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Abstract

We establish certain new fractional integral inequalities involving the Raina function
for monotonicity of functions that are used with some traditional and forthright
inequalities. Taking into consideration the generalized fractional integral with respect
to a monotone function, we derive the Grlss and certain other associated variants by
using well-known integral inequalities such as Young, Lah—Ribari¢, and Jensen
integral inequalities. In the concluding section, we present several special cases of
fractional integral inequalities involving generalized Riemann-Liouville, k-fractional,
Hadamard fractional, Katugampola fractional, (k, s)-fractional, and
Riemann-Liouville-type fractional integral operators. Moreover, we also propose their
pertinence with other related known outcomes.

MSC: 26D15;26D10

Keywords: Griss inequality; Young inequality; Generalized fractional integral
operator; Raina function

1 Introduction and preliminaries

The fractional calculus has gained importance during recent years because of its applica-
tions in science and engineering. Fractional-order differential equations are widely used in
the model problems of nanoscale flow and heat transfer, diffusion, polymer physics, chem-
ical physics, biophysics, medical sciences, turbulence, electric networks, electrochemistry
of corrosion, and fluid flow through porous media [1-5]. Fractional integral inequalities
associating functions of two or more independent variables play a crucial role in the con-
tinuous growth of the theory, methods, and applications of differential and integral equa-
tions. In view of wider applications, integral inequalities have received considerable atten-
tion. Recently, several refinements of fractional integral inequalities have been proposed,
which are helpful in the study of distinct classes of differential and integral equations.
These variants act as ready tools to investigate the classes of differential and integral equa-
tions [6-9].
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It is well known that the Griiss-type inequalities in both continuous and discrete cases
play a significant role in investigating the qualitative conduct of differential and difference
equations, respectively, as well as several other fields of pure and applied analysis.

Getting this tendency, we present a novel version for the most aesthetic and useful
Griiss-type inequality [10] and some other associated inequalities with respect to another
function ¥ that could be progressively viable and, moreover, more appropriate than the
previous ones. The Griiss inequality can be stated as follows.

Theorem 1.1 ([10]) Let ¢y, ¢, Y1, ¥y € R with ¢ < ¢y and Yy < Yo, and let Q1, Qs :
[u1,v2] = R be two integrable functions such that ¢1 < Q1(2) < ¢ and Y1 < Q2(2) < Y
for all z € [uy, vy]. Then we have the inequality

1

Uy — U1

vy 1 vy 1))
fv CEeEE- / O / 0,(2) dz

1
< Z(¢2—¢1)(1//2—1ﬁ1) (L.1)
with the best possible constant 1/4.

Inequality (1.1) is a tremendous mechanism for investigating numerous scientific ar-
eas of research comprising engineering, fluid dynamics, biosciences, chaos, meteorology,
vibration analysis, biochemistry, aerodynamics, and many more. There was a constant de-
velopment of enthusiasm for such an area of research so as to address the issues of different
utilizations of these variants [11-15]. The conventional theory of inequality is unable to
clarify the true behavior of (1.1). A review of basic concepts of fractional integral inequali-
ties and an understanding about the Griiss was presented by Dahmani et al. [16]. Rashid et
al. [17, 18] formulated the governing inequality by using generalized k-fractional integral
and generalized proportional fractional integral. Based on a monotone function, Rashid
et al. [19] derived fractional integral inequalities by means of the generalized proportional
fractional integral operator in the sense of another function. Very recently, Butt et al. [20]
proposed novel fractional refinements of Cebyev—Pélya—Szegd-type inequalities by using
the Raina function in the kernel.

Now we evoke some preliminaries ideas, which help the readers in clear understanding.

Definition 1.2 Let 1 < p < coand t > 0. Then the mapping Q; (¢) is said to be in L, . [v1, v2]

if
v 1/p
</ |01 ¢ dt) < 0.
v1

Definition 1.3 ([21]) Let k > 0. Then the generalized gamma function 'y is defined by

k" (nk) !

k() = lim ————. (1.2)
n=oo  (Z)nk
. . . Lo
The Mellin transform of the exponential function e” ¥ is the k-gamma function given by

k z
Ii(a) = fooo e F o1 dy, Also, Ty (z+ k) = zTk(2), T'(z) = limg_,1 ['x(2), and T'x(z) = krll"(i).
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Definition 1.4 ([22]) The function f;f is defined by

f;‘f(z) _ f,(:)fo)’a(l)"")'k(z)
it o(m')

=Y —————2" (p,A>0,z€C 2| <R), 1.3

— kT (okm’ +A)Z ('0 >0.ze Gzl < ) (13)

where R is a real positive constant, and o = (6(1),...,0(#'),...) is a bounded sequence of

positive real numbers.

