, but possibly there are artifacts and undesired in-
flexions on the limit curves, while nonlinear subdivision schemes can eliminate artifacts
and preserve shape. So more and more attention has been paid to the nonlinear subdi-
vision schemes. The construction of the nonlinear scheme mainly includes the algebraic
method, which generally involves different nonlinear average (see [1–3]), and the geomet-
ric method (see [4–6]).

Recently Lipovetsky and Dyn [7, 8] proposed a nonlinear modified Lane–Riesenfeld al-
gorithm and a nonlinear modified 4-point scheme by the circle average. Li et al. [9] pre-
sented a nonlinear 4-point interpolatory scheme and a nonlinear 3-point approximating
scheme with a free parameter respectively, following the ideas presented by Lipovetsky
and Dyn in [7]. In this paper, we present a new family of nonlinear schemes with a tension
parameter that generalizes the nonlinear modified Lane–Riesenfeld algorithm presented
in [7] and the nonlinear 3-point approximating scheme with a parameter introduced in [9].
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In addition, the shape of the limit curve can be effectively controlled with the selection of
parameters and initial normal vectors.

The outline of this paper is organized as follows. Section 2 provides a short survey of re-
quired background, including a summary on the stationary linear generalized subdivision
scheme of arbitrary degree with a tension parameter introduced in [10] and a brief review
on the circle average. In Sect. 3, we modify the stationary linear generalized subdivision
scheme and provide a nonlinear subdivision scheme. The convergence and smoothness
are analyzed in Sect. 4. In Sect. 5, some examples are given to illustrate the performance
of the nonlinear scheme. Finally, we conclude the paper with a short summary and further
research work in Sect. 6.

2 Preliminaries
In this section, we recall the definition of the circle average and present the algorithm
of the stationary linear generalized scheme of arbitrary degree with a tension parameter
(LGP scheme) introduced in [10].

2.1 The circle average
Given a real weight t ∈ [0, 1] and in a 2D space two point-normal pairs (PNPs) P0 = (p0, n0),
P1 = (p1, n1), each consisting of a point and a normal unit vector, the circle average pro-
duces a new pair Pt = P0 �t P1 = (pt , nt). The point pt is on an auxiliary arc p̄0p1, at arc
distance tθ from p0, where θ is the angle between n0 and n1, and 0 ≤ θ ≤ π . The selection
of the auxiliary arc depends upon whether the normal vectors n0 and n1 are in different
half-planes (relative to p0p1). The normal nt is the geodesic average of n0 and n1, and the
length of the line segment [p0, p1] is denoted by |p0p1|.

For the selection criterion of the auxiliary arc p̄0p1 and for specific details on the circle
average, refer to [7].

2.2 The stationary linear generalized scheme of arbitrary degree with a tension
parameter

In this subsection, we recall the stationary linear generalized subdivision scheme of arbi-
trary degree with a tension parameter (LGP scheme) introduced in [10].

Let f = {p1, p2, . . . , pn} be the initial control polygon and u be the tension parameter. The
LGP scheme of degree 1 is as follows:

⎧
⎨

⎩

p1
2i = pi,

p1
2i+1 = u

1+u pi + 1
1+u pi+1,

and the LGP scheme of degree m (m ≥ 2) is defined by pm
i = 1

2 (pm–1
i + pm–1

i+1 ). The algorithm
of the LGP scheme is presented in Algorithm 1, which can be seen as a generalization of
the Lane–Riesenfeld algorithm.

3 The nonlinear generalized subdivision scheme of arbitrary degree with a
tension parameter

In this section, we give the rule of the nonlinear generalized subdivision scheme of arbi-
trary degree with a tension parameter (NGP scheme). The NGP scheme refining 2D PNPs
is obtained from the LGP scheme. We substitute the weighted binary arithmetic average



Zhang et al. Advances in Difference Equations        (2020) 2020:655 Page 3 of 13

Algorithm 1 The refinement step of the LGP algorithm
Input: The tension parameter u(u ∈R+) and the data to be refined f = {pi}i∈Z. The degree

m(m ∈N0) of the LGP scheme.
Output: The refinement data S(f).

