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Abstract
In this paper, we study the injection strategies of insulin for the impulsive therapy of
diabetes in a limited time. According to whether we consider the risk of
hypoglycemia or not, we develop two different control objectives and investigate
three different injection strategies for each control objective. We apply a
time-rescaling method to overcome technical obstacles in optimal impulsive control
and compute the gradient formulas of cost functions with respect to injection doses
and injection timings. By means of numerical simulations we get the optimal
injection doses and injection timings for each injection strategy. Our study indicates
that for the control objective without considering the risk of hypoglycemia, the
optimal injection timing control is more effective than the optimal injection dose
control, whereas the mixed control achieves almost the same effect as the optimal
injection timing control. For the other control objective considering the risk of
hypoglycemia, the optimal injection timing control performs better than the optimal
injection dose control in avoiding emergence of hypoglycemia, and the mixed
control provides the best strategy in preventing hyperglycemia from occurrence.
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1 Introduction
Over the last few decades, diabetes mellitus has been a leading public health concern
due to the overwhelming number of people living with this disease and large amounts
of money (245 billion dollars in the US in 2012) spent in medical care [28]. Diabetes mel-
litus is a metabolic disorder, which is characterized by high plasma glucose level over a
prolonged period, which may lead to frequent urination and increased thirst and hunger.
If not treated, it can cause severe long-term complications such as diabetic ketoacidosis,
cardiovascular disease, stroke, and chronic kidney disease. In general, diabetes is caused
by either the pancreas producing insufficient insulin (type 1 diabetes) or the cells of the
body not responding properly to the insulin produced (type 2 diabetes). Insulin therapy is
an effective way for both types of diabetics to control high plasma glucose.

Insulin pump is a very common medical device, which can administrate insulin and
its analogues. The use of it has highly improved the living quality of the patient compared
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with manual syringe [6, 9, 10, 13, 22, 25–27, 29]. Patients can determine the injection dose
and injection timing when using an insulin pump. However, patients’ lifestyle is affected
since their carbohydrate intake is severely restricted and the dose of injected insulin is
carefully computed to avoid occurrence of both hyperglycemia and hypoglycemia [13, 22].
That is why in recent years, more and more researchers are attracted to develop an artificial
pancreas, which can provide the substitute endocrine functionality of a real and healthy
pancreas [11–13, 30, 31].

Mathematical models are important tools to study insulin therapy for diabetes because
they can deepen the understanding of the pharmacological mechanism and the changing
regularity of the plasma glucose concentration. For example, some researchers studied
the glucose–insulin regulatory system of healthy people [4, 7, 17, 32, 34], whereas others
concentrated on the insulin sensitivity [5, 8, 16, 23]. Delay differential equation models
were proposed in [15, 18, 35, 36] to reveal the reason of the sustained oscillations of the
endocrine metabolic system. Doran et al. [3] investigated the insulin infusion process for
critically ill patients in ICU. To mimic the relatively transient behavior of insulin injection,
impulsive different equation models were formulated in [12, 13, 29] to study the glucose–
insulin regulatory system with insulin therapy.

It is more important to keep the plasma glucose level under control with small fluctu-
ations than to blindly lower it because of the risk of hypoglycemia, since hypoglycemia is
much more dangerous than hyperglycemia. Optimal control is an invaluable mathemati-
cal tool to investigate injection strategies of insulin. By using optimal control theory it is
entirely possible to achieve the goal of making the glucose level under control with small
fluctuations while minimizing the treatment cost.

Since the state variables are affected by uncertain pulse jumps, there is technical diffi-
culty in solving the optimal control problem governed by a switched impulsive dynamical
system. To overcome such a difficulty, some work has been done, and several available
methods have been applied to the optimal management in many fields [14, 19, 24, 33].
For example, the authors in [19] investigated and assessed various optimal strategies for a
multipopulation model with epidemic and impulsive interventions, whereas in [24], dif-
ferent optimal release strategies of natural enemies for a pest management systems were
studied.

In this paper, we formulate a mathematical model for the plasma glucose control in a
limited time and investigate the optimal injection strategies of insulin based on specific
control objectives. The rest of this paper is organized as follows. In Sect. 2, we formulate a
model for the limited time control of plasma glucose with impulsive injection of insulin. In
Sect. 3, we take into account both the fluctuations of plasma glucose level and the amount
of insulin injected, and set two different control objectives according to whether we con-
sider the risk of hypoglycemia or not. Then for each control objective, we investigate three
different limited-time optimal injection strategies, and by using a time rescaling method
we obtain the gradients of cost function with respect to all control parameters. In Sect. 4,
we perform a series of numerical simulations to determine the optimal values of the in-
jection timings and injection doses. Finally, we present a brief conclusion in Sect. 5.

2 Model formulation
Most theoretical studies on insulin therapy focused on the asymptotic behaviors of dy-
namical systems, which are applicable to long-term control of the the plasma glucose level.
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However, if the plasma glucose concentration is much higher than the normal level, then
to avoid permanent damage of patient’s health, treatment should be taken to lower glucose
concentration to a tolerable level in a short time. To the best of our knowledge, very few
works on the limited time control of glucose concentration have been done. The work [20]
studied a finite-time control of the plasma glucose level, which focuses on the glucose level
at the terminate time of control but ignores the fluctuation during the control process. It
is worth pointing out that the ignorance of extreme fluctuations of glucose concentration
during control process may have undesirable consequences in the clinic.

Li, Kuang, and Mason [15, 17] proposed mathematical models obeying the mass conser-
vation law to simulate the glucose–insulin regulation system. Then Song, Huang, and Li
[29] developed these models by incorporating three physiological time delays and periodic
impulsive deliveries of insulin and formulated the system as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dG(t)
dt = Gin – f2(G(t)) – f3(G(t))f4(I(t – τm))

+ f5(I(t – τh)),
dI(t)

dt = f1(G(t – τt)) – diI(t),

⎫
⎪⎪⎬

⎪⎪⎭

t �= kp, k = 1, 2, . . . ,

G(t+) = G(t),

I(t+) = I(t) + σ ,

⎫
⎬

⎭
t = kp,

(1)

with G(0) = G0 > 0 and I(0) = I(0+) = I0 > 0, where G(t) and I(t) represent the concen-
trations of the glucose and insulin at time t, respectively, Gin denotes the glucose input,
f1(G) stands for the insulin secretion with elevated glucose concentration, f2(G) represents
the glucose uptake, which is independent of insulin, f3(G)f4(I) stands for the glucose uti-
lization, which is dependent on insulin, f5(I) is the hepatic glucose production (HGP), τt ,
τm, τh are physiological time delays in the glucose–insulin regulation system, and di > 0
is the degradation rate of insulin. For the periodic impulsive deliveries of insulin, σ is the
injection dose, whereas p is the delivery period.