Definition 1.5 ([23]) Letk>0,1 >0, p >0, and w € R, and let ¢ : [v;, v3] — (0,00) be an
increasing function such that ¥’ is continuous on (v1, v3). Then the left and right gener-

alized k-fractional integrals of the function Q; with respect to ¥ on [v;, v;] are defined

by
akﬂ ‘ ﬁ/(t) k p
_F P(z) - D d 1.4
T [ mrE s CUCRUC R S UL
and
vy l?l(t)
jak Q = —F () - 9(2))"]01(2) dt , (15
IOy A SRR LR
respectively.

Remark 1.6 (see [23]) Some noteworthy particular cases of (1.4) and (1.5) are given as
follows.

(a) If k = 1, then operator (1.4) reduces to the generalized fractional integral

z ' (2)
Ty @ = / @@ -0

(b) Let 9 (¢) = t. Then operator (1.4) becomes the generalized k-fractional integral

Foi [0(9(2) - ﬁ(t))p]Qﬂt) dt  (z>wvy).

T 0 Qi(a) = f (-0t Fol[wle— ] Qi de (2> w).

(¢) If 9 (¢) = Int, then operator (1.4) reduces to the Hadamard k-fractional integral

z 1*A V4
jpw »Qi(2) = /(m%) kf;f[w(1n§> ]Qlt(t)dt (z > vy).

(d) Let 9(t) =
fractional integral

Z gS(x5+L - sl 17* +1_ ys+1\ P
@@= [ o T ) e @

L (L4s)E! s+1

(s € R\ {-1}). Then operator (1.4) becomes the generalized (k,s)-

s+1
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(e) Let ¥ (¢) = ¢t and k = 1. Then operator (1.4) reduces to
Tptn@0)= [ -0 F, [ole- 7] Qu0d: (> v),
v

which was proposed by Raina et al. [22] and Agarwal [24].

Remark 1.7 Let w =0, A = @, and ¢ (0) = 1 in Definition 1.5. Then we have the following
particular cases:

(1) Taking k = 1, we get the fractional integrals of [25];

(2) Taking ¥ (¢) = ¢, we obtain the k-fractional integrals of [26];

(3) Taking ¥#(£) = Int and k = 1, we get the Hadamard fractional integrals of [25];

(4) Taking ¥(¢) = e (s e R\ {-1}), we obtain the (k, s)-fractional integrals of [27];

s+1
(5) Taking v/ (¢) = t:% (s € R\ {-1}) and k = 1, we get the Katugampola fractional integrals
of [28].

The principal purpose of this paper is deriving novel identities, integral inequalities in-
cluding a Griiss-type inequality, and numerous other associated inequalities via gener-
alized fractional integral inequalities with respect to other function ¥ by using Young’s,
weighted arithmetic and geometric mean inequalities, and so on. It is interesting that many
particular cases can be revealed by using Remarks 1.6 and 1.7. Therefore it is necessary to

propose the investigation of the generalized fractional integrals.

2 Fractional Griiss-type inequalities
To demonstrate the main consequences of this paper, we begin with certain integral in-
equalities and equalities for positive integrable functions with the generalized fractional
integral operator having the well-known Raina function in its kernel.

Throughout this investigation, we use the following suppositions:

(1) ¥ : [0,00) — (0,00) is an increasing function with continuous derivative ¢’ on the
interval (0, 00).

(i) A, and A; are defined by

A(2) = (92) FFIE L (0(0(2)") @2.1)
and

A0 = (9@) FFTE L (0(2)"), (2.2)
respectively.

Theorem 2.1 Let p,1,8 >0, w € R, Q1 € Ly,[v1,v2], and let ¢, and ¢, be two integrable
functions defined on [0, 00) such that

$1(x) < Qi(x) < ¢a(x) (2.3)
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for all x € [0,00). The we have

T 2@ TS, Q1 () + Tl 1 (0 T, Q1 (%)
> T o1 T @) + T Q1T Q). (2.4)

Proof Let t,n € [0,00). Then from inequality (2.3) it follows that

(¢2(8) = ©1(0)(Q1(n) = ¢1(n)) = 0, (2.5)
which implies that

$2(6) Q1(n) + 1(n) Q1(2) = p1(M)a(2) + Q1 () Q1 (8). (2.6)
Multiplying both sides of (2.6) by

9(£)9" (1)
(B (x) — 9(8) 7k (0 (x) — 2 ()"

Frilo@@-vm)" 175 e@@ -9m)"]

and integrating the obtained inequality with respect to ¢ and 7 over (0,x) give the desired

inequality (2.4). O

Lemma 2.2 If all the conditions of Theorem 2.1 are satisfied, then we have the equality
[$24(x) = T 0 Q1 [ T 0 Q1) — 1AL ()]

— T [ (92 - Q1) (Q1 () - 1) AL ()
= TR Q) Ax) - T QW) T Q1 ), 2.7)

where A, (x) is defined by (2.1).