1: p0
2i ← pi

2: p0
2i+1 ← pi

3: for j ∈N0 do
4: for i ∈ Z do
5: pj,0

2i ← pj–1
i

6: pj,0
2i+1 ← u

1+u pj–1
i + 1

1+u pj–1
i+1

7: end for(i)
8: for k = 1, 2, . . . , m – 1 do
9: for i ∈ Z do

10: pj,k
i ← 1

2 (pj,k–1
i + pj,k–1

i+1 )
11: end for(i)
12: end for(k)
13: for i ∈ Z do
14: pj

i ← pj,m–1
i

15: end for(i)
16: end for(j)

Algorithm 2 The refinement step of the NGP algorithm
Input: The tension parameter u(u ∈ R+) and the data to be refined P = {Pi = (pi, ni)}i∈Z.

The degree m(m ∈N0) of the NGP subdivision scheme.
Output: The refinement data T(P).

1: P0
2i ← Pi

2: P0
2i+1 ← Pi

3: for j ∈N0 do
4: for i ∈ Z do
5: Pj,0

2i ← Pj–1
i

6: Pj,0
2i+1 ← Pj–1

i � 1
1+u

Pj–1
i+1

7: end for(i)
8: for k = 1, 2, . . . , m – 1 do
9: for i ∈ Z do

10: Pj,k
i ← Pj,k–1

i � 1
2

Pj,k–1
i+1

11: end for(i)
12: end for(k)
13: for i ∈ Z do
14: Pj

i ← Pj,m–1
i

15: end for(i)
16: end for(j)

in the LGP scheme by the circle average and obtain the NGP scheme, which is presented
in Algorithm 2.
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Remark 1 When u = 1, the NGP scheme reduces to the modified Lane–Riesenfeld scheme
introduced in [7], which is C1 for m ≥ 2. In particular, the NGP scheme of degree 3 be-
comes the nonlinear 3-point approximating scheme with a tension parameter introduced
in [9], when u = 1

2w – 1.

Remark 2 As the weighted circle averages of the two point-normal pairs are located on a
circle, the NGP scheme can reconstruct the circle when the initial data is sampled from a
circle (see Lemma 2.1 of [7]).

4 The convergence and smoothness analysis
In this section, we discuss the convergence and smoothness of the NGP scheme. If p is a
sequence of points, we use the symbol �p for the sequence of differences: �pi = pi+1 – pi.
Further we define d(p) = supi ‖pi+1 – pi‖ and ‖p‖∞ = supi ‖pi‖.

4.1 Convergence analysis
In this subsection, we analyze the convergence of the proposed nonlinear scheme. The
convergence analysis is based on the proximity condition and the displacement-safe con-
dition, i.e., if a nonlinear scheme is displacement-safe for manifold data with a contractiv-
ity factor η ∈ (0, 1), then the nonlinear scheme is convergent for any input manifold(see
Theorem 3.6 of [11]).

First, we introduce some notation related to the NGP algorithm. For k = 0, 1, . . . , m – 1
and j ∈ N0, define Pj,k

i = (pj,k
i , nj,k

i ), ej,k = maxi∈Z{|pj,k
i pj,k

i+1|}, and θ j,k = maxi∈Z{θ (nj,k
i , nj,k

i+1)}.
For k = 0, 1, . . . , m – 2, and j ∈N0, define μj,k = 1

2 cos θ j,k
4

. We also define, for j ∈N0,

μj,m–1 = max
i∈Z

⎧
⎪⎨

⎪⎩

sin( θ (nj
i–1,nj

i)
2(1+u) )

sin
θ (nj

i–1,nj
i)

2

,
sin( uθ (nj

i–1,nj
i)

2(1+u) )

sin
θ (nj

i–1,nj
i)

2

⎫
⎪⎬

⎪⎭
, ej = ej,m–1, θ j = θ j,m–1,μj = μj,m–1.

