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Abstract
This manuscript is related to finding a solution of the SIR model under Mittag-Leffler
type derivative. For the required results, we use Laplace transform together with
Adomian decomposition method (LADM). The mentioned method is a powerful tool
to deal with various linear and nonlinear problems of “fractional order differential
equations (FODEs)”. Also, we study some results devoted to qualitative theory for the
concerned model. Computational results show the verification of the established
analysis. Briefly, we state that qualitative theory for the existence of solution is
important to ensure whether the considered problem has a solution or not. Further
ensuring the existence of solution, we investigate approximate solution which is
computed in the form of infinite series. The results are graphically displayed to
analyze the adopted procedure for solving nonlinear FODEs under ABC derivative.

Keywords: Fractional order differential equation; Atangana–Baleanu–Caputo
fractional derivative; Laplace Adomian decomposition method; SIR model

1 Introduction

Infectious diseases are spread by pathogenic microorganisms. These diseases can trans-
mit from one person to another or from animals or birds. Despite all the advancement in
medicine to control the disease, it is still a major threat to the community. Major causes
of infectious diseases are: change in human behavior, use of antibiotic drugs in larger and
denser cities. Mathematical models for the infectious diseases are the major tools to study
the process through which diseases spread in a population [1–3]. These models are used
for the predictions about the future to evaluate strategies to control the disease. First-time
authors of [4], formulated a simple model in 1927 that described the connection between
“susceptible, infected, and recovered individuals in a population abbreviated as SIR” given
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by

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt = αN – δx(t)y(t) – ax(t),
dy
dt = δx(t)y(t) – (β + a + b)y(t),
dz
dt = βy(t) – az(t),

(1)

where α is the birth rate, N = x(t) + y(t) + z(t), a represents the unrelated death rate, b is a
disease-related death rate, δ is infectious rate, and β is the removal rate. Further, x stands
for the density of susceptible, y for infected, and z for recovered individuals, respectively.
Onward of the said model has been investigated very well, see [5–8].

Riemann, Liouville, Euler, and Fourier have made a significant contribution in the eigh-
teenth century in the area mentioned above. Various aspects of mathematical modeling
may not be well described via ordinary calculus since derivatives of noninteger order are in
fact definite integrals that provide accumulation. The concerned accumulation includes
the corresponding integer counterpart as a special case. Further such operators permit
greater freedom in degree as compared to integer order (for details, see [9–21]). In the
said area, by considering different aspects, great work has been done in [12–14]. Differ-
ential operator with noninteger order has not been uniquely defined. There are several
definitions in the literature. On the basis of kernels, there are two concepts. One defini-
tion involving a singular kernel is often called power law, while the second one contains
nonsingular kernel of exponential and Mittag-Leffler type. The differential operators in-
volving Mittag-Leffler and exponential type kernel have been recently introduced by Atan-
gana, Baleanu, Caputo, and Fabrizo (see [19, 22–25]). This derivative exhibits the singular
kernel by a nonsingular kernel [20, 21, 26–29]. Since the differential and integral opera-
tors of ABC type are nonlocal and nonsingular, such operators reduce the complication in
numerical analysis of many problems. Further in some problems, the mentioned opera-
tors play excellent roles in description of many hereditary and memory terms. Therefore,
the mentioned operators have been considered in the recent time in an increasing way
for investigating physical and biological problems. In this regard, a number of methods
available in literature have been applied to compute solutions under these derivatives. To
compute the approximate and analytical solution, a famous decomposition method was
used as the best tool for many problems. Therefore, in this article, we utilize Laplace Ado-
mian decomposition method (LADM) for the series solution of SIR model (1) under ABC
derivative. We consider the biological model (1) and use the ABC derivative for the model
with order μ such that μ ∈ (0, 1] as given by

⎧
⎪⎪⎨

⎪⎪⎩

ABCDμ
0 (x)(t) = αN – δx(t)y(t) – ax(t),

ABCDμ
0 (y)(t) = δx(t)y(t) – (β + a + b)y(t),

ABCDμ
0 (z)(t) = βy(t) – az(t)

(2)

under the condition

x(0) = N1, y(0) = N2, z(0) = N3.

Then, we get the results in the form of an analytical solution of the SIR model. Moreover,
we exhibit the approximate solution for distinct fractional order μ ∈ (0, 1]. In addition, we
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study some results about the qualitative analysis and stability analysis for the concerned
model. Further, the right-hand sides of model (2) vanish at zero as for the general problem
in [20], Theorem 3.1. Via fixed point theory and nonlinear analysis, we establish some
results regarding the existence and stability of solution. Then, we compute the required
series solution via the proposed method for model (2).