Proof Let ¢1, ¢, € R, and let Q; be a function defined on [0, 00). Then for any ¢ > 0 and
n >0, we have

(f2— Q1) (Q1()) — 1) + (d2 — Q1(1)) (21 (n) — ¢1)
= (2 — 1)) (Q1(8) — ¢1) — (2 — Q1(m)) (Q1(m) — 1)
= Q1) + Q1(n) —2Q1(8) Qi (). (2.8)
Multiplying both sides of (2.8) by

19,/
W}—m[ 0@ () - 9()"]

and integrating the obtained result with respect to ¢ over (0,x) lead to

(- 21)[ ;’f(;i Q1 (%) — p1. 4, (¥) ] + [P A (x) - j”xkozz Q1(®)](Q1(n) - ¢1)
- j;i’f{,lz;w[(% - Q10))(21®) = ¢1)] = (d2 — Q1) (L1 () — 1) A (x)
= J,;’,;k,g;i;w Qi (x) + QT () As(x) - 2Q1(Tl).7;’f{,lz;w Q1(x). (2.9)
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Again, multiplying both sides of (2.9) by

19_/
Wfﬂ[w(ﬁ(@ - ()"

and integrating the obtained result with respect to n over (0,x) give

[$24(x) = T 0 Q1@ [T 0 Q1) = 1AL ()]
e Aw) - T QW] [T, Q1) - 1.4, ()]
= Tl (82 — Q1) (Q1(x) — ¢1) ] As (%)
~ T (@2~ Q) (Qi(n) - 1) ] A @)
ok QA (0) + T OXx) A ()
— 270 Q)T 1), (2.10)

which completes the proof of Lemma 2.2. O

Lemma 2.3 Under the assumptions of Theorem 2.1, we have

[p2Aia(@) - T30, Q@) [T, Q1) — 1 As ()]
+ [2 s (@) = T 0 Q1@ [T Q1) — drAsn ()]
= Tyl (82 = Q10) (@) = 1) | Au ()
~ T (62— Qu(m) (i) — 1) ] As(»)
= TR Q) As () + T2, Q) As ()
— 27538 Q0 T, Q1 (), (2.11)

where A, (x) and As(x) are defined by (2.1) and (2.2), respectively.

Proof Multiplying both sides of (2.9) by
/(n) o,k p
— F ?x) — 9 (n)
(9 (x) — ()% rilel /]

and integrating the obtained results with respect to ¢ over (0,x) lead to

[B2A12(®) = Tpor, Q1) [T Q1 () — 1.4 ()]
+ [ i@ - T Q1] [T, Q1 (x) - 1A ()]
~ T (82 - Q10) (@) — 1) A ()
~ T (62— Qi) (Qan) - ¢1) ] As(x)
ok QU Ay (x) + T2 QA A, (%)
—2T08 Q) T, Q1 (), (2.12)

which completes the proof of Lemma 2.3. O
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Theorem 2.4 Under the assumptions of Theorem 2.1, we have

T 2@ T Q1) + Tl b1 () T, Q1)
> T 1 )T o 2(0) + T, Q@) T, Qi (). (2.13)

Proof Lett,n € [0,00). Then from inequality (2.6) it follows that
$2(£)Q1(n) + p1(n) Q1 (8) = P1(n)2(¢) + Q1() Qa1 (2). (2.14)

Multiplying both sides of (2.14) by

9(£)9" (1)
(B (x) — 9(8) " F (@ (x) — 2 ()"

PPt [o(06) - 0m) 17 0@ - )]

and integrating the obtained result with respect to ¢ and 5 over (0,x) give the desired
inequality (2.13). d

Corollary 2.5 Let p,A >0 and w € R, and let Q; € Ly ,[v1,v;] be such that
m < Q(x) <M (2.15)
for all x € [0,00). Then we have the inequality

MA@ T, Q1) + mAs () T, Qa (%)
> MmA, (1) As (%) + T30 Q1) T ., Q1 (), (2.16)

where A, and As are given by (2.1) and (2.2), respectively.
Proof Lett,n € [0,00). Then from inequality (2.15) we clearly see that
(M- Ql(t))(Ql(Tl) - m) >0,
which implies that
MQi(n) + mQy(£) > Mm + Qi (n) Q1 (). (217)
Multiplying both sides of (2.17) by

