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1 Introduction

Stochastic differential equations play an important role in various fields, such as biology;,
chemistry, and finance [3, 20, 27]. In practice, parameters and forms in stochastic systems
may change when something unexpected happens. At this point, we can use stochastic
differential equations with Markovian switching. Mao and Yuan [24] studied stochastic
differential equations with Markovian switching in depth. Many stochastic systems not
only depend on the present and past states, but also contain derivatives with delays and
the function itself, which can be described by neutral stochastic differential delay equa-
tions (NSDDEs) [20]. Kolmanovskii et al. [12] established a fundamental theory for neutral
stochastic differential delay equations with Markovian switching (NSDDEwMSs) and dis-
cussed some important properties of the solutions.

In many cases the true solutions of the equations cannot be found. So it is very useful to
study explicit forms of the numerical solutions. The Euler—Maruyama (EM) method for
stochastic differential delay equations with Markovian switching (SDDEwMSs) was inves-
tigated in [25] and [37]. Wu and Mao [34] showed the convergence of EM method for neu-
tral stochastic functional differential equations. However, Hutzenthaler et al. [9] showed
that pth moments of the EM approximations diverge to infinity for any p € [1, c0) when the

coefficients grow superlinearly. Many implicit methods were established to estimate the
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solutions of the equations with superlinearly growing coefficients [2, 4, 8, 11, 26, 30, 32, 33].
Due to the advantages of explicit numerical solutions, such as less computation, plenty
of modified EM methods have been studied to approximate the solutions of superlinear
stochastic differential equations. The tamed EM scheme was proposed in [10] to estimate
the solutions of stochastic differential equations with one-sided Lipschitz drift coefficient
and global Lipschitz diffusion coefficient. Sabanis [28, 29] developed tamed EM schemes
for nonlinear stochastic differential equations. More detail on the other explicit numerical
methods can be found in [1, 16, 18]. In addition, Mao initialized the truncated EM method
in [21] and obtained the convergence rate in [22]. Then Guo et al. [7] discussed the con-
vergence rate of the truncated EM method for stochastic differential delay equations. The
truncated EM method for time-changed nonautonomous stochastic differential equations
was shown in [19]. To get the asymptotic behaviors easily, Guo et al. [6] proposed the par-
tially truncated EM method. In [38], the partially truncated EM method for stochastic
differential delay equations was proposed. Cong et al. [5] used the partially truncated EM
method to get the convergence rate and almost sure exponential stability of highly nonlin-
ear SDDEwMSs. Tan and Yuan in [33] showed the convergence rates of the theta-method
for nonlinear neutral stochastic differential delay equations driven by Brownian motion
and Poisson jumps, but the stability was not analyzed as time goes to infinity. In [39], the
convergence of the EM method for NSDDEwMSs was proved, but the convergence rate
was not given. To our best knowledge, there are few papers concerning with numerical
solutions of highly nonlinear and nonautonomous NSDDEwMSs. Therefore, in this pa-
per, we give the strong convergence rate of the partially truncated EM method for highly
nonlinear and nonautonomous NSDDEwMSs.

Moreover, many scholars are interested in the asymptotic behaviors of the stochastic
systems [3, 5, 6, 20, 24, 31]. The almost surely asymptotic stability of NSDDEwMSs was
discussed in [23]. Then Li and Mao [15] established LaSalle-type stability theorem for NS-
DDEwMSs. Liu et al. [17] showed the mean square polynomial stability of the EM method
and the backward EM method for stochastic differential equations. The almost sure ex-
ponential stability of EM approximations for stochastic differential delay equations was
investigated By means of the semimartingale convergence theorem [36]. The exponen-
tial mean square stability of the split-step theta method for NSDDEs was investigated in
[40]. Lan and Yuan [14] studied the exponential stability of the exact solutions and 6-EM
(1/2 < 6 < 1) approximations to NSDDEwMSs. Lan [13] gave the asymptotic mean-square
and almost sure exponential stability of the modified truncated EM method for NSDDEs
under local Lipschitz condition and nonlinear growth condition. However, there is lit-
tle literature studying the almost sure exponential stability of the partially truncated EM
method for highly nonlinear and nonautonomous NSDDEwMSs. The second goal of this
paper is to fill this gap.

This paper is organized as follows. We introduce some useful notations and establish
the partially truncated EM scheme for NSDDEwMSs in Sect. 2. In Sect. 3, we discuss
the strong convergence rate. In Sect. 4, we show the almost sure exponential stability of
numerical solutions. Section 5 contains two examples to illustrate that our main result

covers a large class of highly nonlinear and nonautonomous NSDDEwMSs.

2 Mathematical preliminaries
Unless otherwise specified, we use the following notation. If A is a vector or matrix, its
transpose is denoted by A. For x € R”, let |x| denote its Euclidean norm. If A is a ma-
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trix, denote by |A| = /trace(ATA) its trace norm. By A < 0 and A < 0 we mean that
A is nonpositive and negative definite, respectively. For real numbers a, b, we denote
a A b =min{a, b} and a v b = max{a, b}. Let |a] be the largest integer that does not ex-
ceed a. Let R, = [0,+00) and 7 > 0. By €'([-7,0]; R”) we denote the family of continuous
functions v from [~-7,0] to R” with the norm |v|| = sup_, .5 [v(@)]. If H is a set, then Iy
denotes its indicator function, that is, Ig(w) =1 if w € H and Iy(w) =0 if w ¢ H. Let C
stand for a generic positive real constant different in different cases.

Let (2, F, {F:}:>0,P) be a complete probability space with a filtration {F;};>¢ satisfying
the usual conditions (i.e., it is increasing and right continuous, and F, contains all P-
null sets). Let E denote the expectation with respect to P. For p > 0, let f;ﬂ([—t, 0]; R™)
denote the family of all y-measurable € ([-t,0]; R”)-valued random variables & such that
E|€]|” < co. Let B(¢) = (B1(£),...,B,,(t))T be an m-dimensional Brownian motion defined
on the probability space.

Let r(t) (¢ > 0) be aright-continuous Markov chain on the probability space taking values
in a finite state space S = {1,2,..., N} with generator I" = (y;))nxn given by

o tis
Blries A =jirtey =i = {0
1+yj+0(4) ifi=}

where A > 0, and y; is the transition rate from i to j with y; > 0 if i #j, whereas y;; =
- Zj i Vi~ We suppose that the Markov chain r is independent of the Brownian motion B.
As is well known [31], almost every sample path of r is a right-continuous step function
with finite number of simple jumps in any finite subinterval of R,, that is, there is a se-

quence of stopping times 0 = 79 < T < Ty < - - - < Tx — 00 almost surely such that

r(t) = Z Ptz o, ) (£)s

k=0

where I is the indicator function defined as before. Hence r is constant on each interval

[Tk Ther1):
Y(t):r(‘[k), te [Tk;Tk+1),k:0,1,2,....

In this paper, we consider highly nonlinear and nonautonomous neutral stochastic dif-

ferential delay equations with Markovian switching of the form

d[x(t) - D(x(¢ - 1), (®))]

(2.1)
=f(&x(t),x(t — T), r(8)) dt + g(t, x(¢),x(t - 7), (t)) dB(t), ¢>0,
with initial data
x=£€ vf;o([—t,O];R”) and 7(0) = ro, (2.2)

where ry is S-valued Fj-measurable random variable. Here f : R, x R" xR” xS — R", g:
R, xR"xR” xS — R"",and D : R” xS — R”. They are all Borel-measurable functions.
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We suppose that the drift and diffusion coefficients can be decomposed as

f(t,%,9,0) = F(t,x,,0) + E(t,x,, i)
(2.3)

g(t,x%,9,i) = G(t,x,,i) + G(t,%,7, i).

To estimate the partially truncated EM method for (2.1), we need the following lemma
[24].

Lemma 2.1 Given A >0, let rkA =r(kA) for k > 0. Then {r,f,k =0,1,2,...} is a discrete
Markov chain with the one-step transition probability matrix

P(4) = (Py(4)) =€ (2.4)
Then we impose two standard necessary hypotheses on the initial data and neutral term.

Assumption 2.2 There exist constants K; > 0 and « € (0, 1] such that
E@) -£G)| <Kilt-5% -t<5<t=<0. (2.5)

Assumption 2.3 (The contractive mapping) D(0,i) = 0, and there exists a constant K, €
(0,1) such that

|D(x,i) = D(y, )| < Kalx -yl (2.6)
forallx,y e R” and i € S.

By Assumption 2.3 we have |D(x,i)| < K;|x| for all x € R” and i € S.

Since y;; is independent of x, the paths of r could be generated before approximating x.
The discrete Markovian chain {r{',k = 0,1,2,...} can be generated as follows: Compute the
one-step transition probability matrix P(A). Let r§' = ig and generate a random number &;
uniformly distributed in [0, 1]. Define

iy ifij €S- {N}suchthat Y /17 Py (A) <& < YiL Py (),
ry = .
N if Y P (4) <&,

where we set Z](.)=1 P;,;(A) = 0 as usual. Then independently generate a new random num-
ber &, uniformly distributed in [0, 1] as well. Define
o |2 ifiaeS—(N}suchthat Y27 Poa (4) <& < 32 Pra(4),
ry = -
N if 3 P (4) <6

Repeating this procedure, we can obtain a trajectory of {r{,k = 1,2,...}. The proce-
dure can be applied independently to get more trajectories. After generating the discrete
Markov chain {r{,k = 0,1,2,...}, we can now define the partially truncated EM approxi-
mate solution for NSDDEwMSs (2.1) with initial data (2.2).

