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Abstract
In this study, an efficient numerical scheme based on shifted Chebyshev polynomials
is established to obtain numerical solutions of the Bagley–Torvik equation. We first
derive the shifted Chebyshev operational matrix of fractional derivative. Then, by the
use of these operational matrices, we reduce the corresponding fractional order
differential equation to a system of algebraic equations, which can be solved
numerically by Newton’s method. Furthermore, the maximum absolute error is
obtained through error analysis. Finally, numerical examples are presented to validate
our theoretical analysis.
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1 Introduction
Over the past few decades, many natural phenomena have been successfully modeled us-
ing the fractional differential equation [1–6]. As an example, the authors in [7] constructed
the following equation that describes the motion of a rigid plate immersed in a Newtonian
fluid:

y′′(t) + AD
3
2 y(t) + By(t) = f (t), 0 ≤ t ≤ T , (1)

and

y(0) = a0, y(T) = a1, (2)

where the operator D 3
2 is a Liouville–Caputo derivative, A �= 0, B are constants, and the

function f (t) is known. The existence and uniqueness of the problem have been estab-
lished in [8, 9]. Many methods have been developed to deal with the problem in the lit-
erature [10–14]. Podlubny also investigated this equation and introduced an approximate
analytical solution by Green’s function in his monograph [15]. Ray and Bera [16] adopted
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a semi-analytical method for solving Bagley–Torvik equation and obtained the same so-
lution as Podlubny’s solution. Rajarama and Chakraverty [17] adopted the Sumudu trans-
formation method to obtain the analytical solution of the problem. Cenesiz et al. [18–20]
suggested a Taylor polynomial along with the collocation method for dealing with a class
of fractional differential equations including the Bagley–Torvik equation. In [21–24], the
wavelet method was used to deal with the problems. Diethelm and Ford [25] solved the
problem by using Adams predictor and corrector methods. In [26–28] the spectral col-
location method based on a hybrid function and Chebyshev polynomial were employed
to handle the equation. Moreover, shifted Legendre polynomial based Galerkin and col-
location methods were utilized in delay Bagley–Torvik equations in [29]. Most recently,
Hou and Ji [30, 31] introduced Jacobi polynomials and Laplace transform together with
Laguerre polynomials to solve the equation.

Papers [26, 27] and [32] focused on the Chebyshev polynomial method for the Bagley–
Torvik equation. In these studies, the operational matrix of fractional integration and Tau
method were applied to tackle the problem. The objective of the current study is to develop
a modified Chebyshev spectral collocation method to handle the Bagley–Torvik equation.
We generate the operational matrices of derivative for shifted Chebyshev polynomials in
the physical space. Thereafter, we obtain a discrete numerical scheme, in which the non-
homogeneous terms are not approximated. A rigorous error analysis in L∞-norm is pro-
vided.

2 The fractional integration and differentiation
In this section, we mainly introduce the widely used Riemann–Liouville fractional integral
and Liouville–Caputo fractional derivative.

Definition 1 ([33]) The Riemann–Liouville fractional integral operator Jα , α > 0, is de-
fined as follows:

Jαf (t) =
1

Γ (α)

∫ t

0
(t – s)α–1f (s) ds, α > 0.

Definition 2 ([33]) The Liouville–Caputo fractional derivative operator Dα is defined as
follows:

Dαf (t) =
1

Γ (n – α)

∫ t

0
(t – τ )n–α–1f (n)(τ ) d(τ ) (3)

for n – 1 < α ≤ n, n ∈N, t > 0, f (t) ∈ Cn
–1.

For the Liouville–Caputo derivative (3), we have

Dαxβ =

⎧⎪⎪⎨
⎪⎪⎩

0 for β ∈N0 and β < �α�;
Γ (β+1)

Γ (β+1–α) xβ–α for β ∈N0 and β ≥ �α�
or β /∈N0 and β > 
α�.

(4)

Here, �α� and 
α� are the ceiling and floor functions, respectively. Also N0 = {0, 1, 2, . . .}.
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3 Shifted Chebyshev polynomials and their properties
The well-known Chebyshev polynomials are defined on the interval [–1, 1] and are ob-
tained by expanding the following formulae:

Tn(x) = cos
(
n arccos(x)

)
, n = 0, 1, . . . ; x ∈ [–1, 1].