98 ()
(3 () — (1) F (@ (x) - 0 ()

- FoX[(9@) -9 )" )5 [w(9(x) - 9 ()]

and integrating the obtained result with respect to ¢ and n over (0,x) lead to the desired
inequality (2.16). |

Theorem 2.6 Let p,A,8>0,w € R, Q1, Q) € Ly ,[v1,v,], and let ¢y, ¢z, Y1, and Yy be four
integrable functions defined on [0, 00) such that

$1(x) < Qu(x) < (%), Y1(x) < Qox) <Y1 (®) (2.18)
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for all x € [0,00). Then we have

| T 0 Q1D () As (%) + T35 Q1 Qa (%) Aj ()
— T Q@) T Qo) = T Q1) T, Q)|

2
< (.A)L(x)zAS(x)> (¢2 _ ¢1)(1/,1 _ 1'[/2), (2.19)

where A; and Aj are given in (2.1) and (2.2), respectively.

Proof Let Q; and Q, be two functions defined on [0, co) satisfying assumption (2.18), and
let (¢, n) be defined by

H(t,n) = (Qi(0) - Qi() (Qa(8) - Qa(m)  (£,n>0,x>0). (2.20)

Multiplying both sides of (2.20) by

v ()0 (n)

B -9 () (D) - 2 () Faloe -0 m) 175 e -2 )]

and integrating the obtained result with respect to ¢ and n over (0, x) give

/ / 9(£)9' (1)
9 (x) - () (B3 () — 9 ()"

x Foxlo(@ @) - 9m) | Fox (0@ ) - 9 ()" 1HE, n) dt dy
= T80 Q1D As () + T, Q1 Qo) A ()
— T QT Qax) = T Q@) T Qa (). (2.21)

Ps

Applying the Cauchy—Schwarz inequality, we get

( / / 90" (n)
2(x) = 9(6)'F (2 x) - 9 () F

2
x Fo[o(9(x) - ﬂ(n))”]fgf [0(9(x) - 0 (m)) M, n)dtdﬂ)

/ / £)9' (n)
0 (9(x)— D) 1--(0(x> 9k
x Foilo(9(x) - ﬂ(m) ]f"’k[w(ﬁ(x) —9m)"][Q1(8) - Q1 ()] dtdn

/ / £)9'(n)
0 (@) - ﬁ(t))l-f(ﬂ(x) 9 ()"
x Fok (0 () - 0 () | Fox (@@ - 0 m) ][ Qa(0) - Qa(n)] dt dn.

From

[Q1(6) - Q1(n)] = Q) + Q2(m) - 2Q4(1) Qs () (222)
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it follows that

/ / (£ (1)
9(x) - D(E)E (@ (x) - 0 ()}

x Fo[o(96) - 9m)° | Fos[0(@ @) - 0 ) )[Que) - Q)] dedn  (2.23)
= T Q@) As(@) + Tt Q) Asx) - 2744, Q1) T 755!, Qa ().

£,2,070 =1

Analogously,

/ / (89 (1)
9(x) - D(E)E (@ (x) - 0 ()} *

x FoX[o(@@ -2 m)’ 1 Fo5o@ @ - ) ][Qa) - Q)] dtdn
= T 0 Q@) As() + T Q@) A () = 2T, Qo) T4 Qo). (2.24)

£,2,0%50 =2

Using (2.23) and (2.24) in (2.22), we obtain

( / f ﬁ(t)ﬁ(n)
9 (x) — 9(£)E (D (%) — 9 ()

2
x FoA (9 () - 0 0)° JFIE (9 @) - 9(n) ][ Q20 - Q)] dtdn)

< (T Q@) As ) + Tt Q)AL () = 2T, Q1) T i Q1 (%))
X (T @) As ) + T3, Q3 (@) A ()
=270 Q@) T Do (). (2.25)

From inequalities (2.21) and (2.25) we obtain

(T2 Q1 Q) As () + T Q1 Q%) As ()
~ T QT Qo) — T Q) T Qo)
< (2R Q) As() + TN QXA (x) - 2T Q)T ()
x (TTRE Q3) As(x) + T Q3() A ()
— 270 QT Qo). (2.26)

From (¢ — Q@1(x))(Q1(x) — ¢1) = 0 and (Y, — Q(x))(Q2(x) — ¥1) > 0 it follows that
As(x)J"x"o’i (¢2 - Ql(x))(Ql(x) - ¢1) >0
and

Ax(x)J"fo? (V2 — Qa®))(Q2(x) — ¥1) = 0

Page 9 of 20
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Therefore

(T2 0 Q) As(x) + T QR A () = 2T S, Q1 () T 50, Q1 ()