Song et al. [29] focused on the study of the asymptotical behavior of the plasma glu-
cose level after sufficiently long time of insulin treatment. However, it is of more clinical
significance to consider the optimal limited-time control problem of glucose, that is, to
determine the most efficient strategy of limited-time insulin injection at the minimal eco-
nomic cost. For this purpose, we ignore the impact of the physiological time delays and
formulate the following system incorporating limited-time control of glucose and impul-
sive deliveries of insulin:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dG(t)
dt = Gin – f2(G) – f3(G)f4(I) + f5(I) = F1(G, I),

dI(t)
dt = f1(G) – diI(t) = F2(G, I),

⎫
⎬

⎭
t �= ti, t ∈ [0, T],

G(t+) = G(t),

I(t+) = I(t) + σi,

⎫
⎬

⎭
t = ti, i = 1, 2, . . . , N – 1,

G(0) = G(0+) = G0 > 0, I(0) = I(0+) = I0 > 0,

(2)

where T is a predefined adjustable constant, which represents the time length of control,
ti, i = 1, 2, . . . , N – 1, are the injection moments of insulin, which satisfy 0 ≤ t1 ≤ t2 ≤ · · · ≤
tN–1 ≤ tN = T , whereas σi (μU/ml) > 0 is the injection dose at t = ti. Assume that the upper
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and lower bounds of the plasma glucose concentration that people can tolerate are A and
B, respectively. If the plasma glucose concentration is kept within [B, A], then both hypo-
glycemia and hyperglycemia can be avoided. We denote the ideal level of plasma glucose
by αA + βB, where β ∈ [0, 1] and α + β = 1.

Our aim in this paper is finding a method to determine the optimal injection moments
and injection doses that can not only maintain the plasma glucose concentration at an idea
level, but also minimize the treatment cost.

3 The optimal control problem
In this section, we present the optimal control problem about the plasma glucose by an-
alyzing system (2). There are two key points we need to pay attention to. The first one is
the medical cost. As is well known, there is no cure for diabetes mellitus, so if a person is
diagnosed with diabetes, then a lifelong treatment is needed. Thus it is very important to
reduce the medical cost as much as possible. The other thing that we are concerned about
is the glucose fluctuation during therapy. This is directly related to the treatment effect.
The ultimate goal of the treatment is to lower the plasma glucose concentration to normal
level as soon as possible by injecting insulin or its analogues. We also need to ensure that
the glucose level is not too high or too low, that is, the deviation from normal level should
not be too large.

Based on the above considerations, the problem in this paper can be stated as finding
the optimal control parameter σi > 0 and injection timings ti ∈ [0, T] minimizing the cost
function

J1(σ1,σ2, . . . ,σN–1, t1, t2, . . . , tN–1) = l0

N–1∑

1

σi + l1

∫ T

0

(
G(t) – (αA + βB)

)2 dt (3)

or

J2(σ1,σ2, . . . ,σN–1, t1, t2, . . . , tN–1) = l0

N–1∑

1

σi + l1

∫ T

0

(
G(t) – (αA + βB)

)2 dt

+ l2

∫ T

0

(
G(t) – B

)2 dt,

(4)

where l0 is the unit price of insulin or its analogues, and l1, l2 are the balance factors be-
tween the glucose level and insulin cost in objective functions.

Remark 1 In insulin therapy, especially for the critically ill patients, besides hyper-
glycemia, hypoglycemia can also occur when a patient misses a meal or an overdose of
insulin is injected. Compared to hyperglycemia, hypoglycemia is certifiably more dan-
gerous to human health and can cause serious complications such as brain damage and
quick unexpected death [12]. So in the second control objective, we particularly consider
reducing the likelihood of hypoglycemia.

In the following, we study three different kinds of impulsive injection strategies.
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3.1 Optimization by injection timing and injection dose
Let τi = ti – ti–1 and

τ 1
i ≤ τi ≤ τ 2

i , i = 1, 2, . . . , N , (5)

where τ 1
i and τ 2

i are given constants that represent the lower and upper bounds of the
time interval between the (i – 1)th and ith injections. Assume that the injection dose σi

satisfies

0 ≤ σ 1
i ≤ σi ≤ σ 2

i , i = 1, 2, . . . , N – 1, (6)

where σ 1
i and σ 2

i are also given constants that represent the lower and upper bounds of
the ith injection dose.

Define the vectors P1 = (τ1, τ2, . . . , τN )T and P2 = (σ1,σ2, . . . ,σN–1)T , where τi and σi sat-
isfy conditions (5) and (6), respectively. Let �1 and �2 be the sets of all P1 ∈ RN and
P2 ∈ RN–1 satisfying (5) and (6), respectively.

Since the mapping defined by the right-hand side of system (2) is smooth, this impulsive
system has a unique solution (G(t), I(t))T corresponding to each pair (P1,P2) ∈ (�1,�2)
[1, 2].

Then the cost functions in (3) and (4) can be rewritten as

J1(P1,P2) = l0

N–1∑

1

σi + l1

∫ T

0

(
G(t) – (αA + βB)

)2 dt (7)

and

J2(P1,P2) = l0

N–1∑

1

σi + l1

∫ T

0

(
G(t) – (αA + βB)

)2 dt + l2

∫ T

0

(
G(t) – B

)2 dt. (8)

For the control of plasma glucose, we raise the following optimal control problem:
(PA): For the insulin treatment system (2), find a parameter vector pair (P1,P2) ∈

(�1,�2) such that the cost function J1(P1,P2) or J2(P1,P2) is minimized.
Since the state variables G(t) and I(t) are affected by uncertain pulse effects (uncertain

injection timing ti and uncertain injection dose σi), this problem cannot be directly solved
by currently available optimization techniques. To overcome such a difficulty, we intro-
duce a time-scaling transform method (cf. Lee [14], Teo [33], Liang [19], and Pei [24]) and
translate these uncertain pulse time points into fixed ones. Then the optimal control prob-
lem (PA) is transformed into an equivalent optimal parameter selection problem, which is
regulated by an ordinary differential equation system with periodic boundary conditions.