To use these polynomials on the interval t ∈ [0, L] for any real L > 0, we introduce the
change of variable x = 2t/L – 1, 0 ≤ t ≤ L, and obtain the shifted Chebyshev polynomials

T∗
Ln(t) = Tn(2t/L – 1).

The shifted Chebyshev polynomials T∗
Ln(t) satisfy the recurrence relation

T∗
Ln+1(t) = 2(2t/L – 1)T∗

Ln(t) – T∗
Ln–1(t), n ∈ N ,

where T∗
L0(t) = 1, T∗

L1(t) = 2t/L–1. The analytic form of the shifted Chebyshev polynomials
T∗

Li(t) of degree i is given by

T∗
Li(t) = i

i∑
k=0

(–1)i–k (i + k – 1)!
(i – k)!(2k)!Lk tk , (5)

where T∗
Li(0) = (–1)i, T∗

Li(L) = 1. The T∗
Li(t) also satisfy a discrete orthogonality condition

N∑′′

k=0

T∗
Li(tk)T∗

Lj(tk) =

⎧⎪⎪⎨
⎪⎪⎩

0, i �= j;

N , i = j = 0;

N/2, i = j �= 0,

where the interpolation points are chosen to be the Chebyshev–Gauss–Lobatto points
associated with the interval [0, L], tk = L

2 (1 – cos(kπ/N)), k = 0, 1, 2, . . . , N . Here, the sum-
mation symbol with double primes denotes a sum with both the first and last terms halved.

4 The operational matrix of derivative
A continuous and bounded function y(t) can be approximated in terms of shifted Cheby-
shev polynomials in the interval [0, L] by the formula

yN (t) =
N∑′′

k=0

ckT∗
Lk(t). (6)

Using the discrete orthogonality relation, the coefficient ck in (6) is given by the explicit
formula

ck =
2
N

N∑′′

i=0

y(ti)T∗
Lk(ti), k = 0, 1, . . . , N . (7)

Applying (6), (7), the function yN (t) can be written collectively in a matrix form

yN (t) = T(t) · P · Y , (8)
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where

T(t) =
[
T∗

L0(t), T∗
L1(t), . . . , T∗

LN–1(t), T∗
LN (t)

]
,

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
2N T∗

0 (t0) 2
2N T∗

0 (t1) 2
2N T∗

0 (t2) · · · 1
2N T∗

0 (tN )
1
N T∗

1 (t0) 2
N T∗

1 (t1) 2
N T∗

1 (t2) · · · 1
N T∗

1 (tN )
1
N T∗

2 (t0) 2
N T∗

2 (t1) 2
N T∗

2 (t2) · · · 1
N T∗

2 (tN )
...

...
...

. . .
...

1
2N T∗

N (t0) 2
2N T∗

N (t1) 2
2N T∗

N (t2) · · · 1
2N T∗

N (tN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

and

Y =
[
y(t0), y(t1), y(t2), . . . , y(tN )

]T .

The derivative y′
N (t) is as follows:

y′
N (t) = T ′(t) · P · Y . (9)

We know that

T ′(t) = T(t) · 2
L

M, (10)

in which M is the (N + 1) × (N + 1) operational matrix of derivative given by

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 3 0 5 · · · m1

0 0 4 0 8 0 · · · m2

0 0 0 6 0 10 · · · m3
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×(N+1)

,

so that m1, m2, and m3 are respectively N , 0, 2N for odd N and 0, 2N , 0 for even N . Then,
we substitute equation (10) into (9) to get

y′
N (t) = T(t) · 2

L
M · P · Y . (11)

Therefore y′
N (t) can be expressed in a discretized form as follows:

Y (1) = Q · 2
L

M · P · Y ,

where

Y (1) =
[
y′(t0), y′(t1), y′(t2), . . . , y′(tN )

]T
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and

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

T∗
L0(t0) T∗

L1(t0) T∗
L2(t0) · · · T∗

LN (t0)
T∗

L0(t1) T∗
L1(t1) T∗

L2(t1) · · · T∗
LN (t1)

T∗
L0(t2) T∗

L1(t2) T∗
L2(t2) · · · T∗

LN (t2)
...

...
...

. . .
...

T∗
L0(tN ) T∗

L1(tN ) T∗
L2(tN ) · · · T∗

LN (tN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

So, we can get the operational matrix of derivative

D(1) = Q · 2
L

M · P.