P

< (2 As(®) = T Q@) (T Q1 (%) — d1.As () (2:27)

and

(T555 0 D@ As @) + T3, Q@) AL () - 27755, Q@) T 55, Qo))

00,

< (Y2 da @) = Tt Qo)) (T ot Qo) — Y1 As (). (2.28)
Combining (2.26), (2.27), and (2.28) and using of Lemma 2.2, we conclude that

(T75 0 Q1 Qo) As () + T35, Q1 Qa (%) As ()
— TS QT Qo) = T Q10T Qo)
< (2 As@) = T Q1) (T35 Q1 (%) — pr.As ()
x (Y2 An(®) = T35 Qo)) (Tt Qa(x) — 1A (%), (2:29)

By the inequality 4uv < (u + v)? we get

42 As@) - T3, Q@) (T Qi (0) — 1. A5 (%)
< (As@) (2 - ¢0))",
(Y2 Ay () = T2, Qo)) (Tt Qo) — Y1 A ()
< (A@ - y)”. (2.30)

Therefore the desired inequality (2.19) can be obtained from (2.29) and (2.30). O

Theorem 2.7 If all the conditions of Theorem 2.6 are satisfied, then we have the following
inequalities:

D) T b2 @) T, Qo) + Tper U (0 T3, Q1 ()
> T @ T o b2@) + T Qo) T Q1 (),

i) TR @I Qi) + T QoW TIED (%)
> T Q@) T Q1 (%) + T U (0 T Sy, 1 (),

(i) J;ffo’i BT Qo) + TR QTR ()
> T Q)T Qo) + Tl W (@) T b2(%),

) T )T Qo) + T Q) T i ()
> T QU@ T o) + T r 1 (1) T . ¥t (%)

Page 10 of 20
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Proof We first prove part (i). For x € [0, 00), from (2.18) it follows that

(¢2(t) - Ql(t))(Qz(fl) - 1l’l(’l)) >0,
$2(8) Qa2(n) + Y¥r1(n) Q1 (£) = Y1 (n)a(t) + Qa(n) Qu(2). (2.31)

Multiplying both sides of (2.31) by

ﬁ/ 0/
() - ﬁ(t))lft%)(ﬂ((g ooyt @2 ) 17 e (0w - 0 )']

and integrating the obtained result with respect to ¢ and 7 over (0,x) lead to the desired
inequality in part (i).
To prove parts (ii)—(iv), we only need to use the inequalities

(Y1) = Q2(0)(21(n) = P1(m) = 0,
(¢2(0) — Q1(0))(Q2(n) — ¥1(m) <0,

and

(¢1(8) = ©1(9)(Q2(n) = Y1 (m) < 0. O

By adopting a similar procedure as we did in the theorem we can easily derive the fol-

lowing lemma.

Lemma2.8 Letm, M,n, N €[0,00), 0,A,8 >0,w € R, and let Q1, Q5 € L1,[v1, 2] be such
that

m<Qi() <M, n<Qx) <N
forall x € [0,00). Then

() MA@ITL 0x) + n AT Q)

p

> nMA @) As (%) + T30, Q@) T Q1 (),

o o,

(i) MAE) T Qo) + nAs(0) T, Q1 ()

Ps

= T} QUOT 5 Qale) 4 nMAL)As (),

P

i) T Q1T Qo) + nM A, () As(x)

p p
> MA@ Ty Qo) + nAsTT O (x),
) mnA @) As(x) + T Q1) T, Qo (x)

P> Py

>mJ o, Qo) + n T Q1(x), (2.32)

where A, and As are given in (2.1) and (2.2), respectively.
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3 Certain other associated fractional integral inequalities
Theorem 3.1 Let o, B> 1 witha™ + B! =1, and let Q1, Q5 € L1,[v1,v;]. Then we have

the inequalities

(@) o' AT, Q) + BT AWT R, Q)
> T Q)T Qa(),
(b) -lmﬁf; QYW T Q) + BT QW) T OF (%)
> T Q1 QW) T, Q1 Qa (),
(© o T Q@ T Q) + BT AW T, Q5 ()
> T Q195 ()T, Q195 (),
(d) -17"5013 QT Q) + BT Q) T, O (x)
> T 0 A T 01 Qe ),
() a LT QEW TR Q3w) + BT QI Q1)
> T Q1 Q)T 0 03 (x),
) -lj“foﬂ; QLT 350 Q@) + B T 350 QDT 5, B @)
> T O Q) P ) T, Q1 O (),
© o AT, QB + AT, Q5w
= Tt Qs T 50,9 Q57 @),