Lemma 1 (Contractivity) There exists J ∈ N0 such that the NGP algorithm is contractive
in the refinement levels above J , equivalently ej+1 ≤ ηej with η ∈ (0, 1) for j ≥ J .

Proof Consider the pairs {pj,0
2i+1}i∈Z inserted in the refinement step of the NGP algorithm

for k = 0. By the definition of the circle average, from Fig. 1(a), we get

ej+1,0 ≤ μjej, (1)

as

∣
∣pj+1,0

2i–2 pj+1,0
2i–1

∣
∣ =

|pj
i–1pj

i|
sin

θ (nj
i–1,nj

i)
2

sin
θ (nj

i–1, nj
i)

2 + 2u
≤ ej sin

θ (nj
i–1,nj

i)
2+2u

sin
θ (nj

i–1,nj
i)

2

≤ ejμj,

∣
∣pj+1,0

2i–1 pj+1,0
2i

∣
∣ =

|pj
i–1pj

i|
sin

θ (nj
i–1,nj

i)
2

sin
uθ (nj

i–1, nj
i)

2 + 2u
≤ ej sin

uθ (nj
i–1,nj

i)
2+2u

sin
θ (nj

i–1,nj
i)

2

≤ ejμj.



Zhang et al. Advances in Difference Equations        (2020) 2020:655 Page 5 of 13

Figure 1 Geometrical illustration for the proof of Lemma 1

In any smoothing step of the NGP algorithm for k = 1, 2, . . . , m – 1, by the triangle inequal-
ity, from Fig. 1(b), we have

∣
∣pj,k

i pj,k
i+1
∣
∣≤ ∣

∣pj,k
i pj,k–1

i+1
∣
∣ +

∣
∣pj,k–1

i+1 pj,k
i+1
∣
∣≤ ej,k–1

2 cos θ j,k–1
4

+
ej,k–1

2 cos θ j,k–1
4

=
(
2μj,k–1)ej,k–1.

Hence

ej,k ≤ (
2μj,k–1)ej,k–1, k = 1, 2, . . . , m – 1, (2)

which, together with (1), yields

ej+1 = ej+1,m–1 ≤ (
2μj+1,m–2)ej+1,m–2 ≤ (

2μj+1,m–2)(2μj+1,m–3)ej+1,m–3

≤ · · · ≤
m–2∏

k=0

(
2μj+1,k)ej+1,0 ≤ μj

m–2∏

k=0

(
2μj+1,k)ej. (3)

So we get ej+1 ≤ ηj+1ej from (3) by setting ηj+1 = μj �m–2
k=0 (2μj+1,k).

Let B1 = max{ u
1+u , 1

1+u }, we deduce that there exists j∗ such that μj ≤ B for j ≥ j∗ with
1
2 ≤ B1 < B < 1, due to the fact limj→∞ μj = B1. Hence ηj+1 ≤ B�

m–2
k=0

1
cos θ j+1,k

4
for j ≥ j∗. By

the subdivision of the normals, we have

θ j+1,0 ≤ B1θ
j, θ j+1,k ≤ θ j+1,k–1. (4)

Thus

θ j+1 ≤ θ j+1,0 ≤ B1θ
j. (5)

Furthermore, based on (4) and (5), we obtain θ j,k ≤ θ j,0 ≤ B1θ
j–1 ≤ θ j–1 for k =

0, 1, . . . , m – 1, and ηj+1 = μj �m–2
k=0 ( 1

cos θ j+1,k
4

) ≤ B( 1
cos θ j

4
)m–1. It follows from (5) that 1

cos θ j
4

is

monotone decreasing with j. Let j∗∗ be the minimal j for ( 1
cos θ j

4
)m–1 < 1

B and J = max(j∗, j∗∗),

then ηj ≤ ηJ < 1 for j ≥ J . Define η = ηJ , we get ej+1 ≤ ηej with η ∈ (0, 1) for j ≥ J , which
completes the proof. �

Lemma 2 (Safe displacement) The NGP scheme is displacement safe in refinement levels
above j∗ described in Lemma 1, namely satisfies |pj+1

2i – pj
i| ≤ cej with c ∈ R+ for j ≥ j∗.



