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Abstract
In this study, a hybrid technique for improving the differential transform method
(DTM), namely the modified differential transform method (MDTM) expressed as a
combination of the differential transform method, Laplace transforms, and the Padé
approximant (LPDTM) is employed for the first time to ascertain exact solutions of
linear and nonlinear pantograph type of differential and Volterra integro-differential
equations (DEs and VIDEs) with proportional delays. The advantage of this method is
its simple and trusty procedure, it solves the equations straightforward and directly
without requiring large computational work, perturbations or linearization, and
enlarges the domain of convergence, and leads to the exact solution. Also, to validate
the reliability and efficiency of the method, some examples and numerical results are
provided.
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1 Introduction
Mathematical modeling of various phenomena in science and engineering such as bio-
logical population management, chemistry, physics, physiological and pharmaceutical ki-
netics and chemical kinetics, medicine, infectious diseases, economy, nonlinear dynamical
system, communication networks, number theory, electrodynamics, the navigational con-
trol of ships and aircraft and control problems and electronic systems leads to one of the
most important kinds of delay differential equations (DDEs), namely pantograph equation
[1–7]. The term pantograph was first used by Ockendon and Tayler in [8] which modeled
and redesigned the collection system for an electric locomotive.

At this point, it is usually difficult to solve these kinds of DDEs analytically. Therefore,
in the literature, there are some valuable efforts that focus on finding the analytical and
numerical methods for solving the pantograph type of DEs and VIDEs with proportional
delays. (see, e.g., [9–21] and the references therein). The differential transform method
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(DTM) is an analytical-numerical technique introduced for the first time by Zhou [22]
to study the electrical circuits. Like any subject in mathematics, DTM has grown over
a period of time. In 1999, Chen and Ho [23] developed this method for partial differ-
ential equations with two independent variables. In 2004, Ayaz [24] extended the two-
dimensional DTM into the three-dimensional DTM and used it to solve linear and non-
linear partial differential equations. In 2005, Arikoglu and Ozkol [25] used the differential
transform method for integro-differential equations. With the advent of fractional calcu-
lus, the differential transform method was also modified to solve derivative and integral
problems of any order. In 2007, Arikoglu and Ozkol [26] proposed a numerical-analytical
method similar to the DTM, called the fractional differential transform method (FDTM),
which they used to solve fractional differential equations. In 2008, Odibat and Momani
[27] introduced the generalized differential transform method (GDTM) based on the dif-
ferential transform method and generalized Taylor’s formula and the Caputo fractional
derivative and used it to solve fractional partial differential equations. Also in the same
year, Momani and Erturk [28] learned to correct and improve the accuracy of the solu-
tion of convergent series obtained by the differential transform method, they introduced
the modified differential transform method (MDTM), and Chang [29] used the DTM for
one-dimensional nonlinear functions. In 2009, Keskin [30, 31] introduced the reduced
form of the DTM as the reduced differential transform method (RDTM), which Keskin
and Oturanc [32, 33] used to solve partial differential equations and fractional differential
equations. Many authors, during recent years, have used this method for solving various
types of equations. For example, differential-algebraic equations [34–36], Volterra inte-
gral equation [37–39], integro-differential equations [40–43] and fractional differential
equations [44–47] are solved using this method. This suggested technique is highly effi-
cient and powerful in obtaining the exact solutions and approximate solutions of math-
ematical modeling of many problems, gives the solution in the form of rapidly conver-
gent successive approximations, and is capable of handling linear and nonlinear equa-
tions in a similar manner. Moreover the comparison of our method with other analyt-
ical methods available in the literature show that although the results of these meth-
ods are the same, RDTM is a lot easier, more convenient, and reliable than them [48–
55].

In this paper, we present the application of the modified differential transform method
(MDTM) as a hybrid approach, for improving DTM’s truncated series solutions in con-
vergence rate combining DTM, Laplace transforms, and Padé approximant. The solutions
series obtained by the differential transform method, even if they contain a large num-
ber of terms, may converge in a limited area. Therefore, the domain of convergence of
the truncated power series expands by the Laplace–Padé differential transform method
(LPDTM) and often leads to the exact solution. To improve the solution of convergent
series obtained by the DTM, we apply Laplace transform to it, and then by forming its
Padé approximant, the transformed series convert into a meromorphic function. Finally,
to obtain the analytical solution, we take the inverse Laplace transform from the function
obtained of the Padé approximant. Therefore, in the light of the above-mentioned method,
we will study the exact solution of linear and nonlinear pantograph type of DEs and VIDEs
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with proportional delays