Page 4 of 37
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To define the partially truncated EM scheme, we first choose a strictly increasing con-

tinuous function ¢(w) : R, — R, such that ¢(w) — co as w — 0o and

sup  sup (|F(t,x,y, i)‘ \Y, |G(t,x,y, i)’) <pw), Vw=>1. (2.7)

0<t=<T |x|VIyl<w

Let ¢! denote the inverse function of ¢. Hence ¢! is a strictly increasing continuous
function from [¢(1), 00) to R, . Then we also choose Ky > 1V ¢(1) and a strictly decreasing
function 4 : (0,1] — (0, 00) such that

lim 7(4) = o0, AT(A) <K, VA e(0,1]. (2.8)

For a given step size A € (0,1], define the truncated mapping 74 from R” to the closed
ball {x € R" : x| < ¢~ 1(h(A))} by

() = (1] A g7 (h(4))) |z—| (2.9)

where we let ‘i—‘ =0 for x = 0. Then we can define the truncated functions

FA(ty XY, L) = F(t’ nA(x); TTA ()/), l)r GA(trx;y; l) = G(t) TTA (?C), T[A(y)) l)
for x,y € R”. Thus we obtain that

fA(t,x;y; l) = P(trx,y, l) + FA(t;x;y; l);

gA (t1 XY, l) = G(tl %Y l) + GA(t) XY, l)

Moreover, we can easily get that for any x,y € R”,
|Falt,x,9,0)| v |Galt,x,9,0)] < @(¢7' (A(A))) = h(4). (2.10)

Let us now establish our discrete-time truncated EM numerical solutions to approxi-
mate the true solution. For some positive integer M, we take step size A = /M. It is easy
to see that A becomes sufficiently small by choosing M sufficiently large. Define ¢; = kA
fork=-M,-M+1,-M+2,...,-1,0,1,2,.... Set X5 (tx) = &(t) for k = -M,-M + 1,-M +
2,...,—1,0 and then form

Xa(tks1) = Xa(te) + D(Xa(tes1-m):Tiey1) = D(Xatepr) 1)

+ [ (8o Xa (), X a(tiean)s 76 ) A + ga (b X a(8), X a(txemr), 7 ) ABy

(2.11)

for k=0,1,2,..., where ABy = B(tx,1) — B(t). To form continuous-time step approxima-

tions, define

M(t) = Z tkﬂ[tk,t/<+1)(t): ;(t) = Z r]?]:[[tk,tk+1)(t)! (212)
k=0 k=0
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where I is the indicator function. As usual, there are two kinds of continuous-time step
approximations. The first one whose sample paths are not continuous is

2a(t) =D Xalt) g ) () (2.13)
k=0

The other one with continuous sample paths is
xA(t) = £(0) + D(%(t - 7),7(2)) - D(§(=7),75)

+ /0 fa(1n(s),%a(s), Xa(s — 7),7(s)) ds (2.14)
. fo 20 (1(5), % (5), (s — 1), 7(5)) dB(S),

which is continuous in . Is easy to see that X (tx) = ¥4 (tx) = x4 (¢). Namely, they coincide
at .

3 Strong convergence rate

In this section, we estimate the strong convergence rate of the partially truncated EM
method for (2.1). Now, to achieve this goal, we have to impose the following assumptions
on the coefficients.

Assumption 3.1 There exist constants K3 >0 and 8 > 0 such that
|F(t,%,9,0) = F(t,%,5,0)| V |Gt %,9,1) - G(t,%,5,)| < Ks(lx =X + [y - J]) (3.1)
and

|F(t,x,y, l) _F(th’_c;_)_/, l)| \% |G(t:x1y1 l) - G(tﬁ_ﬂ}_& l)|

<Ks(1+ 1l + 1P + 1717+ 517) (Ix = 3] + 1y - 51) >
forallt€[0,T],x,9,%y€R", andieS.
By Assumption 3.1 we get that there exists a constant K3 > 0 such that
|I-"(t,x,y,i)| \Y |G(t,x,y, i)| 51_(3(1 + |x| + [yl) (3.3)
and
|F(t,%,9,0)| V |Gt,x,,1)| < Ks(L+ %P+ +[y)P*) (3.4)

forallt € [0, T],x,y € R",and i € S, where K = 4K;5 + Supte[O,T],ieS[f:(t’ 0,0,i) + G(t, 0,0,i) +
F(t,0,0,i) + G(£,0,0,7)]. We also derive from Assumption 3.1 that

If (&,%,9,0) = f(6,%,5,0)| v |g(t, 2,9, ) - g(£,%,5,1)] 65
<K3(1+ |x)? +191P + 121F + 517) (1x - %] + [y - 7))

forallt€[0,7],x,y,xy€R", and i €S.

Page 6 of 37



Gao and Hu Advances in Difference Equations (2020) 2020:688

Before stating the next assumption, we introduce functions V;, i = 1,2, 3, such that for
any &,y € R”,

0< Vilw,y) < Kpy(1+ 1l + |y"), i=1,2,3,
for some Ky, >0 and /; > 1. Denote [, = max{l;, [, 3}.

Assumption 3.2 There exist constants K4 > 0 and g > 2 such that

(x—D(y, i) - % + D(,0))" (F(t,%,9,i) - F(t,%,5,1))

q-1
2

(3.6)

+ 1|6t %y, ) - G(t,7,5,0)| < Kalx - % + | V1(5,5)|ly - 512
forall£€[0,T], x,7,%,y€R"”, and i € S.
By Assumption 3.2 we obtain that for any g € (2, g),
(x—D(y,i) — %+ DG,0)) " (F(t,%,9,0) - (&% 5,1))
+1%1gmm%a—ga@yﬁf (3.7)

< (Ka+ Ka)lx = x> + (Ko + |[Vi(s ) ) Iy = 51

K3(g-1)(G-1

where K, = 2K + P ). The proof is trivial, so we omit it.

Assumption 3.3 There exist constants K5 > 0 and p > g such that

@—Dwﬁffmm%ﬁ+p;HG%%%ﬂf
<Ks(1+1x%) + |[Va(3,0)| Iy
forall£€[0,T],x,y € R",and i €S.

By Assumption 3.3 we derive that for any p € [2,p),
T ‘ -1 ,
@—D@ﬁ)fmm%ﬂ+£§—@mmyﬂf
< (Ks + 1(5)(1 + |x|2) + (I_(5 + |172(y, O)|)|y|2,

3K2(p-1)(p-1)

where Ks = 3K; + 3G

Assumption 3.4 There exist constants Ky > 0, K7 >0, 8 € (0,1], and o € (0, 1] such that

If (t1,%, 9, 1) = (t2,%, 9, 1) | < Ko(1 + %P+ + [y |t - 2%,

|g(t1,X,y; l) _g(tZ)xvyv l)| = 1(7(1 + |x|ﬁ+1 + |y|ﬂ+1)|tl - t2|(I

(3.10)

forall t;,¢, € [0, T], x,y € R”, and i € S, where 8 is as in Assumption 3.1.

Page 7 of 37
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The following lemma gives that the p-moment of the true solution is bounded. This
lemma can be proved similarly to the proof of Theorem 2.4 presented in [12] by means of
the technique used in Theorem 2.1 of [35].

Lemma 3.5 Let Assumptions 3.1 and 3.3 hold. Then neutral stochastic differential delay
equations with Markovian switching (2.1) with initial data (2.2) has a unique solution x(t)
ont > —t. In addition, this solution has the property that

sup Elx(t)|” <00, VT >0. (3.11)

—-t<t<T
To get the strong convergence rate, we impose another assumption.

Assumption 3.6 There exist constants Kg > 0 and p > g such that

p—1
(2= D, 1) Falt, 3,0 + Lo~ |Gt .9, 1)|
2 (3.12)
<Ks(1+1x%) + | V50, 0)| Iy
forall£€[0,T],x,ye R",and i € S.
By Assumption 3.6 we can show that for any p € [2,p),
T . p-1 Ny
(x —D(J/, l)) fA(t,xyyy l) +— |gA(txx;y) l)|
2 (3.13)

< (Kg + 1(3)(1 + |x|2) + (f(g + |\_/3(y, O)’)|y|2,

= = 3K3(p-1)(p-1)
where Kg = 3K3 + 32@41])

Remark 3.7 When D(.,-) = 0, we can derive that for any functions satisfying Assump-
tion 3.3,

i)_

1 ~ _
5 |Galt,x,9,0)|” < Ks(1 + 1x1?) + | Va3, 00"y (3.14)

xTFA (t;xyy! l) +

for all £ € [0,T], x,y € R”, and i € S, where Kg = 2K5([1/¢~(4(1))] Vv 1). In other words,
Assumption 3.6 can be eliminated if there is no neutral term.

Remark 3.8 In fact, there are plenty of functions such that D(y, i), F(t, x,y, i), and G(¢, , y, i)
satisfy Assumption 3.3 and the corresponding Fa(¢, x, y, i) and G a(t, x, y, i) satisfy Assump-
tion 3.6. For example, when i = 1, define D(y,1) = —éy,f(t,x,y, 1) = =29 + (¢(1 - t))%y -
10x + 2y, g(t, %, 9,1) = (¢(1 - £)3 |y|% for t € [0,1] and x,y € RY. Thus F(¢,%,9,1) = —2y% and
G(t,x,9,1) = (¢(1— t))% [yl 3. We can easily prove that Assumptions 3.3 and 3.6 are satisfied.
A detailed proof is presented in Sect. 5.