Zhang et al. Advances in Difference Equations        (2020) 2020:655 Page 6 of 13

Proof By the triangle inequality, along with pj+1,0
2i = pj

i and pj+1
2i = pj+1,m–1

2i , we obtain

∣
∣pj+1

2i pj
i
∣
∣≤

m–2∑

k=0

∣
∣pj+1,k

2i pj+1,k+1
2i

∣
∣.

It follows from (1) and (2) that, for k = 0, 1, . . . , m – 2,

∣
∣pj+1,k

i pj+1,k+1
i

∣
∣≤ ej+1,k

2 cos θ j+1,k
4

≤ · · ·

≤ ej+1,0

2 cos θ j+1,0
4

∏k
n=1 cos θ j+1,n

4

≤ μjej

2
∏k

n=0 cos θ j+1,n
4

.

Since θ j ≤ θ0 ≤ π , we have θ j+1,k

4 ≤ θ j

4 ≤ π
4 < π

3 and maxi∈Z |pj+1,k
2i pj+1,k+1

2i | ≤ μjej

2(cos π
3 )k+1 ≤

2kμjej for k = 0, 1, . . . , m – 2. So

max
i∈Z

∣
∣pj+1

2i pj
i
∣
∣≤ μjej

m–2∑

k=0

2k ≤ B2m–1ej. (6)

Set c = B2m–1, we easily get |pj+1
2i – pj

i| ≤ cej(c > 0) from (6), which completes the proof. �

By Lemma 1 and Lemma 2, we conclude the convergence of the points. It remains to
prove the convergence of the normals. The convergence of the normals is an immediate
consequence of [12], which is a special case of Corollary 3.3 in [12] with α1 = u and α2 =
α2 = · · · = αm = 1.

With the above results, we can now obtain the following theorem.

Theorem 3 The NGP scheme of degree m (m ≥ 1) is convergent.

4.2 Smoothness analysis
In this subsection, we study the smoothness of the NGP scheme. To conveniently study
the smoothness, we introduce some additional notation and rewrite Algorithm 2 as Algo-
rithm 3, which includes one nonlinear 3-point approximating refinement step and m – 3
smoothing steps.

For j ∈N0 and k = 0, 1, . . . , m–3, define ẽj,k = maxi∈Z{|pj,k
i pj,k

i+1|}, θ̃ j,k = maxi∈Z{θ (nj,k
i , nj,k

i+1)}.
And for j ∈ N0 and k = 0, 1, . . . , m – 4, define μ̃j,k = 1

2 cos θ j,k
4

. We also define, for j ∈N0,

ẽj = ẽj,m–3, θ̃ j = θ̃ j,m–3, P j =
{

pj,m–3
i : i ∈ Z

}
.

For given two PNPs, Pi = (pi, ni), i = 0, 1, we denote by e the length of the segment [p0, p1],
θ the angle between n0 and n1, and �t = |ptqt|, where pt is the point of P0 �t P1 and qt

denotes the linear average qt = (1 – t)p0 + tp1. And qj,k
i (i ∈ Z) denote the points obtained by

the kth step of the jth iteration of the LGP scheme operating on P j–1. Set �
j,k
i = |pj,k

i qj,k
i |,

�j,k = supi �
j,k
i , and �j = �j,m–3.

In the triangle ptp0qt , we have the following result by applying the cosine theorem.