Furthermore, the operational matrix of derivative of the n-order derivative can be com-
pletely determined from those of the first derivative

D(n) = D(1)D(1) · · ·D(1) = P ·
(

2
L

)n

Mn · Q. (12)

5 Calculation of the operational matrix of fractional order derivatives
According to the definition of Liouville–Caputo fractional derivative, we can write

DαyN (x) = DαT(x) · P · Y , (13)

where α > 0. Applying (5), the Liouville–Caputo fractional derivative of the vector T(x) in
(13) can be expressed as

DαT(x) = DαX · N , (14)

where

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 –1 1 –1 · · · (–1)N

0 2/L –8/L 18/L · · · (–1)N–12N2/L
0 0 8/L2 –48/L2 · · · (–1)N–2 2

3 N2(N2 – 1)/L2

...
...

...
...

. . .
...

0 0 0 · · · · · · 22N–1/LN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and

X =
[
1, t, t2, . . . , tN]

.

Using (4) we have

DαX =
[
0, . . . , 0, c�α�t�α�–α , c�α�+1t�α�+1–α , . . . , cN tN–α

]
, (15)

where

c�α� =
Γ (�α� + 1)

Γ (�α� + 1 – α)
, c�α�+1 =

Γ (�α� + 2)
Γ (�α� + 2 – α)

, . . . , cN =
Γ (N + 1)

Γ (N + 1 – α)
.
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Employing (13), (14) and (15), we get

Y α = C · N · P · Y ,

where

Y (α) =
[
y(α)(t0), y(α)(t1), y′(t2), . . . , y(α)(tN )

]T

and

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 c�α�x�α�–α
0 c�α�+1x�α�+1–α

0 · · · cN xN–α
0

0 · · · 0 c�α�x�α�–α
1 c�α�+1x�α�+1–α

1 · · · cN xN–α
1

0 · · · 0 c�α�x�α�–α
2 c�α�+1x�α�+1–α

2 · · · cN xN–α
2

... · · · ...
...

...
. . .

...
0 · · · 0 c�α�x�α�–α

N c�α�+1x�α�+1–α
N · · · cN xN–α

N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Then we get the operational matrix of fractional derivative

D(α) = C · N · P. (16)

For simplicity, the operational matrix of the fractional derivative in (16) can be written
collectively in the following form:

D(α) =

⎡
⎢⎢⎢⎢⎣

d(α)
00 d(α)

01 · · · d(α)
0N

d(α)
10 d(α)

11 · · · d(α)
1N

...
...

. . .
...

d(α)
N0 d(α)

N1 · · · d(α)
NN

⎤
⎥⎥⎥⎥⎦ . (17)

6 Applications to the Bagley–Torvik equation
To show the fundamental importance of the operational matrix of fractional order deriva-
tives, we apply it for solving the Bagley–Torvik equation. To solve the problem, we first
consider incorporating boundary conditions

Dαy(xi) =
N∑

j=0

d(α)
ij y(xj) = d(α)

i0 y(0) +
N–1∑
j=1

d(α)
ij y(xj) + d(α)

iN y(xN ), (18)

D2y(xi) = d(2)
i0 y(0) +

N–1∑
j=1

d(2)
ij y(xj) + d(2)

iN y(xN ). (19)

By substituting the approximation (18) in (19) and by using the boundary conditions (2),
we get a system of algebraic equations:

D(2)y(xi) + AD(3/2)y(xi) + By(xi) = f (xi), i = 1, 2, . . . , N – 1. (20)

Solving the system of algebraic equations, we can obtain the vector Y . Then, using (8), we
can get the output response

y(x) = T(x) · P · Y . (21)
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7 Some useful lemmas
In this section, we give some useful lemmas, which play a significant role in the conver-
gence analysis later. We first introduce some notations that will be used. Let I := (–1, 1)
and L2

ωα,β (I) be the space of measurable functions whose square is Lebesgue integrable
in I relative to the weight function ωα,β (x). The inner produce and norm of L2

ωα,β (I) are
defined by

(u, v)ωα,β ,I =
∫ 1

–1
u(x)v(x)ωα,β dx, ∀u, v ∈ L2

ωα,β (I),

‖u‖L2
ωα,β

= (u, u)
1
2
ωα,β .