Lemma 3.9 Let Assumptions 2.3, 3.1, and 3.6 hold. Then for any p € [2,p), we have

sup sup E’xA(t)V?gC, VT > 0. (3.15)
0<A<10<t<T
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Proof For any A € (0,1] and ¢ € [0, T, by It6’s formula we derive that
Elxa(t) = D(xa(t - 1), 7)) - |£(0) = D(£(=1), )
< E/ plxa(s) = D(Ea(s - 7), 7)) | [(xA(S) —D(Fals - 1), 7())"
0

Sa (), %a(s), Xa(s — T), 7(s))
-1
2

+ 2 ga (1), 7a(5), Bals - 1),7(9)) ’2] ds

<E / plals) — DEals - 0),76) > (xals) ~ %a(s)”
0

(3.16)
S (1(), Ba(5), E (s — ), F(6)) ds
+E /0 ' plia(s) = DlEals - 7),75) |”‘2[(5m(s) ~D(Eals - 1),7()))"
fa(u(s),xa(s),xa(s — 1), 7(s))
2 e (19, 20(9), 2 - r),?(smz] ds
=: A1 +A,.
Let us first estimate A;:
A1 < pE /0 10(9) = Dlfals - 0,76) (1) — 70(9)
-E(u(s),2a(s), %als — 7), 7(s)) ds
+ pE /0 a(s) — Dlals — 0, F6)) [P (e(9) - £(9)” (3.17)
“ Fa(1a(s),x4(5), 24 (s — 7), 7(s)) ds
=:A11 +A1.
By Assumptions 2.3 and 3.1 and Young’s inequality we derive that
An = (-2 als) = D(Eals - 7),746)) [ ds
+2E | eals) — 24 6)| [E(u(5) al6), 2als — 01, 766)) [ s (3.18)

§C/t(1+E‘xA(s)’p+E|5cA(s)|p+]E’56A(s—r)‘p)ds.
0

Moreover, for any ¢ € [0, T], there always is an integer k > 0 such that ¢ € [#, t,1). By
Holder’s inequality and BDG’s inequality, we have

El|xa(t) —J_CA(t)’P%

= Elxa(t) - ()|

Page 9 of 37
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<CE

Sa(u(s),%a(s),x4(s — 7),7(s)) ds

+ CE| [ ga(1(9)7a(6) 76 - 1,709 dB05) '

73

<Cab R f B (1(5), %(5), Eals - 1),7(5)) | ds (319)
tk
+ CALZ’_IE/ |FA (M(S)’J_CA(S)J_CA(S - T)’?(S))ﬁ ds
+ CA%‘IE/t|G(M(S),5CA(S),5CA(S -1), ;(S))|g ds

+ CA%*lE/ |G a(ls), 2a(s),%a(s - 7), r(s))|§ ds

73

V4
< CA%hg(A)+CA%<1+ sup E‘Q_CA( | + sup E|xA s—r)|2)

0<s<t 0=<s<t

Thus, by (2.8), (2.10), and (3.19) and Young’s inequality we get

A2 = (=28 [ 3409 - Dlals - 0)76)| ds
0
o[ INY.- - I
e / a(5) = £a(5)|® |Fa (1 B4, B s — 10, 76)) | ds
0
5(p—2)Ef0 |xA(s)— xA(s— )‘pds
Phb) [ Blna)-7a(0) as (320)
0
< (=208 [ Jra(9) = D(sals - 01,76 ' ds
0
+Cn(a)ak /t<1+h§(A)+ sup E[ix()]* + sup Efial-7)|*) ds
0

0<i<s 0<i<s

SC/ (1+ sup Elxa())| + sup ]E|xA(l)|p+ sup ]E|xA (-of )
0

0<i<s 0<i<s

Now, we are handling A,. By Assumptions 2.3 and 3.6 and Holder’s inequality we get

A <E / pla(s) = D(Eals - 00,7(6) [ [(Rs + Ke)(1+ [£a(5))
(Kg + |V3(xA(s—r )|)|xA(s—r)| ]

< CIE/ }xA(s xA(s—t) (s )’pds+ C]E/t(l + !a_cA(s)‘p
0
+|Eals— 1)) ds + CE/t|\_/3(5cA(s— 2),0)|? [£a(s - )| ds (3.21)
0

<C t1+IExA(s)p+IE5c4(s)p+IE5cA(s—r)pds
| @+ ElesP + Bl
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+C/t(]E|\73(5cA(s—r),0)|p+E|5¢A(s—r)|2p)ds

0

5C/t(l+IE|xA(s)|p+IE|5cA(s)|p+E|32A(s—r)|p)ds
0

lysxp d s
b

t
+ C/ E|5¢A(s— )
0

where [, = [, v 2. Inserting (3.17), (3.18), (3.20), and (3.21) into (3.16) yields that

boep ds) .

Elxa(t) - D(%a(t - 1), 7(1))["

t t
< C(l +/ sup ]E|xA(l)|p ds+/ sup E\xA(l— )
0 0 0<I<s

0<I<s

Therefore

sup E|xa(l) - D(xa(l - ), 7(D) [

o<i<t
. . l (3.22)
< C(1+/ sup ]E|xA(l)|pds+/ sup E}xA(l—t) V*pds>.
0 0<i<s 0 0<I<s
Moreover, for any ¢y > 0,
sup Elxa()|” = sup Elxa(l) = D(xa(l - 1),7(D)) + D(%a(l - 1),7(D) |
o<i<t 0<i<t
<1 L sup Elxa(l) - D(34(l - 7),7(D)) [
<(1+c) OSSI;IS)t |xa(l) - D(xa(l-1),7(D)] (3.23)
1+co\?!
+ ( °) 1<§(||g||P + sup E|xA(l)|p>.
Co o<i<t

Then we can take ¢, large enough such that (1;’%)1"11(5 <1 for any K; € (0,1). Thus

sup Elxa()f <1 sup Elxa(l) - D(xa( - 7), 7)) [ + c2lEIIP, (3.24)
o<i<t 0<i<t
where
AN+ o)t 1+co)P K
o o (1+co) C2 (1 +co) 2 (3.25)

T (e K T - K

An application of Gronwall’s inequality yields that

sup E{xA(l)|p < C(l + /t sup Elxa(l-1)
0

o<i<t 0<i<s

boep ds) . (3.26)
The following technique is similar to that in Theorem 2.1 of [35]. Define

pi= (LT/rJ +2- i)pl‘E*T/”*l_", i=1,2,...,[T/t]+ 1.
We can observe that

Disiby <pi and pira=p, i=12,...,T/t].
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By (3.26) and ¢ € .,2”;_0([—T, 0]; R”) we derive that

sup Elxa ()" < C.

o<I<t

Then Holder’s inequality leads to

2t lyx,
sup Elxa()|* < C(l +/ sup (E|xa(l - r)|pl)sz ds) <C.
0

0<I<2t 0<I<s

The desired result follows by repeating this procedure. We complete the proof. d

Lemma 3.10 Let Assumptions 2.3, 3.1, and 3.6 hold. Then for any A € (0,1] and t € [0, T,

we have

Elxa(t) - Za()|’ < CATH(A). (327)
Therefore

lim Elxa(t) —xa(®)|” =0. (3.28)

Proof Fix any A € (0,1]. For any ¢ € [0, T, there is an integer k > 0 such that ¢ € [#, tx41)-

In the same way as in the proof of (3.19), we have
Elxa(t) - %a(0)|) < CAS(1+H(A) +E|za()] +E|za(t - 1)]").
Then Lemma 3.9 gives that
Elxa(t) - 240 < CATH(A).
We complete the proof. d

Lemma 3.11 Let Assumptions 2.3, 3.1, and 3.6 hold. For any real number L > |§||, define
the stopping time

Tar =inf{e>0: |xa()| = L} (3.29)
Then we have

P(tar <T) < (3.30)

Sla
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Proof By Itd’s formula and Assumption 3.6 we get

E|xA(t/\rA,L)—D(xA(t/\ 'CAL—T) r l’/\‘L’AL))|p ( ) V()A)|p

§]E/0 A’Lp’xA xA(s 7), rs) |:xA(s) D xA s—1T), r(s)))

S (09,5560, a5 = 00 76) + £ (409 56) als = 0, 76) }
S]E/t/\rA,Lp’xA xA(S 1), 7(s |: xa(s) — D xA s—1), V(S)))T
0

S (105), B a(5), Bals — 7),7(5)) + &

|gA(M $),%4(5),%a(s = 7),7(s)) | :|ds

R / " plea(s) = D(Eals = 00, 76) [P (24(5)  £a(s)) "
0
Sa(n(s), 8a(s),xa(s — 7), 7(s)) ds

t
§C/ E’xA(s/\rA,L)—D(EcA(S/\IA,L—T),f(S/\TA,L))|pdS
0
t
+c/ (L+E[xaG)f +E[#als - 7)[) ds
0
t/\‘l.'A,L _ P
+ CIE/ |Vs(%als —7),0)|? [2als — 7)|" ds
0