Lemma 4 With the above notation, �t ≤ χteθ , where t = 1
2(1+u) and χt =

»

π |t|3
3! + |t| (1–t)2

4 .



Zhang et al. Advances in Difference Equations        (2020) 2020:655 Page 7 of 13

Algorithm 3 The refinement step of the NGP algorithm
Input: The parameter u(u ∈ R+) and the data to be refined P = {Pi = (pi, ni)}i∈Z. The de-

gree m(m ∈N0) of the NGP subdivision scheme.
Output: The refinement data T(P).

1: P0
2i ← Pi

2: P0
2i+1 ← Pi

3: for j ∈N0 do
4: for i ∈ Z do
5: Pj,0

2i ← Pj–1
i � 1

2
Pj–1

i+1

6: SL ← Pj–1
i+1 � 1

2(1+u)
Pj–1

i

7: SR ← Pj–1
i+1 � 1

2(1+u)
Pj–1

i+2

8: Pj,0
2i+1 ← SL � 1

2
SR

9: end for(i)
10: for k = 1, 2, . . . , m – 3 do
11: for i ∈ Z do
12: Pj,k

i ← Pj,k–1
i � 1

2
Pj,k–1

i+1

13: end for(i)
14: end for(k)
15: for i ∈ Z do
16: Pj

i ← Pj,m–3
i

17: end for(i)
18: end for(j)

In the rest of this subsection, we prove several lemmas about the NGP scheme, which
show that an alternative proximity condition (16) holds.

Lemma 5 There exists j̃∗ ∈N0 such that θ̃ j+1,0 ≤ 1
2 θ̃ j and ẽj+1,0 ≤ 3

4 ẽj for j ≥ j̃∗.

Proof Let SL = (sL, nL), SR = (sR, nR) be the intermediate pairs inserted in the refinement
step of the NGP scheme for k = 0 (see Fig. 2(a)). Since

θ
(
nj+1,0

2i–1 , nR
)

=
1
2
θ (nL, nR) ≤ θ (nL, nj

i+1) + θ (nj
i+1, nR)

2

=
θ (nj

i, nj
i+1) + θ (nj

i+1, nj
i+2)

4(1 + u)
≤ 1

2(1 + u)
θ̃ j

and θ (nj+1,0
2i , nR) = uθ (nj

i+1,nj
i+2)

2(1+u) ≤ u
2(1+u) θ̃

j, we have θ (nj+1,0
2i–1 , nj+1,0

2i ) ≤ 1
2 θ̃ j. Similarly,

θ
(
nj+1,0

2i–2 , nj+1,0
2i–1

)≤ 1
2
θ̃ j.

Thus

θ̃ j+1,0 ≤ 1
2
θ̃ j. (7)
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Figure 2 The setup of Lemma 5, 6

It follows from (7) together with

θ̃ j+1,k ≤ θ̃ j+1,k–1 (8)

for k = 1, 2, . . . , m – 3 (see Fig. 2(b)) that

θ̃ j = θ̃ j,m–3 ≤ θ̃ j,m–4 ≤ · · · ≤ θ̃ j,0 ≤ 1
2
θ̃ j–1 ≤ · · · ≤

Å

1
2

ãj
θ̃0. (9)

Hence θ (nL, nR) ≤ 1
1+u θ̃ j ≤ ( 1

2 )j θ̃0

1+u . Also, since

∣
∣pj+1,0

2i–1 pj+1,0
2i

∣
∣≤ ∣

∣pj+1,0
2i–1 sR

∣
∣ +

∣
∣pj+1,0

2i sR
∣
∣ =

|sLsR|
2 cos θ (nL ,nR)

4

+
|pj

i+1pj
i+2|

sin
θ (nj

i+1,nj
i+2)

2

sin
uθ (nj

i+1, nj
i+2)

4(1 + u)

and

|sLsR| ≤ ∣
∣sLpj

i+1
∣
∣ +

∣
∣pj

i+1sR
∣
∣ =

|pj
ip

j
i+1| sin

θ (nj
i ,n

j
i+1)