According to system (2), let t = ti–1 + (ti – ti–1)s =
∑i–1

j=1 τj + τis for t ∈ (ti–1, ti] =
(
∑i–1

j=1 τj,
∑i

j=1 τj] and define

Gi(s) = G
(
ti–1 + (ti – ti–1)s

)
, Ii(s) = I

(
ti–1 + (ti – ti–1)s

)
, (9)

where 0 < s ≤ 1, i = 1, 2, . . . , N , and t0 = 0.
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Then system (2) is transformed into the following N subsystems:

⎧
⎪⎪⎨

⎪⎪⎩

dGi(s)
ds = τi[Gin – f2(Gi) – f3(Gi)f4(Ii) + f5(Ii)]

= τiFi
1(Gi, Ii),

dIi(s)
ds = τi[f1(Gi) – diIi] = τiFi

2(Gi, Ii),

s ∈ (0, 1], i = 1, 2, . . . , N , (10)

with initial and boundary conditions

G1(0) = G0, I1(0) = I0, (11)

and
⎧
⎨

⎩

Gi(0) = Gi–1(1),

Ii(0) = Ii–1(1) + σi, i = 2, 3, . . . , N .
(12)

Subject to system (10)–(12), the cost functions (7) and (8) are transformed into equiva-
lent new forms

Ĵ1(P1,P2) = l0

N–1∑

1

σi + l1

∫ 1

0

N∑

i=1

(
Gi(s) – (αA + βB)

)2 ds (13)

and

Ĵ2(P1,P2) = l0

N–1∑

1

σi + l1

∫ 1

0

N∑

i=1

(
Gi(s) – (αA + βB)

)2 ds

+ l2

∫ 1

0

N∑

i=1

(
Gi(s) – B

)2 ds.

(14)

Then the optimal control problem (PA) is translated into
(PB) For the insulin treatment system (10) with conditions (11) and (12), find a param-

eter vector pair (P1,P2) ∈ (�1,�2) such that the cost function Ĵ1(P1,P2) or Ĵ2(P1,P2) is
minimized.

It is easy to verify that this optimal parameter selection problem is equivalent to the
previous optimal control problem. In the following, we only need to find parameters σi

and τi that satisfy the requirements.
Note that for given parameters σi and τi, the initial conditions of the dynamical systems

(10)–(12) are all determined. We easily see that the initial state value (Gi+1(0), Ii+1(0)) of
(Gi+1(s), Ii+1(s)) depends on the state value (Gi(1), Ii(1)) of (Gi(s), Ii(s)) at s = 1. Thus for the
optimization procedure, we first get (G1(s), I1(s)), 0 ≤ s ≤ 1 by solving the dynamical sys-
tems (10)–(12) when i = 1. According to (12), (G1(1), I1(1)) is the initial value (G2(0), I2(0))
when i = 2. With this initial condition, we can further calculate (G2(s), I2(s)), 0 < s ≤ 1.
Repeat this procedure until (GN (s), IN (s)), 0 < s ≤ 1, is obtained.

To solve the above optimization problem, we can apply the gradient-based optimization
techniques as in [24]. In what follows, we discuss the gradient information of the objective
function Ĵm, m = 1, 2, with respect to the control parameters τi and σi.



Liu et al. Advances in Difference Equations        (2020) 2020:653 Page 7 of 23

To apply Pontryagin’s maximum principle, we set

λT =
[(

λ1)T ,
(
λ2)T , . . . ,

(
λN)T]T , Fi =

(
Fi

1, Fi
2
)T , λi(s) =

(
λi

1(s),λi
2(s)

)T ,

yi(s) =
(
Gi(s), Ii(s)

)T , y =
(
yT

1 , yT
1 , . . . , yT

N
)T , P1 = (τ1, τ2, . . . , τN )T ,

and then from (12) easily get

yi(0) = φi–1(yi–1(1),σi–1
)

=
(
Gi–1(1), Ii–1(1) + σi–1

)T , i = 2, 3, . . . , N – 1.

Now we consider the first kind of cost function, that is, when Ĵ = Ĵ1. Define the Hamil-
tonian function for this optimization problem as follows:

H(y,P1,λ) =
N∑

i=1

Hi
(
yi, τi,λi) =

N∑

i=1

Hi
(
Gi, Ii, τi,λi

1,λi
2
)
, (15)

where

Hi
(
yi, τi,λi) = l1

(
Gi – (αA + βB)

)2 + τiλ
i
1Fi

1 + τiλ
i
2Fi

2

= l1
(
Gi – (αA + βB)

)2 + τi
(
λi)T Fi, i = 1, 2, . . . , N ,

(16)

and λi = (λi
1(s),λi

2(s))T is the corresponding costate governed by the following backward
initial-boundary-value problem:

⎧
⎨

⎩

λ̇i
1(s) = – ∂Hi

∂Gi = –2l1(Gi – (αA + βB)) – τi{λi
1

∂Fi
1

∂Gi + λi
2

∂Fi
2

∂Gi },
λ̇i

2(s) = – ∂Hi
∂Ii = –τi{λi

1
∂Fi

1
∂Ii + λi

2
∂Fi

2
∂Ii }

(17)

with
⎧
⎨

⎩

λN
1 (1) = 0, λN

2 (1) = 0,

λi
1(1) = λi+1

1 (0), λi
2(1) = λi+1

2 (0), i = 2, 3, . . . , N – 1.
(18)

For the second kind of control, that is, when Ĵ = Ĵ2, the expression of the Hamiltonian
function (15) remains unchanged, but due to the difference between Ĵ1 and Ĵ2, the expres-
sion of Hi becomes

Hi
(
yi, τi,λi) = l1

(
Gi – (αA + βB)

)2 + l2
(
Gi – B

)2 + τiλ
i
1Fi

1 + τiλ
i
2Fi

2

= l1(
(
Gi – (αA + βB)

)2 + l2
(
Gi – B

)2 + τi
(
λi)T Fi, i = 1, 2, . . . , N ,

(19)

and the corresponding costate λi = (λi
1(s),λi

2(s))T takes the form

⎧
⎨

⎩

λ̇i
1(s) = – ∂Hi

∂Gi = –2l1(Gi – (αA + βB)) – 2l2(Gi – B) – τi{λi
1

∂Fi
1

∂Gi + λi
2

∂Fi
2

∂Gi },
λ̇i

2(s) = – ∂Hi
∂Ii = –τi{λi

1
∂Fi

1
∂Ii + λi

2
∂Fi

2
∂Ii }

(20)

with initial-boundary-value condition (18).
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Then by the results in [21] we can obtain the following expressions for gradients of the
cost function Ĵm(P1,P2), m = 1, 2, with respect to the injection timing τi and injection
dose σl .