+ CE [ [5a6) - 5209 (109 2a(9) 5= 0, 709) [ s
0
Note that

INTAL P
E/ |V3(5cA(s—r),0)|2|5cA(s—r)|pds
0

1

t
52/ E|Vs(xa(s ATar 1), o)|”ds+1/ E|%a(s—7)|* ds

§C/ (1+E|5¢A(s—r)|lvp+E}5CA(S—T)|2p)ds
0
and

E/ ea(®) = 24(6) 2 |fa (1), (5), %als — ), 76) | ds
0
<CE / ea(s) ~ £4(6) 2 [F(1(5), 24(6), a5 - 0),7(5)) | s
+CE / [wa(s) = %a(5)| 2 [Fa (1), Ba(6), Bals - ), 7)) |* ds
0

< C]E/O (22" +[£a6)|T) (1 + [Fa6)|® + [Fals - 1)|?) s
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+ Chg(A)/tEle(s)—icA(s)|g ds
0

<C(1+ A% (A) <C,

where (2.8), (2.10), (3.3), Young’s inequality, and Lemma 3.9 were used. Then we obtain
that

E‘XA(lf A\ TA,L) —D(Q_CA (t NTaL— f),;’(t A TA,L)) ‘p

< C(l + /tE|5cA(s—r)
0

t
- / Elxa(s Atar) =DEa(SATar — 1), 7 (s ATar))|” ds),
0

W 1

where [,* = [, v 2. Using the same technique as in Lemma 3.9 gives that
]E’xA(T A TA,L) —D(J_CA(T ANTAL — 'C),;'(T A TA,L)) |p <C. (331)
We can get from (2.6) that

Ly, <1y [%a(tar) = D(%a(tar — 1), 7(tar)|
> Loy, <7y (|4 (tar)| = [D(Faltar — 1), 7(Tar))]) (3.32)

>L-K,L.
Hence we derive from (3.31) and (3.32) that

E(z, ,<mylxa(tar) = DFxaltar — ), 7(tar))lP)

P <T)<
(rar=T) = (1= Ko L?
< Elxa(T Atar) =D@EAT Atar =), (T Atar))lP (3.33)
(1 - Ky)PLP
(o

<
= (1= KyrL?

Then the desired result follows. We complete the proof. O

The following lemma can be proved in a similar way as Lemma 3.11 was, so we omit the
proof.

Lemma 3.12 Let Assumptions 2.3, 3.1, and 3.3 hold. For any real number L > ||& ||, define
the stopping time

7 =inf{t>0:|x(¢)| = L}. (3.34)
Then we have

Py <T) < (3.35)

Sla
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Lemma 3.13 Let Assumptions 2.2, 2.3, 3.1-3.4, and 3.6 hold. Assume that q € [2,q) and
p>(B+1,+2)q. Let L > ||&|| be a real number, and let A € (0,1] be sufficiently small such
that ¢~ (h(A)) > L. Then we have

E|x(T A pas) —2a(T A par)|” < C(ARI(A) v A7), (3.36)
where pay := T A Ta, With Ty, Tay defined as before.

Proof For simplicity, we write p,; = p. Denote e, (£) = x(t) — D(x(¢ — 7),r(t)) — xa(t) +
D(xA(t—1),7(t)). For 0 < s <t A p, we can observe that

|x(s)| vV |x(s - ‘L')| \Y, !a_cA(s)| \Y, |5cA(s - ‘L')| <L< go_l(h(A)).
Recalling the definition of F4 and G4, we have

Fa(u(s),xa(s),xa(s — 1), 7(s)) = F(u(s), £a(s), £ (s — 7), 7(s)),

Ga((s),Xa(s), xals — 7),7(s)) = G(1(s), X a(5), X (s — T), 7(s))

for 0 <s <t A p. Hence we derive that

fa(1a(s), %a(s), 2as — 1), 7(s))
= F(11(5),2a(5), % (s = 1), 7(5)) + Fa (14(5), % (8), % (s = 7), 7(5))
= F(1u(s),%a(5), Xa(s — 7),7(5)) + F(14(), % (8), Xa(s — 7), 7(s))
= f(1(5),2a(5), Xa(s — 7),7(s)).

Similarly,

ga(11(5),Xa(5),Xa(s — 7),7(s)) = g(1a(5), Xa(8), X a(s — 7), 7(s)).
By Ito’s formula we get

Elea(t A p)|*

tAp
<E /0 glea(s)|™ [eﬂ ($)(f (5, %(5), (s — 7), 7(5)) = fa (1(5), X (5), X (s — 7),7(5)))

q_
2

+

! |g(5;x(5)’x(5 - 7:)1 V'(S)) —8a (/’L(S)’RA(S)J_CA(S - T)) ;'(S)) |2:| ds
tAp
<E fo glea(s)|" [eﬁ (5)(F (5,%(5), (5 = 70, (5)) — f (1£(5), £ (8), Farls — 7), 7(5)))
qg-1

e lg(s,%(5), (s — 7), 7(5)) — g(11(5), X a(5), X a (s — 7), 7(5)) ﬂ ds

tAp -2 _ _ T
< E/ qleas)| [(x(S) = D(x(s - 7),7(s)) = Za(s) + D(%a(s — 7),7(5)))
0

: (f(s,x(s),x(s - T)) F(S)) —f(,LL(S), 9_CA (S)P;CA (S - T)r ;(S)))
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# 25495~ 0),709) = ¢16), B 6) Fals = 0, 766) ﬂ *

+E /pr alea]"” (£a(9) ~%a(s) + D(Eals = 1), 7)) = D(Eals = 1), 7(9)) "
(550, %05 = 1), 7)) —f (1(5), B a(5), Ea(s — 7), 7(5))) ds
<& [ aleato]" [ (x6) - Dsts - r9) =546 + D(sals - 19’
- (F(5,5(5), (5 = ), 7(6)) —f (5849, Zals - ), (6)))

+ T (53051 (s~ 0, 6) ~ 8 (05) al5) Fals — ), 76) ﬂ *

B foﬁp ales@)|" (3(5) = 74(s) + D(Eals - 0).7(5) = Dlats - 0:r9))”
(f (524, Fals = 1),7(5)) =f (1(5), %a(5), Fa(s = 1), 7(5))) s

+E /0% alea®)|"* (£4(6) = 24(5) + D(Fals ~ 1),7(5)) = D(Fals =~ 1) 7(5)))"
(509,105 = ),7(5)) =f (5, %a(5), Bals = 7), 7(5))) ds

+E /Omp alea®)|"” (£als) ~xa(s) + D(Eals = 1),7(9)) = D(Eals = 1).1(9)) "

- (f(5,%a(5), Zals = 7),7(5)) = £ (11(5), B (), X a (5 = ), 7(5))) ds.

Note that

q-1 ¢ (s, %(s), x(s — ), 7(5)) — g(11(5), Za (), X a (s — ), 7(5)) |2
2

< T2 g6 25~ Dr(9) (5, a(5) (s~ Dr(9)
+ % lg(5:%4(), Bals — 7),7(5)) — g(1(5), Ba(s), B (s — 1), 7(5)) |-
Hence
Elea(t A p)|”

tAp 42 > X ’
<5 [ alea 9| (59~ Dlsts= 01r19) =509+ DFas - 7))
0

- (f (5, %(5),%(s = ©),7(5)) = f (5,8 (), X (5 — ), 7(5)) )

2

L5 o 409,206 0, 9) = (5. 26) 2o 1), 16) !2] ds

tAp -2 _ = '

+E / qlea(®)|" (x(s) = xals) + D(Ea(s — 1), 7(s)) = D(x(s - 1), 7(s)))
0

- (f(s,2a(5), 8als — 1), 7(5)) = f (n(5), 8a(s), % a (s — 7), 7(5)) ) ds

tAp -2 /- _ _
+E / alea(s)|" (7a(s) = xa(s) + D(Eals = 7),7(5))
0
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~D(Eals—7),7(s)))" (337)
(f (5, %(5),x(s = 7),7(5)) = f (5, %a(5), XA (s — T),7(s))) ds

tAp -2/ _ _ _ T
+E/0 qlea(s)|"" (xa(s) —xa(s) + D(xa(s — 7),7(s)) = D(%(s — 1), 7(s)))

(f (5,%a(5), % (5 = ©),7(9)) = £ (11(3), Fa(5), Bas — 1), F(9)) ) ds

0 (g-1)(G-1) 2
+E/0 e aleat)

g (s, %a(s) Fals = 1),7(5)) - g(1£(5), Ba(5), Bals - 1), 7(5)) |* ds
=:B1 + By + B3 + By + Bs.