4(1+u)

sin
θ (nj

i ,n
j
i+1)

2

+
|pj

i+1pj
i+2| sin

θ (nj
i+1,nj

i+2)
4(1+u)

sin
θ (nj

i+1,nj
i+2)

2

≤ ẽj
ï sin

θ (nj
i ,n

j
i+1)

4(1+u)

sin
θ (nj

i ,n
j
i+1)

2

+
sin

θ (nj
i+1,nj

i+2)
4(1+u)

sin
θ (nj

i+1,nj
i+2)

2

ò

,

we obtain

∣
∣pj+1,0

2i–1 pj+1,0
2i

∣
∣≤ ẽj

ï sin
θ (nj

i ,n
j
i+1)

4(1+u)

sin
θ (nj

i ,n
j
i+1)

2

+
sin

θ (nj
i+1,nj

i+2)
4(1+u)

sin
θ (nj

i+1,nj
i+2)

2

ò

1
2 cos θ̃ j

4(1+u)

+
ẽj sin

uθ (nj
i+1,nj

i+2)
4(1+u)

sin
θ (nj

i+1,nj
i+2)

2

≤ ẽj
ï

max
i∈Z

Å sin
θ (nj

i ,n
j
i+1)

4(1+u)

sin
θ (nj

i ,n
j
i+1)

2

ã

1
cos( 1

4(1+u) ( 1
2 )jθ̃0)

+ max
i∈Z

sin
uθ (nj

i+1,nj
i+2)

4(1+u)

sin
θ (nj

i+1,nj
i+2)

2

ò

︸ ︷︷ ︸
ϑj

.

Due to limj→∞ ϑj = 1
2 < 1, there exists j̃∗ ∈ N0 such that ϑj ≤ ϑj̃∗ = 3

4 < 1 for j ≥ j̃∗, which
implies that ẽj+1,0 ≤ 3

4 ẽj for j ≥ j̃∗. �

Lemma 6 For all j ∈N0, θ̃ j ≤ ( 1
2 )jθ̃0 and ẽ̃J+j ≤ ( π

2 )m–3( 3
4 )j ẽ̃J , where J̃ = max{̃j∗, j̃∗∗}.
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Proof From (9) in Lemma 5, we easily get, for all j ∈N0,

θ̃ j ≤
Å

1
2

ãj
θ̃0. (10)

Since for k = 0, 1, . . . , m – 4 (see Fig. 2),

∣
∣pj,k+1

i pj,k+1
i+1

∣
∣≤ ∣

∣pj,k+1
i pj,k

i+1
∣
∣ +

∣
∣pj,k

i+1pj,k+1
i+1

∣
∣≤ ẽj,k

2 cos θ̃ j,k
4

+
ẽj,k

2 cos θ̃ j,k
4

= 2μ̃j,k ẽj,k ,

it is clear that ẽj,k+1 ≤ 2μ̃j,k ẽj,k . Thus

ẽj+1 ≤ 2μ̃j+1,m–4ẽj+1,m–4 ≤ · · · ≤
m–4∏

k=0

(
2μ̃j+1,k)ẽj+1,0 ≤ 3

4

m–4∏

k=0

(
2μ̃j+1,k)ẽj. (11)

From (8) we easily get

3
4

m–4∏

k=0

(
2μ̃j+1,k) =

3
4

m–4∏

k=0

1
cos θ̃ j+1,k

4

≤ 3
4

Å

1
cos θ̃ j

4

ãm–3
. (12)