F
(
t, u(α0t), u′(α1t), . . . , u(n)(αnt)

)
= 0, (1.1)

G
(

t, u(α0t), u′(α1t), . . . , u(n)(αnt),
∫ lt

0
K

(
t, ξ , u(β0ξ ), u′(β1ξ ), . . . , u(m)(βmξ ) dξ

)

= 0, (1.2)

0 ≤ t ≤ T , αi,βj, l ∈ (0, 1), i = 0, 1, . . . , n, j = 0, 1, . . . , m, m < n,

where u is the unknown function and the functions F , G, and K are analytic in the domain
of interest.

The rest of this study is presented in the following sections: In Sect. 2, The main idea
behind the Padé approximant is introduced. In Sect. 3, we simply introduce the modified
differential transform method (MDTM) as a combined form of the DTM with Laplace
transforms, and the Padé approximant. In Sect. 4, we prove several important Theorems.
In Sect. 5, we apply the MDTM to obtain the exact solutions for linear and nonlinear pan-
tograph type of DEs and VIDEs with proportional delays. Finally, we offer some summaries
and a conclusion in Sect. 6.

2 Padé approximant
The best approximation of a function with a rational function of a certain order is the Padé
approximant. Under this technique, the approximant’s power series agrees with the power
series of the function it is approximating.

Let u(t) be an analytical function that corresponds to the Maclaurin series:

u(t) =
∞∑

k=0

cktk , 0 ≤ t ≤ T . (2.1)

Then the Padé approximant to u(t) is a rational fraction which we denote as [ m
n ] and is

defined by [56, 57]

[
m
n

]
=

a0 + a1t + a2t2 + · · · + amtm

b0 + b1t + b2t2 + · · · + bntn , (2.2)

there are m + 1 independent numerator coefficients and n independent denominator co-
efficients, making m + n + 1 unknown coefficients in all. We have

u(t) –
[

m
n

]
(t) = O

(
tm+n+1). (2.3)

From Eq. (2.3), we have

u(t)
n∑

j=0

bjtj –
m∑

i=0

aiti = O
(
tm+n+1). (2.4)
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From Eq. (2.4), we get the following algebraic linear systems:

cmb1 + · · · + cm–n+1bn = –cm+1,

cm+1b1 + · · · + cm–n+2bn = –cm+2,

... (2.5)

cm+n–1b1 + · · · + cmbn = –cm+n,

and

a0 = c0,

a1 = c1 + b1c0,

a2 = c2 + b1c1 + b2c0,

a3 = c3 + b1c2 + b2c1 + b3c0,

... (2.6)

an = cn +
n∑

k=1

bkcn–k .

We determine first all the denominator coefficients bj, 1 ≤ j ≤ n, from Eq. (2.5). Then, we
calculate the numerator coefficients ai, 0 ≤ i ≤ m, from Eq. (2.6).

Remark 2.1 For a fixed value of m + n + 1, error Eq. (2.3) is the smallest when the nu-
merator has one degree higher than the denominator of (2.2) or when the numerator and
denominator have the same degree.

The advantage of Padé approximant is that it often gives a better approximation than
the truncated series solutions from the Taylor series. This is because sometimes the Taylor
series may not be convergent, and the Padé approximant has the potential to expand the
domain of convergence of solutions or includes finding exact solutions.

3 Summary of the method
We present some important definitions and mathematical preliminaries operations of the
modified differential transform method which can help to gain more understanding of the
method stated in this section.

Definition 3.1 The differential transform function of u(t) can be written in the following
form:

U (k) =
1
k!

[
dk

dtk u(t)
]

t=t0

, (3.1)

where u(t) represents the main original analytic and differentiated continuously function
with regard to time t, in the domain of interest, and U (k) describes the transformed func-
tion.
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Definition 3.2 The differential inverse transform of U (k) is determined as

u(t) =
∞∑

k=0

U (k)(t – t0)k . (3.2)

Then, consolidating Eqs. (3.2) and (3.1) yields

u(t) =
∞∑

k=0

1
k!