Proof By the well-known Young inequality

atu® + WP = (,u,v >0,0,8>Lat+p 7= 1),
substituting p = Q1 (¢) and v = Q,(n) for n,t > 0, we have

Qi) + B Q) = Q1) Qa(n). (3.1)
Multiplying both sides of (2.32) by

(9 - 0(::)1;5??&((3 oyt @ =) I e o) ]

leads to the inequality

. 9'()0'(n)
@) = 2@ F @) - ()
x Foflo(@@) - 0m) ] Foy [o(? () - 9(m) "] Q5 0)
. ¥ ()9 (n)
O -2 F @) - ()
x FoX (@ @) - 0 m) 1 Fo3 0@ @) - 0m)"]Q5 0

o

+B

Page 12 of 20
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9/(£)9"(n)
T (@) - 9(0) E@ ) - O )k
x Foilo(®60) -9 m)° ] Fos [o(@ @) - 2 )] Q1 (0 Qs ().

Integrating this inequality with respect to ¢ and n over (0, x) gives

o A T, Q) + BT AT, O ()
= 0 Q@ T 5 L),

P>

which implies part (a).
The remaining inequalities (b)—(g) can be proved by using similar arguments and choos-
ing different parameters p and v in the Young inequality as follows:

b) n=®RMm), v=2mAw®),
(© n=0:t)/Q),  v=0mIA%Mm (t)Qn) #0),

(d) 1=m/Q®, v=2m/%E) (Qit)Qn) #0),

(@ =20 m), v=90" Mm%,

) w=9"0/QMm, v=0"W®I%m) (Qmm) #0),

@ w=0Y"®/%um, v=0 /%W (W10 #0). (3.2)

Theorem 3.2 Let Q) and Q, be two positive functions defined on [0, 00) such that

Qi1(2) M= Qi1(2)

m= OIEti<x QZ( ) = grfltafxx Qz(t) . (3.3)

Then we have
2
(ﬂ) 0 < j‘f)hkoi QZ( )jo)hkoi QZ( ) < ( . //\\:ll) (j:’}fgi,le Qz(x))z,
0< JTTE QDTN Q3) - T, Q1 Q)
\/;/_\/_ (j;i]fbli;w A Qz(x)),
© 0=J; '\koli Q) U,\kolZ Q3 (x) - (Jﬁik,bli;w Q Qz(x))2
= (A:m_ﬁ) (T Q1 Qo).
Proof 1t follows from (3.3) that
Qi) Q1)
(Qz(t) - m) (M - Qz(t)) Q) =0 (0=<t=<x). (3.4)

Multiplying both sides of (3.4) by

v'(2)

—(ﬁ(x) @) ‘F;A [0(9 () -2 ())"]
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and integrating the obtained result with respect to ¢ over (0,x) lead to the inequlity

T 0 Q1) + mMIT . Q3() < (m+ M)T T Q1 Q). (3.5)
It follows from mM > 0 and (\/ I, o, Q) — \/ mMJ) o, Q3(x))? > 0 that
2\/ NpaNer (x)\/m/\/l T 0 Q3w) < T3 Qb)) + mMITTLS Q3(x).  (3.6)

From (3.5)and (3.6) we clearly see that
AmMITR Q)T Q3(w) < (m + MY (T, Q1))

which completes the proof of part (a). Parts (b) and (c) can be proved by using similar

arguments as in part (a). O

Theorem 3.3 Let p,A >0, w € R, Q1,0; € Ly ,[u1, 03], and let y, Y, 0, and © be four
integrable functions defined on [0, 00) such that

0<y(® =) =T), 0<O(x) =) <O 3.7)
for all x € [0,00). Then we have
o ., (yo+YO)?
(@) 0<-7 xkoz3 Qz( )'-7 xkoli Q%(x)f ):L%W(jp,;\]ﬁ;wglgﬂx))z’
(0) 0=/ T, QDT Q3w) ~ (T, Q1 Qo)
SRR
2x/3/9—T® ( pfgi Qle(x))
(© 0<T%D QTR Qhw) - (T Q10:w)?
TO-y0
< (Mig(a)( T 01 0aw)’.
Proof It follows from inequality (3.7) that
y Qi) T
5 < %0 = < E (3.8)

Applying Theorem 3.3, we obtain part (a), and parts (b) and (c) can be derived from part
(a). O

Theorem 3.4 Lets,m, M € R withs#0, p,A >0, and w € R, and let Q1, D, € Ly,[v1, V3]
be such that

Qs (x)
Qi (x)

O<mc<

<M< (3.9

Page 14 of 20
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Then we have the inequality

-1 s—1
o _ mMM —m*) s
J, /Z)L,O*;w Q% *Qy(x) + J, (fx,ohw Q1)

M-m P
Ms _mS
< T2 (3.10)

fors ¢(0,1). If s € (0,1), then inequality (3.10) is reversed. Especially, if s = 2, then we get
(3.5).