Let j̃∗∗ be the minimal j for which ( 1
cos θ̃ j

4
)m–3 < 4

3 and J̃ = max{̃j∗, j̃∗∗}, where j̃∗ is described

in Lemma 5, then 3
4 ( 1

cos θ̃ j
4

)m–3 < 1 for j ≥ J̃ . We get ẽ̃J+j ≤ η̃̃J+j ẽ̃
J+j–1 from (11) and (12) by

setting η̃j = 3
4 ( 1

cos θ̃ j–1
4

)m–3. Thus

ẽ̃J+j ≤ η̃̃J+j η̃̃J+j–1 · · · η̃̃J+1 ẽ̃J =
J̃+j∏

l=̃J+1

η̃l ẽ̃J . (13)

Clearly it follows from (7) that

J̃+j∏

l=̃J+1

η̃l =
J̃+j∏

l=̃J+1

3
4

Å

1
cos θ̃ l–1

4

ãm–3
=
Å

3
4

ãjÅ̃J+j–1∏

l=̃J

1
cos θ̃ l

4

ãm–3

≤
Å

3
4

ãjÅ̃J+j–1∏

l=̃J

1
cos θ̃0

2l+4

ãm–3
≤
Å

3
4

ãjÅ ∞∏

l=0

1
cos π

2l+2

ãm–3
=
Å

π

2

ãm–3Å3
4

ãj
.

Combining this with (13) leads to the claim of the lemma. �

To study the convergence of the nonlinear scheme, we recall the following result (see
Lemma 3.3 in [8]).

Lemma 7 In the above notation, for k ≥ 1, we have

�
j,k
i ≤ �j,k–1 + χ 1

2
ẽj,k–1θ̃ j,k–1. (14)

With the above lemmas, we obtain the following results.
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Lemma 8 Let S be the linear scheme corresponding to the NGP scheme, and 
j = 
j,m–3.
Then, for j ≥ J̃ ,

�j =
∥
∥P j – SP j–1∥∥≤ [

χt + (m – 3)χ 1
2

]
ẽj–1θ̃ j–1. (15)

Lemma 9 Let S be the linear scheme corresponding to the NGP scheme. Then

∥
∥P J̃+j – SP J̃+j–1∥∥≤ 8

3
[
χt + (m – 3)χ 1

2

]
Å

π

2

ãm–3Å3
8

ãj
ẽ̃J θ̃ J̃ . (16)

Remark 3 Condition (16) in Lemma 9 is an alternative proximity condition.

With the above lemmas in this subsection, we can obtain the following theorem.

Theorem 10 The NGP scheme of degree m (m ≥ 3) is C1 when
√

2 – 1 < u <
√

2 + 1.

Proof The proof is analogous to the proofs of Theorem 3.8 and Theorem 3.13 in [8].

Throughout this proof, δ denotes the difference operator. Let dj = ‖δ( δP̃ J+j

2–(̃J+j)
)‖, it is clear

that

dj ≤
∥
∥
∥
∥δ

Å

δSP J̃+j–1

2–(̃J+j)

ã∥
∥
∥
∥ +

∥
∥
∥
∥δ

Å

δ(P J̃+j – SP J̃+j–1)
2–(̃J+j)

ã∥
∥
∥
∥.

Using the fact introduced in [10] that, for m ≥ 3,

∥
∥
∥
∥δ

Å

δSP j–1

2–j

ã∥
∥
∥
∥≤ B1

∥
∥
∥
∥δ

Å

δP j–1

2–(j–1)

ã∥
∥
∥
∥, B1 = max

ß

1
1 + u

,
u

1 + u

™

, (17)

we have

dj ≤ B1

∥
∥
∥
∥δ

Å

δP J̃+j–1

2–(̃J+j–1)

ã∥
∥
∥
∥ + 2̃J+j∥∥δ

(
δ
(
P J̃+j – SP J̃+j–1))∥∥

≤ B1

∥
∥
∥
∥δ

Å

δP J̃+j–1

2–(̃J+j–1)