By Holder’s inequality, Assumptions 2.2 and 3.2, and Lemmas 3.9 and 3.10 we get

Mp|x(s) —5cA(s)|qu

tAp
q
B; < CE/O |eA(s)| ds+CIE/0
inp _ q
+CIE/ (Ka+ | Vi(x(s = 1), 8a(s = 7))])? |6(s = T) = %als — 7)|" ds
0
tAp t
§C<E/O |eA(s)|qu+/0 Elx(s A p) —xa(s A p)|"ds
T 0
+/ E|xA(s)—5cA(s)|qu+f |&(s) - &(Ls/A)A)|" ds
0 -7

1
2

T 1
+ / (E|[Vi(x(s = 1), %a(s = )|") 2 (E|wals — 7) = %als - 1:)|2q) ds
0
tAp _ q
+IE/ |V1(x(s—r),5cA(s—t))|7|x(s—t)—xA(s—r)‘qu> (3.38)
0
tAp t q
< C<]E/ |eA(s)|qu +/ E|x(s/\ 0)—xa(s A ,0)|qu+ A2h1(A) + AT
0 0
+ / (E[Vi(x(s A p=1),%als Ap - r))\q)%
0
x (Elx(s Ap—1)—xals A p— r)|2q)% ds)
tAp t q
< C<]E/ ‘eA(s)‘qu + / ]E’x(s Ap)—xa(s A ,o)!qu+ Azh1(A) + AT
0 0
+ /t(E|x(s APp—T)—xA(SAp— r)!zq)% ds).
0
As for By, we derive from Assumptions 2.3 and 3.4 that
tAp
B, < CE/ ’x(s) —x(s) +D(5cA(s— t),r(s)) —D(x(s— r),r(s))‘qu
0
tAp
+CE f I (5, % (), Ba(s = 7),7(5)) =f (1£(5), Za(5), a5 - 7), 7(5)) |* ds
0

+ CIE/Mp|eA(s)|‘1ds
0



Gao and Hu Advances in Difference Equations (2020) 2020:688

tAp
< CE/ (|x(s) —&A(s)|q + |D(5¢A(s - 1), r(s)) —D(x(s - 1), r(s)) |q) ds
0

+CE / p(Lf(s,a_cA(s),o_cA(S—T),F(S))—f(M(S):iA(S)M_‘A(S—T)”"(S))|q (3.39)
0
+[f (1) 2a(5), Eals = 7, 1(9) ~f (1(5), () Rals = ), F6)) ) ds

tAp
+ CIE/ ’eA(s)’qu
0
tAp tAp
< CE/ ’eA(s)’qu+CIE/ (|x(s)—a'cA(s)’q+ ‘x(s—r)—a'cA(s—r)‘q)ds
0 0
tAp
+ CIE/ (1 + |&A(s)|qﬁ+q + |5cA(s— t)|qﬁ+q)Aq9 ds
0

tAp
+ CE/O If (1(5), X a(5), Ba(s — T), 7(5)) = f (1(5), Ba(5), % a(s — 7),7(5)) | ") dis.

From (3.38) we get

tAp
Ef (|(s) = 2a(9)|” + (s — T) = %a(s = 7)|") ds
0

; (3.40)
Cf E’x(s ApP)—xa(s A p)‘qu + C(A%hq(A) + Aq"‘),
0
and we have
tAp
E / (1+[24(5)| ™" + |Rals - 1)| ") A% ds < A%, (341)
0
Moreover, let j be the integer part of T/A. Then
tAp
E/o If (1(5), 2 a(8), Ea(s — ), 7(5)) = f (1(5), Ba(5), % a(s — 7),7(5)) |" ds
tk+1
ZE / 10(5),%a(9), a5 - 1), 7(5))
—f(1(8), %a(8), % (s = T), 7(t)) | “Tio,enp1 (5) ds
(3.42)

<4t ZIE/ k+1 If (12(5), 24 (5), X a (s — 7), 7(5)) |*
+ V(,LL(S),;CA (S),J_CA (5 - 7:)’ V(tk)) |q)]1[0,t/\p] (S)H{r(s);/r(tk)} ds

<cy / TRE[(1+ a0 + [Fals - O+ AU g r(e0]) s,

where in the last step, we used the fact that x,(s) and x4 (s — t) are conditionally indepen-

dent of Ij;(s)-(y)) With respect to the o-algebra generated by r(;). Applying the Markov

Page 18 of 37
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property yields that

E(H{V(S)?’r(tk)} |’"(tk))

=Y Tipt=aP(r(s) # ilr(ti) = i)

ieS
=Y Tt Y (vils — ta) + ols — &) (3.43)
icS ji#i

< Orélgliv(—)/ﬁA +0(A4)) XS: Tirep)=1)
IS

< CA +o(A).

By Lemma 3.9 we have

tAp
E /0 If (11(5), X a(5), Ea(s — ), 7(5)) = f (1(5), Ba(5), % a(s — 7),7(5)) |" ds

< (CA+o(2)) ZI: /tm (1+ E[EA()|" + E[Ea(s - )| + h9(2)) ds (3.44)
oot
<h1(A)(CA +0(4)).
Inserting (3.40), (3.41), and (3.44) into (3.39) gives that
By < C(E/OMP|eA(s)|qu . /OtE|x(s A p) = (s A )| ds i

+ATHI(A) + AT 4 AT o(A)>.
In addition, we obtain from Assumptions 2.2 and 3.1 and Lemmas 3.5, 3.9, and 3.10 that
EAp
B3 <CE “d
3= /0 |€A(S)| S
tAp
+ CIEf |£a(s) = x(s) + D(Xals — 7),7(s)) = D(Xa(s — 1), 7(s)) |qu
0
tAp
+ CIE/(; [f(s,x(s),x(s - 1), r(s)) —f(s,a'cA (8),%4(s — 1), r(s)) ’qu
tAp T
< CE/ ‘eA(s)‘qu + C/ E‘D(&?A(s - t),r(s)) —D(J_CA(S - r),?(s))|qu
0 0
A (3.46)
+ CIE/ p(l + |x(s)|qﬁ + |x(s— t)|qﬁ + |5cA(s)|qﬁ + !iA(s— r)|qﬁ)
0
T
. (|x(s) —a'cA(s)‘q + |x(s —T)—Xa(s— t)!q) ds + C/o ]E|9_CA(S) —xA(s)‘qu
tAp T
< C(E/ |eA(s)|qu + f E|D(5cA(s— r),r(s)) —D(a'cA(s - r),?(s))|qu
0 0

t
+/ E|x(s/\p)—xA(S/\,0)|qu+ A%hq(A) + Aq"‘).
0

Page 19 of 37
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Furthermore, let j be the integer part of T/A. Then by Assumption 2.3 and Lemma 3.9 we
have

OsupTE|D(a'cA(s -1), r(s)) - D(a_cA(s - 1), F(s)) |q

< max( sup  E[D(%a(s - 1),7(s)) = D(%a(s - 1), 7(s)) |q)

0=k \ge<sshn

<2 max ( sup E[|D(5¢A(s —1),7(s)) = D(Xa(s - 7),7(s)) !qﬂ{,(s)#r(tk)}D

0<k<j \yg <s<ty,1

§Cmax( sup E[(|D(5¢A(s—r),r(s))|q

0=k<j Ny <s<tryn

+ ‘D(a_CA(S - T);;’(S)) |q)H{r(S)#r(lk)}]>

<C maxl(l + sup E‘O_CA(S - r)|q>]]£(]l{,(s)7{,(tk)})
O<ksj te S8 Sths1
< CE[iyo)#r())-
By (3.43) we get
E(y#01) = E[E(Liro#en 7(&))] < CA + o(4).
Hence, for any s € [0, T], we derive that
E‘D(J_CA (s—1), r(s)) - D(a'cA(s -1), ;'"(s)) |q
< sup E!D(&A(s - 1), r(s)) —D(a'cA(s - r),?(s)) ‘q (3.47)
0<s<T

< CA +o(A).

Inserting (3.47) into (3.46) gives that

tAp t
Bng(E/ |eA(s)|qu+/ E|x(s/\,0)—xA(s/\p)|qu
0 0
(3.48)
+ A%hq(A) + A+ o(A)).
Similarly to B, and Bs, we easily derive that
tAp tAp
B4§C<E/O ’eA(s)’qu+E/O ’iA(s)—xA(s)‘qu
12392
+IE/ |D(xa(s = 1), 7(s)) = D(xals — 1), 7(s))|" ds
0
tAp
+ IE[ If (8:24(5),%a(s = T),7(5)) = f(12(5), X (8), X a(s = 7),7(5)) | " ds (3.49)
0

tAp
+ E/(; V(/'L(S)’;CA (S)r Q_CA (S - T)! }"(S)) _f(/‘L(s)r;CA (S)r Q_CA (S - t)r ;(S)) |qu>

tAp
< C(E/ lea(s)|"ds + ASHI(A) + AP + o(A))
0
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and

tAp
Bs < C(E/ |eA(s)|qu
0

tAp
+B [ a5 76 Rals - 2116) ~g((9) 76 7als -2 r6)| s
0 (3.50)

tAp
' E/o g (1), % (), Fa s = 7). (5)) = g (1(9), %a(8), Ra(s = 1), F(O)) | ds>
tAp p
0

Substituting (3.38), (3.45), (3.48), (3.49), and (3.50) into (3.37) yields that
Elea(t A p)|”

t t
§C(/ E|eA(s/\p)|qu+/ sup E|x(l/\p)—xA(l/\ ,0)|qu
0 0

0<li<s

t
+ (ATHI(A) v ATrND) 4 / (Elx(s Ap—1)=xals Ap— t)yzq)% ds)'
0

Using Gronwall’s inequality gives that
Elea(t A p)|”

t
< C(/ sup E|x(I A p) —xa(l A p)|* ds + (A%hq(A) v Aq(‘“e"”))
0 0<i<s (3.51)

t 1
+/ (sup E|x(l/\p—r)—xA(l/\,o—r)|2q)2ds).
0

0<I<s
Therefore

sup ]E’eA(l/\,o)

o<i<t

|q

t
< C(/ sup E|x(l/\ p)—xa(l A ,0)|qu + (A%hq(A) Vv Aq(‘“g“’)) (3.52)
0

0<l<s

t 1
+/ (sup E|x(lA,o—r)—xA(l/\p—t)|2q>2ds).
0

0<I<s
Let y(t) = x(t) — D(x(¢ — ), r(t)) and ya(t) = xa(t) — D(xa(t — T),7(£)). Thus ea(t) = y(¢) -
ya(t). Then for any cs, ¢y, c5 > 0, we have
|x(t) —xa(8)]*