Proof The theorem can be easily proved by using the Lah—Ribaric¢ inequality [29, 30]. O

Theorem 3.5 Let Q1, Qs € Ly ,[v1, 2], and let s # 0 be a real number. Then we have the
inequality

(TR 0192()) < (T, Q2w) ™ T, 03 Q5 () (3.11)
fors €(0,1), and inequality (3.11) is reversed if s € (0, 1).

Proof The theorem can be proved by using the Jensen inequality for convex functions. [

Theorem 3.6 LetO<a <B<lwitha+ B =1, p,A>0,and w € R, and let G, Q1,0, €
Ly ,[v1, vy] be such that (3.7) is true. Then

ok, B zoxo 9@\ _ay+BY i
(T30 @16 @) (Jp,foiw o (x)) = oy (i) (3.12)
and
ok ok « _ayf+BYO
(jp'}foiwglg(x))ﬁ(jp'}\]fov;;ngz(x)) = W(ggl Qz(x)) (3.13)

Proof 1t follows from (8Q;(¢) — ay)(Q1(¢) — Y) < that
BOIt) — (ay + BY) +ay Y <0. (3.14)
Multiplying both sides of (3.14) by G(£)/Q; (¢) leads to

BIO® +ar T2 < @) ay + 1), (3.15)
Q1)

From (3.15) and the arithmetic—geometric mean inequality we obtain

/t ﬁ/(t) B , 5
( s o —s@p 0@ -2 O) Jang0 dt)

! 9'(2) v o1 G0) )
Y0 g _ 90 ,
x( /0 T o0~ 0(0) ] 5 dt

t , 5
i mlf)a (/0 @) - z(:()t))l—% Fr (@) - 91)"12060) dt)
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! v'(2) ok 0y G(0) )a
T — 2 Mok -00) ] = d
- (V /0 SRR CE v

1 £ ¥ (2) ) )
- T 00w - 2(0) | %G (@) dt
<ﬁ/0 (@) -0 pi [0 (70 = 0(0) ]2 (OG()

t v'(¢) k 190 )
v —0))'] 28 4
*“”/o e s UGN v

ay+’3T ‘ ﬂ/(t) o,k . >
) A TGO dt), 3.16
Al </o e N (316)

which gives the required inequality (3.12).
Replacing G and Q; by Q1 9, and Q;/Q, in (3.16) and using the inequality /0 <
Q1(t)/Q4(t) < Y/6, we obtain

R . . '
( /0 W}'}Z,’k [0(9(x) - 9(2)) ]Ql(t)g(t)dt>
x) — k

t 40 & ) >
S 2 A 90x) — 9 p
) (/(; (ﬁ(x) _ l?(t))l_% 2 [w( (x) (t)) ]g(t)QZ(t) t

9 @ t /
< Errooy (/0 o )ﬁ z(:()t»“ Toalotr @ =00y 1602000 dt)’
X) — k

which implies inequality (3.13). O

Theorem 3.7 Let p,) >0 and w € R, and let G, Q1, Qy € Ly ,[v1, 03] with G(t) > 0. Then
the following statements are true:

(a) Ifthere exist constants y,Y,0,0 € R such that (Y Qy(¢) -0 Q1(£))(© Q1 () —y Qa(2)) >
0 for t >0, then

Y YT G Q5w) + 00T GO w) < (0 + TO) T ,GQ1Qa(%)

<0+ YO) (TG w) + T .G Q1)) (3.17)

Also, if y Y00 > 0, then

YY s b0 _,
%Jp;{gi;wg QW)+ | V—TJ,,,fgi;wg Qi ()

eY 4
< < /W +/ ;/—@)j;f;’fg?;ngle(x),

0y + T 2
20y TO

T G R@) TG w) < < T 0GQ1Da(x). (3.18)

3
(b) If there exist constants y,Y,0,0 € R such that (YQy(t) — 6Q:1()(©Q:1(n) —
y Qa(t)) > 0 for n,t > 0, then

Y YT w9 BT 50, G0) + 00T G0 TG, G A W)

0 P P>

<O+ TO)T LS ,GQ@TL. .G ). (3.19)
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©Ify,Y>0and 6,0 >0, then

YY (TG0 ))* +60(T5 .G Q1)
SO+ YOI G®) T .G 221 (). (3.20)

&

@) Ify, Y >0and 6,0 >0, then

VY (T550G Q@) +00(T5,0Q1@)’
<S(O+TO)T LT ,GWTI. .G (). (321)