2 Auxiliary results
We recall some fundamental results here.

Definition 1 Let φ ∈H1(0, τ ) and μ ∈ (0, 1], then the ABC derivative is defined as

ABCDμ
0
(
φ(t)

)
=
ABC(μ)
(1 – μ)

∫ t

0

d
dθ

φ(θ )Eμ

[
–μ

1 – μ
(t – θ )μ

]

dθ . (3)

Here, Eμ is known as a Mittag-Leffler function.

Definition 2 The fractional integral of ABC is

ABIμ
0
(
φ(t)

)
=

(1 – μ)
ABC(μ)

φ(t) +
μ

ABC(μ)�(μ)

∫ t

0
φ(θ )(t – θ )μ–1 dθ , (4)

while ABC(μ) is a normalization constant with ABC(0) = 1, ABC(1) = 1.

Definition 3 “The Laplace transform of the ABC derivative of a function φ(t)” is defined
by

L
[ABCDμ

0 φ(t)
]

=
ABC(μ)

sμ(1 – μ) + μ

[
sμ

[
φ(t)

]
– sμ–1φ(0)

]
. (5)

Lemma 1 For 0 < μ < 1, the solution of the problem

ABCDμ
0 φ(t) = g(t), t ∈ [0, T],

φ(0) = φ0,

is provided by

φ(t) =
(1 – μ)
ABC(μ)

g(t) +
μ

ABC(μ)�(μ)

∫ t

0
(t – θ )μ–1g(θ ) dθ . (6)

Definition 4 The operator ϕk : Y → Y for k = 1, 2, 3 defined as

⎧
⎪⎪⎨

⎪⎪⎩

ABCDμ
0 x(t) = χ1(x, y, z)(t),

ABCDμ
0 y(t) = χ2(x, y, z)(t),

ABCDμ
0 z(t) = χ3(x, y, z)(t),

(7)
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is Hyers–Ulam (HU) stable if, for any positive number cl (l = 1, 2, 3, . . . 9), �l (l = 1, 2, 3)
and for every solution (̂x, ŷ, ẑ) ∈ Y obeying the relation

⎧
⎪⎪⎨

⎪⎪⎩

‖x – x̂‖ ≤ �1,

‖y – ŷ‖ ≤ �2,

‖z – ẑ‖ ≤ �3,

(8)

with (x, y, z) ∈ Y of (7), the following hold:

⎧
⎪⎪⎨

⎪⎪⎩

‖x – x̂‖ ≤ c1�1 + c2�2 + c3�3,

‖y – ŷ‖ ≤ c4�1 + c5�2 + c6�3,

‖z – ẑ‖ ≤ c7�1 + c8�2 + c9�3.

(9)

Definition 5 If δl for l = 1, 2, 3, . . . n are eigenvalues of the matrix N , then the spectral
radius is denoted as �(N ) and is defined as

�(N ) = max
{|δl|, for l = 1, 2, . . . n

}
.

Moreover, if �(N ) < 1, this implies that N tends to zero.

Theorem 1 For the operator ϕk : Y → Y for k = 1, 2, 3, such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

‖ϕ1(x, y, z) – ϕ1(̂x, ŷ, ẑ)‖ ≤ c1‖x – x̂‖ + c2‖y – ŷ‖ + c3‖z – ẑ‖,

‖ϕ2(x, y, z) – ϕ2(̂x, ŷ, ẑ)‖ ≤ c4‖x – x̂‖ + c5‖y – ŷ‖ + c6‖z – ẑ‖,

‖ϕ3(x, y, z) – ϕ3(̂x, ŷ, ẑ)‖ ≤ c7‖x – x̂‖ + c8‖y – ŷ‖ + c9‖z – ẑ‖,

∀(x, y, z), (x̌, y̌, ž) ∈ Y ,

(10)

and the matrix

N =

⎛

⎜
⎝

c1 c2 c3

c4 c5 c6

c7 c8 c9

⎞

⎟
⎠ (11)

tends to zero, then (7) is Hyers–Ulam stable.

3 Qualitative results for the proposed model (2)
In this part of the manuscript, we study qualitative results for problem (2). Here, we ex-
press right-hand sides of (2) as follows:

χ1(t, x, y, z) = αN – δx(t)y(t) – ax(t),

χ2(t, x, y, z) = δx(t)y(t) – (β + a + b)y(t), (12)

χ3(t, x, y, z) = βy(t) – az(t).