Theorem 3.1 For the cost functions

Ĵm(P1,P2) = Ĵm(σ1,σ2, . . . ,σN–1, τ1, τ2, . . . , τN ), m = 1, 2,

defined in (13) and (14), the gradients with respect to σi, i = 1, 2, . . . , N – 1, are given by

∇σi Ĵm = l0 + λi+1
2 (0), (21)

whereas the gradients with respect to τk , k = 1, 2, . . . , N , are given by

∇τk Ĵm =
∫ 1

0

(
λk(s)

)T Fk(s) ds =
∫ 1

0

(
λk

1Fk
1 (s) + λi

2Fk
2 (s)

)
ds, (22)

where λn
l (s), i = 1, 2, n = 1, 2, . . . , N , can be obtained from equations (17) and (20) for Ĵ1 and

Ĵ2, respectively.

3.2 Optimization by injection dose for periodic injection
In this subsection, we consider a simple scenario in clinic. Suppose that the same dose
(denoted by σd) of insulin or its analogues is periodically injected during the limited time
[0, T] and N – 1 injections are totally planed. Then the injection period is τ = T

N , that is, a
fixed amount σd of insulin or its analogues is periodically injected into the plasma at the
moments iτ , i = 1, 2, . . . , N – 1. Hence system (2) has the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dG(t)
dt = Gin – f2(G) – f3(G)f4(I) + f5(I) = F1(G, I),

dI(t)
dt = f1(G) – diI(t) = F2(G, I),

⎫
⎬

⎭
t �= iτ , t ∈ [0, T],

G(t+) = G(t),

I(t+) = I(t) + σd,

⎫
⎬

⎭
t = iτ , i = 1, 2, . . . , N – 1,

G(0) = G(0+) = G0 > 0, I(0) = I(0+) = I0 > 0.

(23)

We also assume that the injection dose σd satisfies

0 ≤ σ 1
d ≤ σd ≤ σ 2

d , (24)

where σ 1
d and σ 2

d are given constants that represent the lower and upper bounds of the
fixed injection dose.

Then for this scenario, the cost function of control problem (PA) becomes

J̃1(σd) = l0(N – 1)σd + l1

∫ T

0

(
G(t) – (αA + βB)

)2 dt (25)

or

J̃2(σd) = l0(N – 1)σd + l1

∫ T

0

(
G(t) – (αA + βB)

)2 dt + l2

∫ T

0

(
G(t) – B

)2 dt. (26)
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Here σd is the unique control parameter. We need to find an injection dose σd ∈ [σ 1
d ,σ 2

d ]
such that J̃1(σd) or J̃2(σd) is minimized.

Just as in Sect. 3.1, for i = 1, 2, . . . , N , let t = (i – 1)τ + sτ . Then system (23) is converted
into the following N subsystems:

⎧
⎪⎪⎨

⎪⎪⎩

dGi(s)
ds = τ [Gin – f2(Gi) – f3(Gi)f4(Ii) + f5(Ii)]

= τFi
1(Gi, Ii),

dIi(s)
ds = τ [f1(Gi) – diIi] = τFi

2(Gi, Ii),

s ∈ (0, 1], i = 1, 2, . . . , N , (27)

with initial condition (11) and

⎧
⎨

⎩

Gi(0) = Gi–1(1),

Ii(0) = Ii–1(1) + σd, i = 2, 3, . . . , N .
(28)

The cost functions (25) and (26) are then equivalently transformed into

ˆ̃J1(σd) = l0(N – 1)σd + l1

∫ 1

0

N∑

i=1

(
Gi(s) – (αA + βB)

)2 ds (29)

and

ˆ̃J2(σd) = l0(N – 1)σd + l1

∫ 1

0

N∑

i=1

(
Gi(s) – (αA + βB)

)2 ds + l2

∫ 1

0

N∑

i=1

(
Gi(s) – B

)2 ds. (30)

Therefore the optimal problem can be described as follows: find σd ∈ [σ 1
d ,σ 2

d ] such that
ˆ̃J1(σd) or ˆ̃J2(σd) is minimized.

Using the Hamiltonian function defined in (15) and (16), we obtain the following costate
equations associated with ˆ̃J1(σd):

⎧
⎨

⎩

λ̇i
1(s) = – ∂Hi

∂Gi = –2l1(Gi – (αA + βB)) – τ {λi
1

∂Fi
1

∂Gi + λi
2

∂Fi
2

∂Gi },
λ̇i

2(s) = – ∂Hi
∂Ii = –τ {λi

1
∂Fi

1
∂Ii + λi

2
∂Fi

2
∂Ii }

(31)

with initial-boundary-value condition (18).
According to the Hamiltonian function defined in (15) and (19), we get the following

costate equations corresponding to ˆ̃J2(σd):

⎧
⎨

⎩

λ̇i
1(s) = – ∂Hi

∂Gi = –2l1(Gi – (αA + βB)) – 2l2(Gi – B) – τ {λi
1

∂Fi
1

∂Gi + λi
2

∂Fi
2

∂Gi },
λ̇i

2(s) = – ∂Hi
∂Ii = –τ {λi

1
∂Fi

1
∂Ii + λi

2
∂Fi

2
∂Ii }

(32)

with initial-boundary-value condition (18).
Denote

yi(s) =
(
Gi(s), Ii(s)

)T , yi(0) = φi–1(yi–1(1),σd
)
.
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From (23) it follows that

φi–1(yi–1(1),σd
)

=
(
Gi–1(1), Ii–1(1) + σd

)T , i = 2, 3, . . . , N – 1.

Applying the results in [21] again, we get the following result.