For a nonnegative integer m, define

Hm
ωα,β , =

{
v : ∂k

x v ∈ L2
ωα,β (I), 0 ≤ k ≤ m

}
,

with the seminorm and the norm as follows:

|v|m,ωα,β =
∥∥∂m

x v
∥∥

ωα,β , ‖v‖m,ωα,β =

( m∑
k=0

|v|2k,ωα,β

) 1
2

,

|v|Hm;N
ωα,β

=

( m∑
k=min(m,N+1)

∥∥∂k
x v

∥∥2
L2
ωα,β

) 1
2

.

Particularly, let

ω(x) = ω– 1
2 ,– 1

2 (x)

be the Chebyshev weight function. Denote by L∞(–1, 1) the measurable functions space
with the norm

‖v‖L∞ = sup
x∈I

∣∣v(x)
∣∣.

For a given positive integer N , we denote the points by {xi}N
i=0, which is a set of N + 1

Gauss–Lobatto points, corresponding to the weight ω(x). By PN we denote the space of
all polynomials of degree not exceeding N . For all v ∈ C[–1, 1], we define the Lagrange
interpolating polynomial IN v ∈ PN , satisfying

IN v(xi) = v(xi).

The Lagrange interpolating polynomial can be written in the form

IN v(x) =
N∑

i=0

v(xi)Fi(x), 0 ≤ i ≤ N ,

where Fi(x) is the Lagrange interpolation basis function associated with {xi}N
i=0.
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Lemma 3 ([34]) Assume that v ∈ Hm
ω , and denote IN v its interpolation polynomial associ-

ated with the Gauss–Lobatto points {xi}N
i=0, namely

IN v(xi) = v(xi).

Then the following estimates hold:

‖v – IN v‖L∞ ≤ CN
1
2 –m|v|Hm;N

ω
.

8 Convergence analysis
In this section, an error estimate of the applied method for the solutions of the Bagley–
Torvik equation is provided. For the sake of applying the theory of orthogonal polynomials,
we use the variable transformations t = T(1 + x)/2, x ∈ [–1, 1] to rewrite (1), (2) as follows:

u′′(x) + aD
3
2 u(x) + bu(x) = g(x) (22)

and

u(–1) = a0, u(1) = a1,

where

u(x) = y
(

T(1 + x)
2

)
, a = A

(
T
2

)1/2

,

g(x) =
(

T
2

)2

f
(

T(1 + x)
2

)
, b = B

(
T
2

)2

.

Theorem 4 Let u(x) be the exact solution of the Bagley–Torvik equation differential equa-
tion (22), which is assumed to be sufficiently smooth. Let the approximate solution uN (x)
be obtained by using the proposed method. If u(x) ∈ Hm

ω (I), then for sufficiently large N the
following error estimate holds:

∥∥e(x)
∥∥

L∞ ≤ CN
1
2 –m|u|Hm;N

ω
+ CN

1
2 –m∣∣u′′∣∣

Hm;N
ω

+ CN
1
2 –m∣∣u 3

2
∣∣
Hm;N

ω
. (23)

Proof We use ui ≈ u(xi), u(α)
i ≈ uα(xi), 0 ≤ i ≤ N , and

uN =
N∑

j=0

ujFj(x), u(α)
N =

N∑
j=0

ujFα
j (x),

where Fj, j = 0, 1, 2, . . . , N , is the Lagrange interpolation basis function. Consider equation
(22). By using Chebyshev–Gauss–Lobatto collocation points {xi}N

i=0, we have

u′′(xi) + u(3/2)(xi) + u(xi) = g(xi), (24)

u(xi) =
∫ xi

–1
(t – s)u′′(s) ds + u(–1) + xiu′(–1). (25)
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Then the numerical scheme (20) can be written as

u′′
N (xi) + u(3/2)

N (xi) + uN (xi) = g(xi), (26)

ui =
∫ xi

–1
(x – s)u′′

N (s) ds + u(–1) + xiu′(–1). (27)

We now subtract (24) from (26) and subtract (25) from (27) to get the error equation

u′′(xi) – u′′
N (xi) + u(3/2)(xi) – u(3/2)

N (xi) + u(xi) – uN (xi) = 0, (28)

u(xi) – uN (xi) =
∫ xi

–1
(t – s)e(s) ds. (29)

Multiplying by Fi(x) both sides of (28), (29) and summing from 0 to N yield

IN u′′(x) – u′′
N (x) + IN u(3/2)(t) – u(3/2)

N + IN u(x) – uN (x) = 0,

IN u(x) – uN (x) = IN

∫ x

–1
(x – s)e(s) ds.