<1+ e |y(t) — ya(e)|” + (1 : =

q-1
) ID(x(t - ), 7(8)) - Dzt — ), 7(0))|"

<@ +e)Hea®)|” +

-1
(%ﬁ““‘))q ID(x(t - 7), 7(8)) = D(Eat - 1), r(2))|*

((1 +c3)(1 +cq)
+ —_—

C3C4

q-1
) |D(xa(t-1),7(®)) - D(xat - 1), 7)) |*
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5(1+CB)q_l|eA(t)|q+ Kg|x(t—r)—5cA(t—r)|q

(1+c3)(1+ca)\ 7
( c3 )

((1 +¢3)(1 +cq)
+ —_—

C3Cq

q-1
) |D(xa(t-1),r(t)) - D(xa(t - 1), 7)) |*

Kg|x(t — 1) —xA(t - ‘L')|q

(1+c3)(1 +ca)(d+¢5)\ 4
)

<1 +c3)eal®)|" + <

s ((1 +¢3)(1 +ca)(1 +cs5)

q-1
> I(gixA(t— T)—xA(t - 7:)|q
C3Cs5

((1 +c3)(1 +cq)
+ —_—

C3C4

q-1
) ID(at — ©), () ~ D(EA (¢ - 7),7(0) |-

Choose c¢3 sufficiently large and choose c4, ¢s5 sufficiently small such that ¢g :=
((1+C3)(1:;4)(1+55))q—l[(zq < 1. Then let ¢y = ((1+63)(1+C4)(1+C5) )q-leq and cg = ((1+C3)(1+C4) )q_l.

c3¢5 €3C4
Hence we derive from (3.47) that

sup E|x(s) —xA(s)‘q

0<s<t

<(1+c¢3)?! sup E’eﬂ(s)’q + ¢ SUp E‘x(s— T)—xa(s— r)|q
0<s<t 0<s<t

+¢7 sup E’xA(s— T)—Xa(s— ‘L')’q
0<s<t

+cg sup E|D(9_CA(S - 1), r(s)) —D(a‘cA (s— t),?(s)) !q

0<s<t

<(1+c¢3)?" sup E’eA(s)’q + ¢ SUp E‘x(s) —xA(s)‘q
0<s<t 0<s<t

+¢7 sup E|xA(s)—5cA(s)|q+c6 sup E\S(s)—&(Ls/AJA)\q

0<s<t -7<5<0
+C(A +0(Q))

<1 +c3)"" sup Elea(s)|” +cs sup Ela(s) —xa(s)|”
0<s<t

0<s<t

+ C(A%hq(A) + A+ o(A)).

Therefore
1+ c3)1!
sup Ex(s) —xa0)| = T p Bleats)|” + C(A3h9(4) + 4% + o(4)).
0<s<t 1-¢s o0xs=t

Then we have

sup Efx(I A p) —xal A p)[*

0<i<t

t
< C(/ sup E|x( A p) —xal A p)|?ds + (AR h1(A) v A%N079))
0

0<l<s

t 1
+/ (sup E|x(lAp—r)—xA(l/\,o—t)|2q>2ds).
0

0<I<s
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An application of Gronwall’s inequality gives that

sup Elx(s A p) —xa(s A p)|!

0<s<t

t 1
< C(A;I +/ (sup E‘x(l/\p —1)—xA(lAp —r)‘zq)2 ds),
0

0<l<s

where A; = A%h(A) v Al@7979) Then we use the same technique as in Lemma 3.9 to get
the convergence rate. Define

qi= (LT/t) +2-i)g2™+ = i=1,2,..,|T/t] + 1.
We find that
2gis1<q; and  qra=¢q, i=12,...,|T/t].
Note that |x(s — 7) —x4(s — 7)| = 0 for s € [0, T]. Then we derive that

sup E|x(s/\ p)—xa(s A ,0)|‘1’1 < CA}”.

0<s<rt

Then by Holder’s inequality we obtain that

sup IE|x(s Ap)—xa(s A ,0)|q2

0<s<2t

2T a1
< C(A}” +/ (Elx(sAp—1)—xals A p —1:)|2q22‘12)‘11 ds) < CA}”.
0

By induction we could get the desired result. We complete the proof. d

Theorem 3.14 Let Assumptions 2.2, 2.3, 3.1-3.4, and 3.6 hold. Let q € [2,q) and p > (B +
l, + 2)q. For any sufficiently small A € (0, 1], assume that

1

h(4) = ¢((A%h(A) v A1rr) ), (3.53)

Then for every such small A, we have

E|x(T) - x4(T)|" < C(A3HI(A) v AT«rO7)) (3.54)
and

E|x(T) - %a(T)|* < C(A2h1(A) v A%079)) (3.55)
forany T > 0.

Proof Let 1y, tar, and pay be as before. Denote z4(£) = x(£) — x4 (t). We write par = p for
simplicity. Obviously,

Elza(T)|" = E(|za(D)|"Lps1y) + E(|24(T)| "Lip<1y)- (3.56)
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Let § > 0 be arbitrary. By Young’s inequality we get

w0\ G gs r-q
( ) <—u+ W=D vy s 0.

T

uly = (Sup) W

Hence

P—q

B(lza(D["Tpen) < LEleanf + 2Lt < 1) (357)
Applying Lemmas 3.5 and 3.9 gives that

Elza(T)f < C. (3.58)
By Lemmas 3.11 and 3.12 we have

Blo<T)<Plu < T)+ Plray <T) < 1. (359)

Inserting (3.58) and (3.59) into (3.57) yields that

Cgs Cp-q)

+ W. (3.60)

E(|za(T)|"Tp<1y) <

Choose 8 = A$h1(A) v A1@r070) and [ = (A3 H1(A) v A9@7979)) 7 Then we have
E|za(T)|" < E|za(T A p)|* + C(A2HI(A) v AT107)), (3.61)
By condition (3.53) we obtain that
oL (1(A)) = (A% hi(a) v ateroro)ia _
We derive from Lemma 3.13 that
E|za(T)|" < C(A2hI(A) v AT 7)), (3.62)

Hence we get the desired result (3.54). Then combing Lemma 3.10 and (3.54) gives (3.55).
We complete the proof. d

4 Stability

In this section, we investigate the almost sure exponential stability of the partially trun-
cated EM method for neutral stochastic differential delay equations with Markovian
switching. In order to achieve this aim, we need to assume that Assumption 3.1 holds on
t € [0,00). Let F(¢,0,0,i) = F(£,0,0,i) = 0 and G(£,0,0,i) = G(£,0,0,i) = 0 for all ¢ € [0, 00)
and i € S, which means f(¢,0,0,) = g(£,0,0,i) = 0.

Assumption 4.1 There exist constants A > 0 and Aq, 13, A3, Ag > O satisfying A; > Ay +
A3 + A4 such that

2(x - D(y, i))Ti-"(t,x,y, i)+ (1+ A)|G(t,x,y, i)|2 < —A1lx? + Aglyl? (4.1)
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and
2(x =D, 1) Falt,,,0) + (1+ A7) |Galt,2,9,0)[* < Aslal® + dalyl® (4.2)
forall £ € [0,00), x,y € R, and i € S.

Remark 4.2 In fact, there are many functions such that D(y, i), E(t, x, y,i), and G(t,x, ¥, 0)
satisfying (4.1) and the corresponding F (¢, %, y,i) and G (Z, %, y, i) satisfying (4.2). The ex-
ample and proof will be given in Sect. 5.

|2 = 0 if there is no term

In the rest of this paper, we set A = 0 and A~ GA(t,%,7,i)
Ga(t,x,7,i). Also, when the linearly growing term G(t, %, y, i) is absent, we set A = co and
AlG(t,x,y,0)|* = 0.

By Assumption 4.1 we obtain that

T . 12
2(x =D, 1)) falt:%,9,0) + |ga(t, %, y,1)]

< (A1 = A3)lx* + (Ag + Ag) |y

(4.3)

forall ¢ € [0,00), x,y € R”, and i € S.

Theorem 4.3 Let Assumptions2.3,3.1,and 4.1 hold on t € [0, 00). Then the partially trun-
cated EM numerical solution (2.11) is almost surely exponentially stable. Precisely, let ). > 0
be the unique root of

(A2 + 2a)e™™ + A(Kz + K3)e™™ + (<A1 + A3) + A(1 + K3) = 0, (4.4)
and let ¢ € (0, %) be arbitrary. Then there exists a A* > 0 such that for any A < A*, we have
lim sup L log|Xa(t)| < A te as. (4.5)
ksoo kA 2
Proof Define
Y (£ X a (6, Xa(teep)s 70 ) = Xa(t) = D(Xa(tea)s 1) (4.6)
Then (2.11) becomes

Y (tks1t Xa (1), Xa(Ees1-a0): 1)
= Y (tio Xa () Xa(tiemn) 1) + fa (b0 Xa (6 Xa(teean) 1) A (4.7)

+ 8 (b Xa(8), X a(te_p), 1) ABx.