Theorem 3.2 For the cost functions ˆ̃Jm(σd), m = 1, 2, defined in (29) and (30), the gradient
with respect to the injection dose σd is given by

∇ˆ̃Jm(σd) = l0(N – 1) +
N–1∑

i=1

λi+1
2 (0). (33)

3.3 Optimization by injection timings for a given injection dose
In this subsection, we consider another simple scenario in clinic. Assume that insulin or
its analogues is injected at irregular moments 0 ≤ t1 ≤ t2 ≤ · · · ≤ tN–1 ≤ T with the same
injection dose σd . The injection dose σd and injection timings t1, t2, . . . , tN–1 are all decision
variables. Then system (2) is converted into the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dG(t)
dt = Gin – f2(G) – f3(G)f4(I) + f5(I) = F1(G, I),

dI(t)
dt = f1(G) – diI(t) = F2(G, I),

⎫
⎬

⎭
t �= ti, t ∈ [0, T],

G(t+
i ) = G(ti),

I(t+
i ) = I(ti) + σd,

⎫
⎬

⎭
i = 1, 2, . . . , N – 1,

G(0) = G(0+) = G0 > 0, I(0) = I(0+) = I0 > 0.

(34)

Here the injection timings ti, i = 1, 2, . . . , N , and injection dose σd satisfy conditions (5)
and (24), respectively.

Then the cost function in control problem (PA) is translated into

J̄1(P1,σd) = l0(N – 1)σd + l1

∫ T

0

(
G(t) – (αA + βB)

)2 dt (35)

or

J̄2(P1,σd) = l0(N – 1)σd + l1

∫ T

0

(
G(t) – (αA + βB)

)2 dt + l2

∫ T

0

(
G(t) – B

)2 dt, (36)

where P1 = (τ1, τ2, . . . , τN )T , τi = ti – ti–1.
Let t =

∑i–1
j=1 τj + τis for i = 1, 2, . . . , N , and transform system (34) into

⎧
⎪⎪⎨

⎪⎪⎩

dGi(s)
ds = τi[Gin – f2(Gi) – f3(Gi)f4(Ii) + f5(Ii)]

= τiFi
1(Gi, Ii),

dIi(s)
ds = τi[f1(Gi) – diIi] = τiFi

2(Gi, Ii),

s ∈ (0, 1], i = 1, 2, . . . , N , (37)

with initial and boundary conditions (11) and (28).
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Cost functions (35) and (36) are converted to

ˆ̄J1(P1,σd) = l0(N – 1)σd + l1

∫ 1

0

N∑

i=1

(
Gi(s) – (αA + βB)

)2 ds (38)

and

ˆ̄J2(P1,σd) = l0(N – 1)σd + l1

∫ 1

0

N∑

i=1

(
Gi(s) – (αA + βB)

)2 ds

+ l2

∫ 1

0

N∑

i=1

(
Gi(s) – B

)2 ds.

(39)

The optimal problem can be restated as follows: find P1 ∈ �1 and σd ∈ [σ 1
d ,σ 2

d ] such
that ˆ̄J1(P1,σd) or ˆ̄J2(P1,σd) is minimized.

Similarly to Sects. 3.1 and 3.2, we apply the Hamiltonian function defined in (15) and
(16) and obtain the same costate equations (17) with initial-boundary-value condition (18)
corresponding to ˆ̄J1(P1,σd).

Using the Hamiltonian function defined in (15) and (19), we get the costate equations
(20) with initial-boundary-value condition (18) corresponding to ˆ̄J2(P1,σd).

The following conclusion can be drawn by the same method as in the preceding two
subsections.

Theorem 3.3 For the cost functions ˆ̄Jm(P1,σd), m = 1, 2, defined in (38) and (39), the gra-
dient with respect to the injection dose σd is given by

∇σd
ˆ̄Jm(P1,σd) = l0(N – 1) +

N–1∑

i=1

λi+1
2 (0), (40)

whereas the gradients with respect to the injection doses τk , k = 1, 2, . . . , N , are given by

∇τk
ˆ̄Jm(P1,σd) =

∫ 1

0

(
λk(s)

)T Fk(s) ds =
∫ 1

0

(
λk

1Fk
1 (s) + λi

2Fk
2 (s)

)
ds. (41)

4 Optimal injection strategies and numerical simulations
In this section, we perform a series of numerical simulations for systems (2), (23), and (34),
which not only confirm the results obtained in Sect. 3, but complement those results with
some specific features. We will determine the optimal values of the injection doses and
injection timings that can keep the plasma glucose under control with smaller oscillations
and less treatment cost.

To begin with, we will present a step-by-step algorithm for the computation of the cost
function and its gradient at a given feasible pair (P1,P2) ∈ (�1,�2) [21, 24]. We take the
case in Sect. 3.1 as an example.

(i) We first solve directly the dynamical system (10) with initial and boundary
conditions (11) and (12) for i = 1, 2, . . . , N to obtain Gi(s), Ii(s), s ∈ [0, 1].

(ii) Applying Gi(s) and Ii(s) obtained in the last step, we solve backwards the costate
system (17) with boundary conditions (18) and the costate system (20) with
boundary conditions (18), and get λi

1(s) and λi
2(s) for i = 1, 2, . . . , N .
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(iii) According to (13) and (14), we evaluate the cost functions Ĵm(P1,P2), m = 1, 2, by
using Gi(s) and Ii(s).

(iv) Applying Gi(s), Ii(s), λi
1(s), and λi

2(s), we compute ∇τi Ĵm(P1,P2) for i = 1, 2, . . . , N
and ∇σl Ĵm(P1,P2) for l = 1, 2, . . . , N – 1.

As mentioned in [13] and [29], it is more important to choose the geometrical shapes of
the five response functions fi, i = 1, . . . , 5, in systems (1) and (2) than their specific expres-
sions. To satisfy geometric properties of these functions introduced in [13] and [29], we
select the following forms of fi, i = 1, . . . , 5, as Song et al. [29] did:

f1(x) =
σ1x2

α2
1 + x2 , f2(x) = σ2x, f3(x) = ax,

f4(x) = c +
mx

n + x
, f5(x) =

R
1 + exp(vx – ĉ)

.

Here σ1, σ2, α1, a, c, m, n, R, v, and ĉ are positive constants, and their values are chosen
from [15, 17, 18] (see Table 1), whereas we assume that the maximum secretory rate of
the diabetics is about 3% of normal subjects. Besides, we select the upper and lower limits
of the plasma glucose concentration that people can tolerate as A = 200 mg/dl and B =
50 mg/dl, respectively, and the weight parameters are selected as α = 1

3 and β = 2
3 . The

unit price of insulin and the balance factors are chosen as l0 = 0.005 and l1 = l2 = 0.01. For
convenience, unit conversion has been made from amounts to concentrations in the same
way as in [15, 17], and [13].