Consequently,

e′′
N (x) = eN (x) +

1
Γ (1/2)

∫ x

–1
(x – s)– 1

2 e′′(s) ds + J1 + J2 + J3,

eN (x) =
∫ x

–1
(x – s)e′′(s) ds + J1 + J4,

where

J1 = u(x) – IN u(x),

J2 = u′′(x) – IN u′′(x),

J3 = u
3
2 (x) – IN u

3
2 (x),

J4 = IN

∫ x

–1
(x – s)e′′(s) ds –

∫ x

–1
(t – s)e′′(s) ds.

It follows from the Gronwall inequality and [35] that

∥∥e′′(x)
∥∥

L∞ ≤ C

(∥∥e(x)
∥∥∞ +

4∑
i=1

‖Ji‖∞

)
,

∥∥e(x)
∥∥

L∞ ≤ C

(∥∥e′′(x)
∥∥∞ +

4∑
i=1

‖Ji‖∞

)
,

then we have

∥∥e′′(x)
∥∥

L∞ ≤ C
4∑

i=1

‖Ji‖∞,

∥∥e(x)
∥∥

L∞ ≤ C
4∑

i=1

‖Ji‖∞.
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Using Lemma 3, we have

‖J1‖L∞ ≤ CN
1
2 –m|u|Hm;N

ω (I), (30)

‖J2‖L∞ ≤ CN
1
2 –m∣∣u′′∣∣

Hm;N
ω (I), (31)

‖J3‖L∞ ≤ CN
1
2 –m∣∣u 3

2
∣∣
Hm;N

ω (I). (32)

We now estimate J4. By virtue of Lemma() with m = 2, we have

‖J4‖L∞ ≤ CN– 3
2 log N

∥∥e(t)
∥∥

L∞ . (33)

Therefore, a combination of (30), (31), (32), and (33) yields estimate (23). �

9 Illustrative examples
To illustrate the effectiveness of the proposed method in the present paper, some test ex-
amples are carried out in this section. The results obtained by the present methods reveal
that the present method is very effective and convenient for fractional differential equa-
tions.

Example 9.1 As the first example, we consider the following Bagley–Torvik differential
equation [36–38]:

D
3
2 y(t) + y(t) =

2t1/2

Γ (3/2)
+ t2 – t (34)

with the boundary conditions y(0) = 0 and y(1) = 0. With N = 3, from (16) we get

D
3
2 =

⎡
⎢⎣

0 0 0
3.1915 –6.3831 3.1915
9.0270 –18.054 9.0270

⎤
⎥⎦ .

The following system of algebraic equations will be obtained:

⎡
⎢⎣

1 0 0
3.1915 –5.3831 3.1915
9.0270 –18.054 10.0270

⎤
⎥⎦

⎡
⎢⎣

y(0)
y(1/2)
y(1)

⎤
⎥⎦ =

⎡
⎢⎣

0
1.3458
2.2568

⎤
⎥⎦ . (35)

Applying the boundary conditions y(0) = 0, y(1) = 0 and solving (35), we obtain y(1/2) =
–0.025. Thus

y(t) =
[
1 2t – 1 8t2 – 8t + 1

]
⎡
⎢⎣

0.250 0.500 0.250
–0.500 0 0.500
0.250 –0.50 0.250

⎤
⎥⎦

⎡
⎢⎣

y(0)
y(1/2)
y(1)

⎤
⎥⎦ ,

which is the exact solution y(t) = t2 – t.



Ji et al. Advances in Difference Equations        (2020) 2020:648 Page 11 of 14

Example 9.2 In this example we consider the following equation:

y′′(t) +
1
2

D
3
2 y(t) +

1
2

y(t) = g(t),

where

g(t) =

⎧⎨
⎩

8, 0 ≤ t ≤ 1;

0, t > 1.