We select

Mj = sup
A[d,bj]

∥
∥ϕ1(t, x, y, z)

∥
∥ (13)
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such that

A[d, bj] = [t – d, t + d] × [t – bj, t + bj] = B × Bj for j = 1, 2, 3.

The concerned norm may be defined as

‖Y‖ = sup
t∈[t–d,t+b]

∣
∣φ(t)

∣
∣. (14)

Then the Picard operator is given as

T : A(B, B1, B2, B3) → A(B, B1, B2, B3). (15)

We present the following theorem.

Theorem 2 In view of the Banach contraction theorem under the Picard operator as de-
fined in (15), there exists at most one solution to the considered model (2).

Proof In this regard, applying ABIμ on model (2), we obtain

⎧
⎪⎪⎨

⎪⎪⎩

x(t) – x(0) = ABIμ[χ1(t, x, y, z)],

y(t) – y(0) = ABIμ[χ2(t, x, y, z)],

z(t) – z(0) = ABIμ[χ3(t, x, y, z)].

(16)

Using Lemma 1 and writing (16) in a simple form, one has

Y(t) = Y0(t) +
[



(
t, Y(t)

)
– 
0(t)

]
ϑ(μ) + ϑ̄(μ)

∫ t

0
(t – ζ )μ–1


(
ζ , Y(ζ )

)
dζ , (17)

where

ϑ(μ) =
(1 – μ)
ABC(μ)

, ϑ̄(μ) =
μ

ABC(μ)�(μ)
,

and

Y(t) =

⎧
⎪⎪⎨

⎪⎪⎩

x(t),

y(t),

z(t),

Y0(t) =

⎧
⎪⎪⎨

⎪⎪⎩

x(0),

y(0),

z(0),



(
t, Y(t)

)
=

⎧
⎪⎪⎨

⎪⎪⎩

χ1(t, x, y, z),

χ2(t, x, y, z),

χ3(t, x, y, z),


0(t) =

⎧
⎪⎪⎨

⎪⎪⎩

χ1(0, x(0), y(0), z(0)),

χ2(0, x(0), y(0), z(0)),

χ3(0, x(0), y(0), z(0)).

(18)

Using (17) and (18), the operator in (15) is defined as follows:

TY(t) = Y0(t) +
[



(
t, Y(t)

)
– 
0(t)

]
ϑ(μ) + ϑ̄(μ)

∫ t

0
(t – ζ )ν–1


(
ζ , Y(ζ )

)
dζ . (19)
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Thus, the model under our study satisfies the result

‖Y‖ ≤ max{d1, d2, d3}, (20)
∥
∥TY(t) – Y0(t)

∥
∥

= sup
t∈B

∣
∣
∣
∣


(
t, Y(t)

)
ϑ(μ) + ϑ̄(μ)

∫ t

0
(t – ζ )μ–1


(
ξ , Y(ζ )

)
dζ

∣
∣
∣
∣

≤ sup
t∈B

ϑ(μ)
∣
∣


(
t, Y(t)

)∣
∣ + sup

t∈B
ϑ̄(μ)

∫ t

0
(t – ζ )μ–1∣∣


(
ζ , Y(ζ )

)∣
∣dζ

≤ ϑ(μ)M + ϑ̄(μ)tμ0 Md, M = max{Mj} for j = 1, 2, 3, t0 = max{t ∈ B}

< dM ≤ max{d1, d2, d3} = d̄, where d =
(�(μ) + μtμ0 )
ABC(μ)�(μ)

,

(21)

such that

d <
d̄
M

.

On further simplification, one has

‖TY1 – TY2‖ = sup
t∈B

|Y1 – Y2|. (22)

To compute (22), we proceed as follows:

‖TY1 – TY2‖ = sup
t∈B

∣
∣
∣
∣ϑ(μ)

(



(
t, Y1(t)

)
– 


(
t, Y2(t)

))

+ ϑ̄(μ)
∫ t

0
(t – ζ )ν–1(


(
ζ , Y1(ζ )

)
– 


(
ζ , Y2(ζ )

))
dζ

∣
∣
∣
∣,

≤ ϑ(μ)k‖Y1 – Y2‖ + ϑ̄(μ)ktμ‖Y1 – Y2‖, with k < 1

≤ {
ϑ(μ)k + ϑ̄(μ)tμk

}‖Y1 – Y2‖,

≤ dk‖Y1 – Y2‖. (23)