By simple calculation we get

f ′
1(x) =

2σ1α
2
1x

(α2
1 + x2)2 , f ′

2(x) = σ2, f ′
3(x) = a,

f ′
4(x) =

mn
(n + x)2 , f ′

5(x) = –
Rv exp(vx – ĉ)

(1 + exp(vx – ĉ))2 ,

and according to equation (10), we have

λi
1
∂Fi

1
∂Gi + λi

2
∂Fi

2
∂Gi = –λi

1
[
f ′
2
(
Gi) + f ′

3
(
Gi)f4

(
Ii)] + λi

2f ′
1
(
Gi),

λi
1
∂Fi

1
∂Ii + λi

2
∂Fi

2
∂Ii = –λi

1
[
f3

(
Gi)f ′

4
(
Ii) – f ′

5
(
Ii)] – diλ

i
2.

Table 1 Model parameter values

Parameters Values units Parameters Values units

Gin 216 mg/min m 900 mg/min
v 0.0967 mU–1 n 80 mg
σ2 5× 10–6 min–1 σ1 6.27 mU/min
a 3× 10–5 mg–1 α1 105 mg
c 40 mg/min di 0.08 min–1

R 180 mg/min ĉ 7.54 mU
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Then equations (17) and (20) can be transformed respectively into

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λ̇i
1 = – ∂Hi

∂Gi = –2(Gi – (αA + βB)) + τi{λi
1[σ2 + a(c + mIi

n+Ii )] – λi
2

2σ1α2
1 Gi

(α2
1 +(Gi)2)2 },

λ̇i
2 = – ∂Hi

∂Ii = τi[λi
1( amnGi

(n+Ii)2 + Rv exp(vIi–ĉ)
(1+exp(vIi–ĉ))2 ) + λi

2di],

λi
1(1) = 0,

λi
2(1) = 0, i = 2, 3, . . . , N ,

(42)

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̇i
1 = – ∂Hi

∂Gi

= –2(Gi – (αA + βB)) – 2(Gi – B) + τi{λi
1[σ2 + a(c + mIi

n+Ii )] – λi
2

2σ1α2
1 Gi

(α2
1 +(Gi)2)2 },

λ̇i
2 = – ∂Hi

∂Ii = τi[λi
1( amnGi

(n+Ii)2 + Rv exp(vIi–ĉ)
(1+exp(vIi–ĉ))2 ) + λi

2di],

λi
1(1) = 0,

λi
2(1) = 0, i = 2, 3, . . . , N .

(43)

We will look for the optimal values of the control parameters in different injection modes
by using Matlab programs. We use minutes as time units and take 240 min as the total
control time, that is, T = 240 min. Four injections of insulin are planed and these 240 min
will be divided into five segments (N = 5).

In the following, we will study three different optimal strategies in impulsive control for
each cost function by numerical simulations. Surely, there is no guarantee that the optimal
solution we find numerically is unique, so we just present some optimal ones with special
initial injection periods and doses by the above steps.

Due to the difference between two types of cost function, the costate equations are dif-
ferent, and so are the corresponding gradient formulas of the cost function with respect
to control parameters. We will discuss the optimal injection strategies in two cases.

4.1 Optimal injection strategies for the first cost function
4.1.1 Optimal injection dose for periodic injection
We first consider the optimization of injection dose for periodic injection, that is,

τ1 = τ2 = τ3 = τ4 = τ5 =
T
N

= 48.

Starting with an initial injection dose σd = 130, if only simple impulsive releases are
used without any optimal control, then we obtain that after five periods the cost value is
J̃1 = 145.3126 and the plasma glucose level at the terminal time is G(T) = 106.83 mg/dl.

Under the constraint 80 ≤ σd ≤ 200, we solve the corresponding optimal problem by
the algorithm listed above in Matlab. We get the optimal injection dose σ ∗

d = 133.564,
the corresponding cost value J̃ ∗

1 = 145.1660, and the plasma glucose level at the terminal
time is G∗(T) = 105.74 mg/dl. After comparing the time series diagrams of plasma glucose
level for this kind of optimal control, noncontrol and simple impulsive control in Fig. 1(a),
we find that this optimal control strategy has a very small advantage in lowering plasma
glucose concentration. It is worth pointing out that it costs a little more insulin to achieve
such an effect (see Table 2).
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Figure 1 Dose control for the first cost function: (a) Comparisons of plasma glucose level under different
control modes; (b) Impact of the intensity of each injection on the optimal cost value; (c) Impact of the
intensity of each injection on the glucose level at time T ; (d) Injection strategy of the optimal dose control

Table 2 Comparison of the optimal dose control and the simple impulsive control

G(T ) Total release Cost value

Optimal control 105.74 534.256 145.1660
Impulsive control 106.83 520 145.3126

In addition, we investigate the influence of injection dose on the cost function and the
glucose concentration at time T (see Figs. 1(b) and (c)), and find that when the injection
dose varies within the interval 80 ≤ δd ≤ 200, the cost function J̃1(δd) admits a minimum
point, which verifies the optimum results we obtained. Furthermore, note that the plasma
glucose level at the terminal time T continues decreasing with the increase of the injection
dose. We depict the optimal control laws in Fig. 1(d).

4.1.2 Optimal injection timings with fixed injection dose
To be consistent with Sect. 4.1.1, we choose the same initial injection dose σd = 130 and
select τ1 = 24, τ2 = τ3 = τ4 = 48, and τ5 = 72 as the initial injection intervals. Besides, to
determine the optimal time intervals τi and optimal injection dose σd minimizing the cost
function J̄1, we consider the constraint conditions

0 ≤ τi ≤ 120, i = 1, 2, . . . , 5,
5∑

1

τi = 240, (44)

and 80 ≤ σd ≤ 200.
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Then solving this optimal problem in Matlab, we obtain the following optimal injection
intervals:

τ ∗
1 = 31.6154, τ ∗

2 = 44.1648, τ ∗
3 = 44.1600,

τ ∗
4 = 44.4768, τ ∗

5 = 75.5832
(45)

and the optimal injection dose

σ ∗
d = 131.888. (46)