ã∥
∥
∥
∥ +

2J̃+5

3

Å

π

2

ãm–3Å3
4

ãj[
χt + (m – 3)χ 1

2

]
ẽ̃J θ̃ J̃

= B1dj–1 +
Å

3
4

ãj
K , (18)

where t = 1
2(1+u) and K = 2J̃+5

3 ( π
2 )m–3[χt + (m – 3)χ 1

2
]ẽ̃J θ̃ J̃ . Clearly, it follows from (18) that

dj ≤ B1dj–1 +
Å

3
4

ãj
K ≤ B2

1dj–2 + B1

Å

3
4

ãj–1
K +

Å

3
4

ãj
K

≤ · · · ≤ Bj
1d0 + Bj–1

1
3
4

K + Bj–2
1

Å

3
4

ã2
K + · · · +

Å

3
4

ãj
K

= Bj
1

Å

d0 +
3K

4B1 – 3

ã

–
3K

4B1 – 3

Å

3
4

ãj
, (19)
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which is essential for the proof of C1 smoothness. When u ∈ (
√

2 – 1,
√

2 + 1), it follows
that 2B2

1 < 1, which is required in the proof of the theorem. Similar to the proof of Theorem
3.8 and Theorem 3.13 in [8], we complete the proof according to (17) and (19). �

Remark 4 The NGP scheme of arbitrary degree m reduces to the nonlinear one intro-
duced in [7] for u = 1, which is C1 for m ≥ 2.

5 Examples
In this section, we present some examples to illustrate the performance of the nonlinear
subdivision scheme presented in this paper.

Figure 3 and Fig. 4 illustrate limit curves generated by the LGP scheme of degree 3 and
the NGP scheme of degree 3 with different tension parameters, which have the same con-
trol polygon. The resulting curves generated by the LGP scheme of degree 3 progressively
tend to shrink towards the control polygon with the increasing of the tension parameter
u, but cannot reconstruct the circle in Fig. 3, while the limit curves generated by the NGP
scheme of degree 3 with different tension parameters can reproduce the circle in Fig. 4.

The limit curves generated by the LGP scheme of degree 3 and the NGP scheme of
degree 3 with the parameter u = 1

2 and four different initial normals at P are shown in
Fig. 5. It shows that the selection of the initial normals effectively controls the shape of the
limit curves generated by the NGP scheme. Figure 6 shows that some examples illustrating

Figure 3 Limit curves generated by the LGP scheme [10] of degree 3 with u = 1
10 ,

1
2 , 1, 2, 10(from left to right)

Figure 4 Limit curves generated by the NGP scheme of degree 3 with u = 1
10 ,

1
2 , 1, 2, 10 after six iterations,

respectively(from left to right)

Figure 5 Limit curves generated by the LGP scheme of degree 3(dash-dot) and the NGP scheme of degree
3(solid) with u = 1

2 , starting from the same polygon with four different initial normals at P
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Figure 6 Limit curves generated by the NGP scheme of degree 2, 3, 4, 5 with the parameter u = 1
2 (from left

to right), respectively

the shape of the resulting curve are produced by the same control polygon, but with the
tension parameter u = 1

2 and different degrees 2, 3, 4, 5 of the NGP scheme. It shows that
the resulting curve becomes more and more smooth with increase in the degree of the
NGP scheme.

6 Conclusion
In this paper, by suitably using the circle average, we have presented a nonlinear gener-
alized subdivision scheme of arbitrary degree m with a tension parameter based on the
stationary linear generalized subdivision scheme of arbitrary degree with a tension pa-
rameter. The scheme can be seen as the generalization of the nonlinear modified Lane–
Riesenfeld algorithm presented in [7] and the nonlinear 3-point approximating scheme
with a parameter introduced in [9], and can reach C1 for m ≥ 3. The nonlinear scheme
can reconstruct the circle by the circle average, and suitable choices of parameters and
initial normal vectors can effectively control the shape of the limit curve. It can be seen
that the limit curves become smoother with increase in the degree of the NGP scheme in
Fig. 6. So we may focus on proving higher order of smoothness of the NGP scheme in the
future.
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