The analytical solution can be found in [15]. The problem is considered in [18, 20, 22, 28,
39]. First, we consider the boundary conditions y(0) = 0, y(20) = –1.48433 and apply the
present method to solve the problem with N = 8, 16, 32, 64, 128. In Table 1, we list the L∞,
L2 errors and CPU time for the differential values of N . The numerical solutions obtained
by the present method and some other numerical methods, such as the wavelet method
[22] and the hybrid functions method [28], are given in Tables 2 and 3. Clearly, numeri-
cal results show that the present method is working well and the accuracy is comparable

Table 1 The L∞ , L2ω errors and CPU time for differential values of N in Example 9.2

N N = 8 N = 16 N = 32 N = 64 N = 128

L∞ 6.75× 10–2 9.51× 10–3 1.25× 10–3 2.50× 10–4 7.62× 10–5

L2ω 6.39× 10–2 5.36× 10–3 7.92× 10–4 1.35× 10–4 3.06× 10–5

CPU time (s) 0.021 0.063 0.298 0.635 0.796

Table 2 Comparison of the numerical results of the wavelet and the present method for Example 9.2

t Wavelet method [22] Present method Present method Exact solutions

N = 32 N = 64

1 3.53856 2.952334322 2.952482792 2.952583880
2 7.53718 6.759933620 6.760087331 6.760110396
3 8.28540 7.666180255 7.666174785 7.666141755
4 6.26126 6.077059098 6.077230168 6.077249465
5 2.53055 2.944185917 2.943928811 2.943935566
6 –1.49195 –0.524995341 –0.525196957 –0.525171420
7 –4.50898 –3.246190173 –3.246325319 –3.246304280
8 –5.72074 –4.550474252 –4.550282354 –4.550290680
9 –5.00085 –4.302806466 –4.302851128 –4.302864780
10 –2.84029 –2.848368531 –2.848382245 –2.848380860

Table 3 Comparison of the numerical results of the hybrid function and the present method for
Example 9.2

t Hybrid function [28] Present method Present method Exact solutions

M = 3, N = 8 N = 8 N = 16

0.1 0.0364875 0.036487275 0.036487532 0.036487479
0.2 0.1406398 0.140637116 0.140639669 0.140639621
0.3 0.3074848 0.307491350 0.307484733 0.307484627
0.4 0.5332842 0.533276649 0.533283636 0.533284109
0.5 0.8147568 0.814714664 0.814758247 0.814756949
0.6 1.1488372 1.148900469 1.148848315 1.148837422
0.7 105325655 1.532810812 1.532537770 1.532565426
0.8 1.9630293 1.963810065 1.963013767 1.963029254
0.9 2.4373338 2.436869827 2.437896842 2.437333970
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Figure 1 Comparison of the numerical solution with N = 16, 32 using our method and the exact solution

Table 4 Comparison of absolute errors of the present method with the Taylor method for
Example 9.2

t Method in [18] Method in [20] Present method

N = 16 m = 16 N = 16

0.1 1.93× 10–6 7.60× 10–10 2.87× 10–13

0.2 4.90× 10–6 1.00× 10–10 3.53× 10–12

0.3 8.40× 10–6 1.00× 10–10 4.42× 10–12

0.4 1.28× 10–5 2.00× 10–10 5.16× 10–12

0.5 2.13× 10–5 7.00× 10–10 2.55× 10–12

0.6 3.16× 10–5 6.00× 10–9 5.96× 10–12

0.7 4.42× 10–5 1.70× 10–8 4.56× 10–12

0.8 5.43× 10–5 4.30× 10–8 3.87× 10–12

0.9 1.22× 10–4 1.01× 10–7 8.65× 10–13

with the existing methods. Also, the numerical results with N = 16, 32 and the exact so-
lution are plotted in Fig. 1. For Example 9.2, Fig. 1 shows that the approximate solutions
using the present method are in high agreement with the exact solutions. Second, we solve
this problem with the boundary conditions y(0) = 0, y(1) = 2.95179355. We compare the
absolute errors of the present method, the Taylor collocation method [18], and the frac-
tional Taylor method [20] in Table 4. This indicates that our results are better than given
by [18, 20].

10 Conclusion
In this work, the shifted Chebyshev operational matrix of fractional derivatives has been
derived. Also, the operational matrix in combination with a collocation method is used
to approximate the unknown function of the Bagley–Torvik equation. Moreover, a con-
vergence analysis was performed under the L∞ norm. Finally, numerical examples were
presented to demonstrate the validity and applicability of the proposed numerical scheme.
From examples, we observed that our scheme is simple and accurate. We believe that the
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ideas introduced in this study can be extended for systems of nonlinear fractional differ-
ential equations and fractional integro-differential equations.
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