We write Yi = Y (6, Xa(6), Xa(tesn) 185 fake = faltio Xa(t) Xaltem), 1), and gaj =
ga(tio Xa (), Xa(te_m), r,f) for simplicity. Hence we have

Yier? = 1Yl® + (Y% fak + lgaxl® + faxPA) A + mag, (4.8)
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where

Mg = |gax ABl* = 1gajl* A+ 2fax " (€ax ABK) +2Yi " (gax ABy).

By (3.2) we have

|Eat,x,9,0)> < 18K3 (x> + 1y1) iflxl v |yl <1
and

|Falt,x,,0)| < 1(2) < X A) (e + [y?) if la| v |y] = 1.
Thus

x4 < 2(20K2 + BX(A) A(|Xa @) + | Xatres) )
<2(20K24 + K2 A%)(|Xa(0)|” + | Xa(tean)|)

<2(20K2 + K2) A% (|Xa @) + | Xaltean)|)-
Using (4.3) yields that

Y 1Yl + (=0 = 23)[Xa (0" + (A + 20) [ Xa i)
+2(20K2 + K2) A3 (|Xa ()| + [Xaltean)|*)) A + mag
= |Yel® + (<A1 + s + 2(20K2 + K2) A2) A|Xa(80) [

+ (Mo + Ay + 2(20K2 + K2)AD) A|Xa (k)| + mag.

Let

Pay =~y + s +2(20K2 + K2) A2,

Py = ko +ha +2(20K3 + K3) A,
Therefore, for any positive constant J > 1, we derive that

JEDA Y|P = T2 Yl
< JEDAP L AIXa(t)]” + TR VAP A|X A (trorr)
+ (](k+1)A _]kA)|Yk|2 +](k+1)AW1A,k
<J®DADAIX A+ T* VAP A X Al
+ (52 P 22(IXa @] + [ Xa o)) + 75D s
<[2(1=772) + Pay AY* VA X5 (10|

+[2(0=772) + Pas AT VA X At | + T Dm0,

4.9)

(4.10)
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which means that

]kAlYk 2

k-1
2(1-J72) + Py A] Y JUVA XA
<[2(1-77%) +Pas IXO:] [Xa (@) (4.11)

- 1Yol

k-1 k-1
+[2(1-T2) +PazA Z/”M|XA(tl_M)| + Y OV,
i=0

i=

Note that

k-1

Z](M)A | Xa(ti-m) !2

i=0

—1 k-1
— Z](HhM)A |XA(ti)| Z]HHM XA(t)| _ Z ]l+1+M)A |XA t)}
i=—M i=0 i=k-M
Thus

k-1

JAYP 4 [2(0-T72) + PapA] Y JEM0A X, ()| < Uy, (4.12)
i=k—-M

where
U = 1Yol* + ([2(1 =T %) + P A]
k-1
+ [2(1 iy +P 2A Z/ HI)A|XA(ti)|2
i=0
k-1
+[2(1-J ) +PppA] Z]”“M)A |X (t, 2y Z](‘“ Ma
i=——M i=0
Let us now introduce the function
QU) = 2+ Ppp A)JMIA _ofMA 1 (24 Py1 A)A 2
(4.13)

= [(hs + Ay + 2(20K2 + KZ) A2) A + 2] M08 _ pMa

+[(=h1 + A3 + 2(20K2 + K2) A2) A + 24 - 2.
Define

« (M —ra—A3—A4 >
40K+ KD )

When A < A, we can observe that

Q) = [~(h1 — Ao — A3 — ha) + 4(20K3 + KZ) A3 ] A <0
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Moreover, choose A3 > 0 such that for any A < A},
24 (=hy + ks + 2(20K3 + KZ) A3) A > 0.
Hence we can derive that for any J > 1,
QU = [2M(12 = 1) + (A + ha + 2(20K2 + KZ) AZ) (M + 1) A + 2)]4] A7"41
#[2+ (<A1 + A3+ 2(20K2 + KZ)A2) A]AJ* 5 0

Therefore there exists a unique constant /% > 1 such that

Q(3) =
for any A < A} A Aj. Choosing J = J} for any A < A} A A} yields that
-1
Ui = [Yo? + [2(1=T2) + PapA] Y JE1M04 X (1)

i=—M
(4.14)

k-1
+ Z DA
i=0

Note that the initial sequence Xx(f) < oo for any i = -M,-M + 1,...,0 and that
Zf:ol JEDAp 4 ; is a martingale. Applying the discrete-type semimartingale convergence
theorem gives that for any A < A} A A3,

lim Up<oo as.

k—o00

By (4.12) we obtain that

limsup( *M|Y | )

k—o00
k-1
51imsup< TNl + [2(1=T72) + PapA] Y JaCH 02 X4 ()| ) (4.15)
k— o0 i—k—M

< lim Ui <oco as.

k— o0

In addition, for any ¢j > 0,

sup(75 4 [ X4 (80)[*)
k>0

= iup(]ZkA |Xa(te) = D(Xa(turr) 7¢) + D(Xa(trra) ) |2)
>0

<(1+c) ?(UP( 21X a(te) = D(Xa(te-a), 1) )

1+c¢§

sup(7% % |D(X a(tean) 7))
Cy k>0

+
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(1+c0)iup( 32X a0 = D(Xaltioan), )[)

1+c¢}
+ 0

1(2[ sup ]A /<+MA|XA(tk)| +Sup]*(k+MA|XA(tk)|2]
-M<k<0

1 >k
(1+Co)iup( A|Xa(t) = D(Xatreaa) 1) ) + %Ki};fusnz
0

1+c} 2
+ 2K sup(1554 | Xa @] ).
k>0
Then we take ¢ lzgg K2J%" < 1 for any K; € (0,1). Hence
sup(fZ“ Xa)|’) < ¢ isup(/ T A1) + LN, (4.16)
where
. (L +cp) . (1+ )K"
C,i = _——, Ch = —m
L - (L+ )R 2 - (L4 )KGTYT
Therefore
lim sup(]ZkA’XA(tk)|2) <00 as. (4.17)
k— o0
By (4.13) we get that

[hs + ha +2(20K2 + K2) A2 )75 + 2757 (1 _]—A)%

1 (4.18)
#[hy + s+ 2(20K2 + K2) A2 ] +2(1 1) =0,
Choose the constant ¥ such that J = ”. Hence 1 —J=2 =1 — e ?4. Define
9 1
Qu(®) = [ha + g + 2(20K2 + K2) A3 ]e"™ + 26" (1 - e"4) —
A
) (4.19)
# =21+ A3+ 2(20K2 + K2)A2] +2(1 - )5
Let ¢} =log/;. Then we have
Qa(93) =0. (4.20)

Since
lim(1-e"%)= =9,
A—=0 A

we derive that

iirr}) Qa(®) = (A + Aa)e’T +20€°7 + (=Aq + A3) + 20. (4.21)

Page 29 of 37
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By the definition of A we get from (4.20) and (4.21) that

lim 93 = A,
20074

which means that for any & € (0, %), there exists A3 > 0 such that for any A < A%, we have
V> A-2e.
We derive from (4.17) and the definition of ¥ that

. 2
lim sup eV aka |XA () | < 00.
k— 00

Then for any A < A7 A A A Af =2 A¥, we have
limsup —lo |X (t)|<——+8
imsu a.s.
B Y gl Xalli)| = 5

which is the desired result. We complete the proof. d

5 Example
Example5.1 Consider a nonlinear and nonautonomous neutral stochastic differential de-
lay equations with Markovian switching

d[x(t) - D(x(t - 7), r(®))]
=f(t,x(t),x(t = 7), (2)) dt + g(t, x(t), x(t — 7),7()) dB(t), t=0,

(5.1)

with the initial data x; satisfying Assumption 2.2. Here B(¢) is a scalar Brownian motion.
Moreover r is a Markovian chain on the state space S = {1,2} with generator

r=(‘12 _21).

In addition, for all £ € [0,1], x,y € R}, and i € S, let

1 g 13 ..
. —zy ifi=1, . 1 -0)3lyl2 ifi=1,
Diy,i) = 61 o gt,x.y,1) = 15
-5y ifi=2, (t1-1)slyl2 ifi=2,
2Pt -3y —10x 42y ifi=1,
ft,x,y,0) = .
—49° + (1 —1))3y —20x + 2y ifi=2.
We easily see that
1
5 t1—1)3y—10x+2y ifi=1, . 0 ifi=1,
F(t,x,,i) = (“ ))1y Y G(t,x,y,i) =
(tQ—1)T1y—20x+2y ifi=2, 0 ifi=2,
28 ifi=1, -3l ifi=1,
F(t,x,,i) = G(t,x,y,0) = s
—4y> ifi=2, (tA-)ily|? ifi=2.
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Obviously, Assumptions 2.3 and 3.1 hold with K3 = 20 and 8 = 4. Now we verify Assump-

tions 3.2-3.4 and 3.6. For Assumption 3.2, we get

(x—D(y,1) - %+ D 1)) (F(t,%,y,1) - F(t,%7,1))

y’ 1) - G(t,Q_C,_)_/, 1)|2

< 2= B ~5) - s0-90 -7) + T2 bt 313
<le—x+((g-1)Vv5)(1+ "+ ")y - yl2
) (

(x—D(y,Z -x+D#,2)) (F(t,x,9,2)—F(t%,Y, ))

+ qT_l |G(tyx1y1 2) - G(t:?_C,J_’, 2)|2
_ _ 1 _ _ qg-1 _
=-4w-H0°-5) - 30 -0 -7) + qT|IyI% -3

<2lx x>+ ((7-1) v40)(1+ |y + 131*)ly - y*.