As 
 is a contraction, so we have kd < 1, thus T is a contraction. Therefore, our concerned
problem (18) has the required solution. �

4 Stability results
Theorem 3 If d < 1 holds, then the matrixN also converging to zero is Hyers–Ulam stable.

Proof Taking any two solutions (x, y, z), (̂x, ŷ, ẑ), we have

∥
∥χ1(x, y, z) – χ1(̂x, ŷ, ẑ)

∥
∥

≤ [∣
∣


(
t, (x, y, z)(t)

)
– 


(
t, (̂x, ŷ, ẑ)(t)

)∣
∣
]
ϑ(μ)

+ ϑ̄(μ)
∫ t

0
(t – ζ )μ–1∣∣


(
ζ , (x, y, z)(ζ )

)
– 


(
ζ , (̂x, ŷ, ẑ)(ζ )

)∣
∣dζ
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≤ ϑ(μ)k
[‖x – x̂‖ + ‖y – ŷ‖ + ‖z – ẑ‖]

+ ϑ̄(μ)tμk
[‖x – x̂‖ + ‖y – ŷ‖ + ‖z – ẑ‖] (24)

≤ (
ϑ(μ) + ϑ̄(μ)tμ

)
k‖x – x̂‖

+
(
ϑ(μ) + ϑ̄(μ)tμ

)
k‖y – ŷ‖

+ (ϑ(μ) + ϑ̄(μ)tμk‖z – ẑ‖
≤ c1‖x – x̂‖ + c2‖y – ŷ‖ + c3‖z – ẑ‖.

In the same fashion, one has

∥
∥χ2(x, y, z) – χ2(̂x, ŷ, ẑ)

∥
∥ ≤ c4‖x – x̂‖ + c5‖y – ŷ‖ + c6‖z – ẑ‖,

∥
∥χ3(x, y, z) – χ3(̂x, ŷ, ẑ)

∥
∥ ≤ c7‖x – x̂‖ + c8‖y – ŷ‖ + c9‖z – ẑ‖,

(25)

where

ci =
(
ϑ(μ) + ϑ̄(μ)tμ

)
k for each i = 1, 2, . . . , 9.

Now, the matrix N given by

N =

⎛

⎜
⎝

c1 c2 c3

c4 c5 c6

c7 c8 c9

⎞

⎟
⎠ (26)

converges to zero. Hence, the system is Hyers–Ulam stable. �

5 Analytical results for the proposed model
Here, we are going to apply LADM to obtain general results for the considered model (2).

⎧
⎪⎪⎨

⎪⎪⎩

L[x(t)] = x(0)
s + sμ(1–μ)+μ

sμABC(μ)L[αN – δx(t)y(t) – ax(t)],

L[y(t)] = y(0)
s + sμ(1–μ)+μ

sμABC(μ)L[δx(t)y(t) – (β + a + b)y(t)],

L[z(t)] = z(0)
s + sμ(1–μ)+μ

sμABC(μ)L[βy(t) – az(t)].

(27)

Now, we are going to consider x(t), y(t), z(t) in terms of infinite series as follows:

x(t) =
∞∑

q=0

xq(t), y(t) =
∞∑

q=0

yq(t), z(t) =
∞∑

q=0

zq(t). (28)

We resolve nonlinear terms as follows:

x(t)y(t) =
∞∑

q=0

Aq(x, y), (29)

where Aq(x, y) can be defined as

Aq(x, y) =
1
q!

dq

dλq

[ p∑

j=0

λjxj(t)
p∑

j=0

λjyj(t)

]∣
∣
∣
∣
∣
λ=0

.
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Hence, by using (28) and (29), our system (27) becomes

⎧
⎪⎪⎨

⎪⎪⎩

L[
∑∞

q=0 xq(t)] = x(0)
s + sμ(1–μ)+μ

sμABC(μ)L[αN – δ
∑∞

q=0 Aq(x, y) – a
∑∞

q=0 xq],

L[
∑∞

q=0 yq(t)] = y(0)
s + sμ(1–μ)+μ

sμABC(μ)L[δ
∑∞

q=0 Aq(x, y) – (β + a + b)
∑∞

q=0 yq],

L[
∑∞

q=0 zq(t)] = z(0)
s + sμ(1–μ)+μ

sμABC(μ)L[β
∑∞

q=0 yq – a
∑∞

q=0 zq].