Proof We first prove part (a). It follows from the assumption that
GO)(TQa(t) - 021(2)) (©Q1(t) — ¥ Qa(t)) = 0 (3.22)
for all £ > 0, which implies that
yYG(£)Q3(1) + 090G (1) Q1 (2) < (v6 + TO)G(£) Q1 (£) Qa(2). (3:23)

Multiplying both sides of (3.23) by

v'(2)

W}—;ﬂw(mx) -9()"]

and integrating the obtained result with respect to ¢ over (0,x) give the left-hand side of
(3.17).
Moreover, by Cauchy’s inequality we obtain the right-side of (3.17). Multiplying both
sides of the inequality
VYT G L@ + 007750, GA®

s o

< (Y0 + YOI GO1Qs(x)

05
<0+ YO) (T, 6w + T .G Q) (3.24)

by 1//y6Y0O, we get (3.18).
On the other hand, it follows from y8Y® > 0 and

(Y I55,99@ - Jo075.,60w) =0

that

2y T G 00T GO )

<yYITR GQAx) + 00T GQIw). (3.25)

P P>

According (3.24) and (3.25), we have

00T GOANTTE. GAx) < (v8 + YOR(TI ,G2Q1(w)°,  (3.26)

s p

which implies the second inequality of (3.18).

Page 17 of 20
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Part (b) follows from the assumption that

GOGM) (Y () — 01 (1) (©Q1 () — y Qo(8) =0 forall £, >0, (327)

which implies that

yYG0G ) Q;(1) + 609G ()G () Qi (n)
< y0G(6)G () Qa(£) 21 (n) + YTOG()G (17) () 21 (1) (3.28)

Multiplying both sides of (3.28) by

(9() - 0(::)1315??0((3 oyt L@ =) 17 e o) ]

and then integrating the obtained inequality with respect to ¢ and 7 over (0,x) give the
desired inequality (3.20).
For parts (c) and (d), it follows from the Cauchy inequality that

( ;)\kolZ ng(x)) :xk(;3 Gx )'~7(T,\kolz QQ%(’CL
(TR .G D) < TR G T GO ().

From parts (a) and (b), together with the preceding two inequalities, we get

YY (TG Q) +00(T55. G0 @)

P
<YYT GO T G Q) + 00T G T .G (%)
< ()/0 + T@)jakkolz g( ) :)»koli gQQQl(x)

which implies (3.20). Furthermore, we have

YY (T ,G0a())* +60(T GO ()
YT oI5, G ) + 0075 0@ TG, G Q)
<O+TO)T LS . GAUWTH. G (),

which implies (3.21). O

4 Concluding remarks
This section is dedicated to several particular cases of the main consequences derived in
Sects. 2 and 3.

I If we choose w =0, A = «, and 0 (0) = 1, then under the assumptions of Theorem 2.4,
we get the result for one-sided generalized k-fractional integral proposed by Rashid et al.
[17].

1I. If we choose w =0, A = «, 0(0) = 1, and k = 1, then under the assumptions of Theo-
rem 2.4, we get the result for one-sided generalized Riemann—-Liouville fractional integral
proposed by Kacar et al. [31].
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s+1

III. If we choose w =0, A =, 6(0) = 1, and 9(¢) = (s € R\ {~1}), then under the
assumptions of Theorem 2.4, we get the result for one-sided generalized (k,s)-fractional

s+1

integral proposed by Mubeen and Igbal [32].

IV, If we choose w =0, L =, 6(0) = 1, 9(¢) = t:%ll (s e R\ {-1}), and k = 1, then under
the assumptions of Theorem 2.4, we get the result for one-sided Katugampola fractional
integral proposed by Dubey and Goswami [33].

V. If we choose w =0, L =, 0(0) = 1, ¥(¢) = £, and k = 1, then under the assumptions of
Theorem 2.4, we get the result for one-sided Riemann-Liouville fractional integral pro-
posed by Tariboon et al. [34].

More related results can be derived by using similar methods in Sects. 2 and 3, and we

leave the details to the interested readers.

5 Conclusion

In the paper, we established new Griiss-type fractional integral inequalities and several
other associated variants by employing the generalized fractional integral functions hav-
ing the Raina function in its kernel. Furthermore, we derived numerous novel variants for
the monotonicity of functions. Numerous particular cases can be discussed with consid-
eration of Remarks 1.6 and 1.7, which we can supposed as a significant modification of
the earlier consequences. For an appropriate choice of w, A, and ¢(0) = 1, we can acquire
several novelties, which need further investigations. We hope that novelties concerned
with our generalizations can bring revolutionary development and also be implemented

in differential and difference equations.
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