In addition, we get the minimum cost value J̄ ∗
1 = 123.8571 and the plasma glucose level

at the terminal time G∗(T) = 171.67 mg/dl.
We also plot the time series diagrams of the plasma glucose level for the optimal injec-

tion timing control, optimal injection dose control, and noncontrol in Fig. 2(a). We can
see from the comparison of these curves that the optimal injection timing control has ob-
vious advantage since it achieves a better glucose control effect with relatively low cost
function value. Besides, for every σd ∈ [80, 200], we determine the corresponding optimal
time intervals under restriction (44) and then calculate the value of the cost function and
the plasma glucose concentration at time T = 240. From Fig. 2(b) we see that when the
injection dose varies within the interval 80 ≤ σd ≤ 200, the cost function J̄1(P1,σd) also
admits a minimum point. This further confirms the optimum values we have obtained.
Similarly, the plasma glucose level at the terminal time T also keeps decreasing with the

Figure 2 Timing control for the first cost function: (a) Comparisons of plasma glucose level under different
control modes; (b) Impact of the intensity of each injection on the optimal cost value; (c) Impact of the
intensity of each injection on the glucose level at time T ; (d) Injection strategy of the optimal timing control
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increase of the injection dose (see Fig. 2(c)). Graphical output in Fig. 2(d) directly displays
our optimal injection timing control strategy expressed by (45) and (46).

4.1.3 Optimal injection timings and injection doses
Keeping the same initial injection intervals τ1 = 24, τ2 = τ3 = τ4 = 48, and τ5 = 72 and
choosing the initial injection dose σ1 = σ2 = σ3 = σ4 = 130, we deal with the optimal prob-
lem with constraints (44) and 80 ≤ δi ≤ 200, i = 1, 2, 3, 4. Then after solving this optimal
problem, we obtain the set of optimal injection doses

σ ∗
1 = 130.936, σ ∗

2 = 130.908, σ ∗
3 = 130.804, σ ∗

4 = 130.48 (47)

and the set of optimal injection intervals

τ ∗
1 = 30.4848, τ ∗

2 = 44.028, τ ∗
3 = 44.0256,

τ ∗
4 = 45.2928, τ ∗

5 = 76.1712.
(48)

This injection strategy is shown by Fig. 3(b). Besides, we obtain that the minimum
cost value J ∗

1 = 123.9197 and the plasma glucose level at the terminal time is G∗(T) =
174.24 mg/dl. The time series diagrams of the plasma glucose level under four types of
control modes are plotted in Fig. 3(a), and we can see that the mixed optimal control pro-
duces almost the same effect as the optimal injection timing control in this view.

Finally, we compare these three optimal injection strategies to evaluate their effective-
ness (refer to Table 3 and Fig. 4). We find that the optimal injection timing control is su-
perior to the optimal injection dose control because of the lower glucose level in most of
the time with less cost value. The mixed control produces almost the same control effect
as the optimal injection timing control does; however, it entails the smallest insulin cost.
Figure 4(b) shows that the optimal injection dose control provides the least effective re-
sult at the cost of injecting the most insulin in the whole control process. Combining the
optimal selection of injection timing with it results in much better performance in both
the control effect of the plasma glucose and the cost value.

Figure 3 Mixed control for the first cost function: (a) Comparisons of plasma glucose level under different
control modes; (b) Injection strategy of the mixed optimal control
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Table 3 Comparison of different injection strategies

Optimal control parameters J ∗
1 G∗(T )

Dose control σ ∗
d = 133.564 145.1660 105.74

Timing control τ ∗
1 = 31.6152, τ ∗

2 = 44.1648, 123.8571 171.67
τ ∗
3 = 44.16, τ ∗

4 = 44.4768,
τ ∗
5 = 75.5832, σ ∗

d = 131.888

Mixed control τ ∗
1 = 30.4848, τ ∗

2 = 44.028, 128.34 174.24
τ ∗
3 = 44.0256, τ ∗

4 = 45.2928,
τ ∗
5 = 76.1712, σ ∗

1 = 130.936
σ ∗
2 = 130.908, σ ∗

3 = 130.804
σ ∗
4 = 130.48

Figure 4 Comparison of three optimal strategies for the first cost function: (a) Comparison of three injection
strategies: the red, blue, and green segments are for dose control, timing control, and mixed control,
respectively; (b) Comparison of total injection of insulin for three optimal control methods

4.2 Optimal injection strategies for the second cost function
It is very complicated to consider the treatment for critically ill patients in Intensive
Care Unit. Since their response to an insulin injection or a glucose input can vary sig-
nificantly, both hyperglycemia and hypoglycemia may occur in a injection period. In this
subsection, we study a different type of control objective function to prevent the occur-
rence of hypoglycemia. Assume that the glucose input rate Gin is slightly lower, that is,
Gin = 120.

4.2.1 Optimal injection dose for periodic injection
First, we consider the optimization of injection dose for periodic injection, that is,

τ1 = τ2 = τ3 = τ4 = τ5 =
T
N

= 48.

Starting with an initial injection dose σd = 132, if only simple impulsive releases are
used but no optimal control is taken, then we obtain that after five periods, the cost
value is J̃2 = 327.8569 and the plasma glucose level at the terminal time is G(T) =
51.581 mg/dl.

Solving the corresponding optimal problem numerically in Matlab, we get that under
the constraint 0 ≤ σd ≤ 200, the optimal injection dose is σ ∗

d = 99.164 and the correspond-
ing cost value is J̃ ∗

2 = 323.9829, whereas the plasma glucose level at the terminal time is
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Figure 5 Dose control for the second cost function: (a) Comparisons of plasma glucose level under different
control modes; (b) Impact of the intensity of each injection on the optimal cost value; (c) Impact of the
intensity of each injection on the glucose level at time T ; (d) Injection strategy of the optimal dose control

Table 4 Comparison of the optimal dose control and the simple impulsive control

G(T ) Total release Cost value

Optimal control 63.264 396.656 323.9829
Impulsive control 51.581 528 327.8569

G∗(T) = 63.264 mg/dl. We plot the time series diagrams of plasma glucose level for both
this optimal control and simple impulsive control in Fig. 5(a). We find that the optimal
injection dose control has obvious advantages in avoiding occurrence of hypoglycemia, as
well as saving injection dose of insulin (see Fig. 5(a) and Table 4).