(30)

Upon comparing terms wise (30), one has

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L[x0(t)] = N1, L[y0(t)] = N2, L[z0(t)] = N3,

L[x1(t)] = sμ(1–μ)+μ

sμABC(μ)L[αN – δA0(x, y) – aN1],

L[y1(t)] = sμ(1–μ)+μ

sμABC(μ)L[δA0(x, y) – (β + a + b)N2],

L[z1(t)] = sμ(1–μ)+μ

sμABC(μ)L[βN2 – aN3],

L[x2(t)] = sμ(1–μ)+μ

sμABC(μ)L[αN – δA2(x, y) – ax1],

L[y2(t)] = sμ(1–μ)+μ

sμABC(μ)L[δAq(x, y) – (β + a + b)y1],

L[z2(t)] = sμ(1–μ)+μ

sμABC(μ)L[βy1 – az1],
...

L[xq+1(t)] = sμ(1–μ)+μ

sμABC(μ)L[αN – δAq(u, x) – axq],

L[yq+1(t)] = sμ(1–μ)+μ

sμABC(μ)L[δAq(x, y) – (β + a + b)yq],

L[zq+1(t)] = sμ(1–μ)+μ

sμABC(μ)L[βyq – azq], q ≥ 0.

(31)

Simplifying the Laplace transform in (31), we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0(t) = N1, y0(t) = N2, z0(t) = N3,

x1(t) = (αN – δN1N2 – aN1)(1 – μ + μtμ
�(μ) ),

y1(t) = (1 – μ + μtμ
�(μ) )(δN1N2 – (β + a + b)N2),

z1(t) = (βN1 – aN3)(1 – μ + μtμ
�(μ) ),

x2(t) = (1 – μ + μtμ
�(μ) )αN – ((δN2 + α)(αN – δN1N2 – αN1))[(1 – μ + μtμ

�(μ) )]2,

y2(t) = ((δN1 – a – β – b)(δN1N2 + (a + b – β)N2)

+ δN2(αN – δN1N2 – αN1))[(1 – μ + μtμ
�(μ) )]2,

z2(t) = [1 – μ + μtμ
�(μ) ]2(β(δN1N2 – (β + a + b)N2) – a(βN1 – aN3)),

and so on.
In this way, the reaming terms may be computed. Finally, the required solutions can be

expressed as follows:

x(t) =
∞∑

k=0

xk(t), y(t) =
∞∑

k=0

yk(t), z(t) =
∞∑

k=0

zk(t), (32)

6 Computational results
In this section of the paper, our computational results about a series solution of the con-
cerned model are represented. To obtain the main goal, we apply LADM for the solution
corresponding to the values given in Table 1. In view of Table 1, we exhibit the results,
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Table 1 Parameters and their numerical values in model (2)

Parameters Description of parameters

N1 = 0.1000 Density of initial population of susceptible class
N2 = 0.00006 Density of initial population of infected class
N3 = 0.99994 Density of initial population recovered class
β = 0.000012 Birth rate
α = 0.000012 Removal rate
δ = 0.089 Infectious rate
a = 0.8 Unrelated death rate
b = 0.75 Disease related death rate

Figure 1 Dynamical behavior of “susceptible papulation” corresponding to various values of μ

Figure 2 Dynamical behavior of “infected papulation” corresponding to various values of μ

which are represented in (32) for different fractional order in the following Figs. 1–3 using
Matlab. Figures 1–3 show the graphs for the population of three compartments (suscepti-
ble, infected, and recovered) for distinct values of μ. One can observe that as we increase
the values of μ, the corresponding solutions converge to the solution at integer order.
Moreover, with passage of time the population of the susceptible class is decreasing when
starts from 0.1 in given time of 250 days under proper cure or vaccination. The decreas-
ing process of a class is different at different fractional order, while the density of infected
papulation is decreasing in given time of 250 days. Hence, the recovered class is increas-
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Figure 3 Dynamical behavior of “recovered papulation” corresponding to various values of μ

ing with passage of time. As we observe, for different values of μ, the distinct trajectories
are obtained as exhibited in Figs. 1–3. Increasing or decreasing (growth or decay) pro-
cess is somewhat greater at small fractional order values as compared to those of greater
fractional order.

7 Concluding remarks
We have discussed LADM for a biological model of the SIR model using the ABC operator.
Also, we developed some results about the qualitative theory and Hyers–Ulam stability
analysis. The methodology utilized here for dynamical problems under ABC operator of
derivative is very rarely applied in the literature. Further on providing some graphs of
approximate results, we have illustrated the procedure. The mentioned tool may be used
in the future to handle more complicated problems under the aforementioned operator.
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