Therefore Assumption 3.2 is satisfied. For Assumption 3.3, we derive that

(x— D, 1))TF(t,x,y, 1)+ E |G(t,%,, 1)|2

e PP < (1 ) + (-1 v 12)(L+ )P

<2 -2

»2)°

(x - D(y,2)) TF(t, x,9,2) +

1 -1
< —4\xy5 - §y6 + ple|5 < 2(1 + |x|2) + ((i) -1)v 40)(1 + |y|8)|y|2.

Hence Assumption 3.3 is satisfied. Moreover, Assumption 3.4 holds with 6 = ¢ = % A

for i € S. To verify Assumption 3.6, we need to consider four cases.

Case 1: If (x| Vv |y]) < ¢~ 1(h(A)), then we have

7

(x-D(, 1)) Falt,,9,1) +

1 -1 1 3
- <x+ gy)(—ZyS) +p2 ‘(t(l—t))3|y|7‘2

< (1 + |x|2) + ((p -1V 12)(1 + |y|4) ly?,

(x—D(y,Z))TFA(t,x,y,Z)+I%|GA(t,x,y,2)|2
e 2oV () 2L e — ) B P
—(x+12y>( 49°) + 5 (e -0)* IyI2|

<2(L+ %) + (B - 1) v 40) (L + yl*) .

1
1=

Page 31 of 37
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Case 2: If (x| A |y]) > ¢ 1 (h(A)), then we have

(x—D(y,l))TFA(t,x,y,l) + Y, 1)|2

_ <x+ éy) (—2<<p‘1(h(A))|§—|>3) 21 ‘(t(l _p)} z

_ 3 — 3 - — 3
5_2(M> xys_l(w 1<h<A>>) y4+p—1<<o l(h(m)) o
Iyl 3 Iyl 2 Iyl

< (1 + |x|2) + ((p -1V 12)(1 + |y|4) ly?,

(x—D(y, 2))TFA(t,x,y, 2) + ‘1%1 |Galt,%,9,2) |2

(o) (o)) 25 -

< 4( ( (A ))> xyg_ 1(%0_ (h(A))) y6+E<(ﬂ‘1(h(A))) |y|5
Iyl 3 Iyl 2 Iyl

2(1+1x%) + ((p - 1) v40) (1 + [y1®) 1y

)
2

Case 3: If |y| > ¢} (h(A)) and |x| < ¢~ (h(A)), then we derive that

% 1)

~(++¢) (—2(<p‘1(h(A))|§—|>3) 22 w0y

< (1 + |x|2) + (([9 -1V 12)(1 + |y|4) ly2,

(x - D(y, 1)) TFA (tx,y,1) +

(x—D(y, 2))TFA(t,x,y, 2) + 1%1 |Galt,%,7,2) |2

- (x+ 1—12)/) <—4<<p‘1(h(A))|§—|)5) + —’ (ta-0)

<2(1+ %) + (@ -1) v40) (1 + |y*)lyl*

)
2

@)

Case 4: If |y| < 971 (h(A)) and |x| > ¢~ 1 (4(A)), then the proof is similar to the previous
case.

Combing the four cases, we get that Assumption 3.6 is satisfied as well. Then we choose
¢(-) and A(-). We can observe that

sup sup (|F(t,x,0)| V|Gt xy,0)|) <4w’, VYw=>1,

0<t<T |x|V|yl<w

which means that ¢(w) = 4w°. Let h(A) = KOA‘§. Then by Theorem 3.14, when « = i, we
obtain that

E|x(T) - x4(T)[> <CA? and E|x(T)-xa(T)|" < CAL.

Since the explicit solution of (5.1) cannot be calculated, we regard the partially truncated
EM scheme with step size 2714 as the true solution in the numerical experiments. Figure 1
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10°
—%— Truncated EM
— — — Reference line with slope 1/4
5 107
=
[im| .~
o e
©
= *
?
=
[+
Q
= 102
10 :
10 107 102
Step Size A
Figure 1 The convergence order of the truncated EM scheme for (5.1)

presents the .#2-errors defined by

1 1 1000 %
(Bl(1)-xa(D)} ~ (m DI, - mmw)

with step sizes 2711, 2719, 272 278 27 at T = 1. 1000 sample paths were simulated in the
numerical experiments. We can observe that the convergence order of partially truncated

EM method for (5.1) is approximately i, which is close to our result.

Example 5.2 Consider a nonlinear and nonautonomous neutral stochastic differential de-

lay equations with Markovian switching

d[x(t) - D(x(t - 7),(8))]
= f(t, %(0), %(¢ — ©), 7(2)) dt + g(t, %(2), %(¢ — T), 7(t)) dB(t), >0,

(5.2)

with the initial data x satisfying Assumption 2.2. Here B(t) and the Markovian chain are
the same as Example 5.1. In addition, for all £ € [0,00), x,y € R}, and i € S, let

1 .- . . 1 3 0.
= sin ifi=1, sin(¢(1 —¢))|3|x|2 ifi=1,
Dl | 650 de - 10D

Lsiny ifi=2, Isin(t(1 = £)|3 x| ifi=2,

—2x3 + | sin(¢(1 - t))|%y— 10x+2y ifi=1,

f(trx,y, l) =
—45 + | sin(t(1 - £))[3y — 20w + 2y ifi=2.

It is easy to see that

1
sin(¢(1 —¢)|3y—10x+2y ifi=1, - 0 ifi=1,
[sin(¢(1 - 1))|3y y (b2, 1) =

F(t,x,y,i): .
|sin(¢(1—12))|3y —20x+2y ifi=2, 0 ifi=2,
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2w ifi=1, isine@ o) 3m3 ifi=1,
F(t,x,y,l) = G(t: XY, l) = 1 5
—4x°  ifi=2, [sin(¢(1 —¢2))|2|x|2  ifi=2.

Obviously, D(y, i) satisfies Assumption 2.3 for i € S. Now let us check Assumption 4.1.
There is no G(¢, x, y,i) term, so we have A = co. Then we derive that

2(x - Dy, 1)) E(t,%,9,1) < -16]x]> + 5]y,

2(x - D(y,2)) F(t,x,9,2) < 35|/ + 6y

Then like in verifying Assumption 3.6, we need to consider the second inequality in four
cases.

Case 1: If (x| V |y|) < ¢~ 1(h(A)), then we get

2(x—D(y, 1))TFA(t,x,y, 1)+ |(—7A(t,x,y,1)|2

:2<x—%siny)( 2x)+||sm( 1—t))| |x|2 |

1\* 1 1 1
2 2 2 2
— -2 — — < — — ,
(<21 3 )+ b = 1ol Jbi
2(x—D(1,2) Falt,%,%,2) + |Galt,%,9,2)]"

- 2<x - % siny> (—4x°) + ||sin(£(1 - t))|%‘|x|% |2
2
< —2|x|2(—2lxl2 - ;i) - %lez < %lez - %Iylz.
Case 2: If (x| A |y]) > ¢ 1 (h(A)), then we have
2(x—D(y, 1)) Falt,%,3,1) + |Galt,%,7,1)[*
1 3
:2(x— gsiny)(— ( (h(A))| |) >+
_ _ 3
< 4( Y(h(A ))> w4 ( 1(h(A))> N |3+(</9 1(h(A))> P
[oc] 3 || x|
_1 2
<- ( (|h|( ))) (—2|x| + %) + imz < %mz + imz,

2(x—D(1,2)) Falt,%,%,2) + |Galt,%,7,2)[
_2<x—ism ( ((p‘l(h(A))i>5>+

2 ]

_ 5

(S (e (Y

x| || |2

5 2

<o Y (2t 1)+ i < 3+ 5

3
512

|sin(2(1 - £)) 3 @

1, i‘
(h(2) ||

(N3]

2
X

o7 (h(4)) =

x|

’sin(t(l - t))“11
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Figure 2 10 sample paths of X4 (t) for (5.2)

Case 3: If |x| > "1 (h(A)) and |y| < ¢~1(h(A)), then we derive that

2(x - D(y, 1))TFA(t,x,y, 1)+ |GA(t,9c,y,1)|2

3 \ ip
= 2<x - % siny) (—2 ((p_l(h(A)) |i—|) ) + [|sin(e(1 - ) |2 |7 (1(4)) |z—|
siwﬁ+im%

2(x—D(,2)) Falt,%,%,2) + |Galt,%,7,2)[
52

- 2<x - 1—12 siny) (—4(¢‘1(h(A))|z—|>5> "

Lo, 1
< —lx]“+ =y|"
= gkl + gl

sin(#(1 - 1)} ‘go‘l(h(A))—

Case 4: If |x| < o1 (h(A)) and |y| > ¢~ (h(A)), then the proof is similar to the above pro-
cess. Therefore Assumption 4.1 holds. Moreover, we easily to see that Assumption 3.1 is
satisfied on t € [0,00). Then by Theorem 4.3 the partially truncated EM numerical so-
lution is almost surely exponentially stable. Figure 2 shows the almost sure exponential
stability of the partially truncated EM method for (5.2) with 10 sample paths.
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