We also investigate the influence of injection dose on the cost function and the glucose
concentration at time T . Figure 5(b) shows that when the injection dose varies within the
interval 0 ≤ δd ≤ 200, the cost function J̃2(δd) admits a minimum point, which verifies
the optimal results we obtained. Figure 5(c) indicates that the plasma glucose level at the
terminal time T decreases with an increase of the injection dose. The optimal control laws
are depicted in Fig. 5(d).

4.2.2 Optimal injection timings with a fixed injection dose
We choose the same initial injection dose σd = 132 and select τ1 = τ2 = τ3 = 36, τ4 = 48,
and τ5 = 84 as the initial injection intervals. To determine the optimal time intervals τi and
optimal injection dose σd that minimize the cost function J̄2, we consider the following
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constraint conditions:

0 ≤ τi ≤ 120, i = 1, 2, . . . , 5,
5∑

1

τi = 240, (49)

and 0 ≤ σd ≤ 200.
Then solving this optimal problem in Matlab gives the following optimal injection in-

tervals:

τ ∗
1 = 33.3408, τ ∗

2 = 47.4336, τ ∗
3 = 55.824,

τ ∗
4 = 48.8568, τ ∗

5 = 54.5448
(50)

and optimal injection dose

σ ∗
d = 97.692. (51)

Besides, we get the cost value J̄ ∗
2 = 308.0294 and the plasma glucose level at the terminal

time G∗(T) = 78.219 mg/dl.
We plot the time series diagrams of the plasma glucose level for the optimal injection

timing control, optimal injection dose control, and simple impulsive control in Fig. 6(a).
These three curves show that with a relatively low cost function value, the optimal injec-

Figure 6 Timing control for the second cost function: (a) Comparisons of plasma glucose level under
different control modes; (b) Impact of the intensity of each injection on the optimal cost value; (c) Impact of
the intensity of each injection on the glucose level at time T ; (d) Injection strategy of the optimal timing
control
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tion timing control is the most robust in preventing hypoglycemia from occurring. For ev-
ery σd ∈ [0, 200], we determine the corresponding optimal time intervals under constraint
(49) and then calculate the value of the cost function and the plasma glucose concentra-
tion at time T = 240. From Fig. 6(b) we find that when the injection dose varies within the
interval 0 ≤ σd ≤ 200 and the cost function J̄2(P1,σd) admits a minimum point, which is
consistent with the optimal result we have obtained. Figure 6(c) shows a decrease of the
plasma glucose level at the terminal time T with an increase of the injection dose. Our
optimal timing control strategy expressed by (50) and (51) is shown in Fig. 6(d).

4.2.3 Optimal injection timing and injection dose
To deal with the optimal problem with constraints (44) and 0 ≤ δi ≤ 200, i = 1, 2, 3, 4, we
keep the same initial injection intervals τ1 = τ2 = τ3 = 36, τ4 = 48, τ5 = 84 and choose the
initial injection doses as σ1 = σ2 = σ3 = σ4 = 132. Solving this optimal problem numerically,
we obtain the set of optimal injection doses

σ ∗
1 = 119.148, σ ∗

2 = 114.984, σ ∗
3 = 118.68, σ ∗

4 = 131.02 (52)

and the set of optimal injection intervals

τ ∗
1 = 32.28, τ ∗

2 = 51.267, τ ∗
3 = 53.3976,

τ ∗
4 = 47.868, τ ∗

5 = 55.1784.
(53)

This injection strategy is shown in Fig. 7(b). We obtain the minimum cost value J ∗
2 =

310.9245 and the plasma glucose level at the terminal time G∗(T) = 65.105 mg/dl. The
time series diagrams of the plasma glucose level under four types of control modes are
plotted in Fig. 7(a). We find that compared with optimal dose control and optimal timing
control, mixed optimal control provides better performance in avoiding occurrence of
hyperglycemia.

Table 5 and Fig. 8(a) give a comparison of these three optimal injection strategies. We
find that the optimal injection timing control is superior to the optimal injection dose
control in avoiding problems with hypoglycemia. Although the mixed control is the most
effective in preventing hyperglycemia from occurring, it takes the largest consumption of
insulin (see Fig. 8(b)).

Figure 7 Mixed control for the second cost function: (a) Comparisons of plasma glucose level under different
control modes; (b) Injection strategy of the mixed optimal control
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Table 5 Comparison of different injection strategies

Optimal control parameters J ∗
2 G∗(T )

Dose control σ ∗
d = 99.164 323.9829 63.264

Timing control τ ∗
1 = 33.3408, τ ∗

2 = 47.4336, 308.0294 78.219
τ ∗
3 = 55.824, τ ∗

4 = 48.8568,
τ ∗
5 = 54.5448, σ ∗

d = 97.692

Mixed control τ ∗
1 = 32.28, τ ∗

2 = 51.276, 310.9245 65.105
τ ∗
3 = 53.3976, τ ∗

4 = 47.868,
τ ∗
5 = 55.1784, σ ∗

1 = 119.148
σ ∗
2 = 114.984, σ ∗

3 = 118.868,
σ ∗
4 = 131.02

Figure 8 Comparison of three optimal strategies for the second cost function: (a) Comparison of three
injection strategies: the red, blue, and green segments are for dose control, timing control, and mixed control,
respectively; (b) Comparison of total injection of insulin for three optimal control methods

5 Conclusion
In this paper, we formulated a novel switched impulsive dynamical system and used opti-
mal control theory to study therapy protocols for diabetics with insulin pump in a limited
time. Compared with model proposed in [20], our new model considers not only the end-
point control of plasma glucose level but also the fluctuations during the control process,
which is in more accordance with the actual situation.

Taking into account both the fluctuations of plasma glucose level and the amount of
insulin injected, we investigated three therapy strategies for two different objective func-
tions. To solve technical problems in optimal impulsive control, we applied a time rescal-
ing method and obtained gradient formulas of cost functions with respect to injection
doses and injection timings. We numerically obtained optimal values of injection doses
and timings for each therapy strategy. Numerical results indicate that for the objective
function without considering the risk of hypoglycemia, the optimal injection timing con-
trol is superior to the optimal injection dose control, whereas the mixed control gets al-
most the same effect as the optimal injection timing control at a cost of less insulin in-
jected. Numerical simulations also suggest that for the objective function considering the
risk of hypoglycemia, the optimal injection timing control is superior to the optimal in-
jection dose control in preventing hypoglycemia problems, and the mixed control is the
best performing strategy in avoiding problems with hyperglycemia.
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