[
dk

dtk u(t)
]

t=t0

(t – t0)k . (3.3)

By the help of the upper definitions, to illustrate the basic idea of the DTM, consider the
following form of nonlinear ordinary differential equations:

du(t)
dt

= f
(
u(t), t

)
, t ≥ 0, (3.4)

with the following initial condition:

u(0) = c, (3.5)

where f (u(t), t) indicates a nonlinear smooth function.
After applying the DTM definition on both sides of Eq. (3.4), we can write the following

iteration formula:

(k + 1)U (k + 1) = F
(
U (0), . . . ,U (k), k

)
, k ≥ 0, (3.6)

where F (U (0), . . . ,U (k), k) is the differential transform functions of f (u(t), t).
Implementing the aforesaid method to the initial condition (3.5), we have

U (0) = c. (3.7)

To discover the remaining iteration, we plug Eq. (3.7) into Eq. (3.6) and by simple reiter-
ative calculation, we get the subsequent U (k) values. Then, by using the inverse transfor-
mation of the set of values {U (k)}n

k=0, the approximation solution can be written as follows:

ũn(t) =
n∑

k=0

U (k)(t – t0)k . (3.8)

Thus, the exact solution of the considered equation can be gained by

u(t) = lim
n→∞ ũn(t). (3.9)

The solutions series derived from the DTM, even if they contain a large number of terms,
may converge in a limited area. To improve the solution obtained in convergent series
form using the DTM, and enlarge the domain of convergence of solutions we apply the
Laplace–Padé method by following steps.

• Step 1: Applying Laplace transformation with respect to t for the obtained power
series (3.8).
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Table 1 The fundamental operations of RDTM

Original form Transformed form

u(t) U (k) = 1
k! [

∂k

∂tk
u(t)]t=0

w(t) = λu(t)± γ v(t) W (k) = λU (k)± γV (k)
w(t) = tr W (t) = δ(k – r), δ(k) =

{ 1, k = 0,
0, k �= 0,

w(t) = tru(t) W (k) = U (k – r)
w(t) = u(t)v(t) W (k) =

∑k
r=0 V (r)U (k – r) =

∑k
r=0 U (r)V (k – r)

w(t) = ∂ r

∂tr u(t) W (k) = (k + 1) · · · (k + r)U (k + r) = (k+r)!
k! U (k + r)

w(t) = sin(λt) W (k) = λk
k! sin(

πk
2! )

w(t) = cos(λt) W (k) = λk
k! cos(

πk
2! )

w(t) = eλt W (k) = λk
k!

• Step 2: Substituting s by 1
t in the resulting equation.

• Step 3: Creating the Padé approximant of order [ m
n ] for the transformed series and

convert it into a meromorphic function.

Remark 3.3 m and n are arbitrarily chosen, but they should be of smaller values than the
order of the power series. In this step, to obtain better convergence and accuracy, the Padé
approximant enlarges the domain of the truncated series solution.

• Step 4: Substituting t by 1
s .

• Step 5: Applying the inverse Laplace transformation with respect to s for obtaining the
exact or approximate solution.

Table 1 contains the basic mathematical operations carried out by DTM.

4 Main results
The principal main of this section is to study the fundamental Theorem of this paper.

Theorem 4.1 If w(t) = u(αt), then W(k) = αkU (k) where α ∈ (0, 1).

Proof From Eq. (3.1), we get

W(k) =
1
k!

[
dk

dtk w(t)
]

t=t0

=
1
k!

[
dk

dtk u(αt)
]

t=t0

=
1
k!

[
αk dk

dt̂k
u(t̂)

]

t̂=t0

=
1
k!

αkk!U (k),

where t̂ = αt, then

W(k) = αkU (k). �

Theorem 4.2 If w(t) = u(α1t)v(α2t), then, for α1,α2 ∈ (0, 1), we have

W(k) =
k∑

r=0

αr
1α

k–r
2 U (r)V(k – r), k ≥ 0.
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Proof From Eq. (3.1), we get

W(k) =
1
k!

[
dk

dtk w(t)
]

t=t0

=
1
k!

[
dk

dtk

(
u(α1t)v(α2t)

)]

t=t0

=
1
k!

[ k∑

r=0

(
k
r

)

αr
1

dr

dt̂r
u(t̂)αk–r

2
dk–r

dt̃k–r v(t̃)

]

t̂,t̃=t0

=
1
k!

k∑

r=0

k!
r!(k – r)!

αr
1r!U (r)αk–r

2 (k – r)!V(k – r),

where t̂ = α1t and t̃ = α2t, then

W(k) =
k∑

r=0

αr
1α

k–r
2 U (r)V(k – r). �

Theorem 4.3 If w(t) = dr

dtr u(αt), then W(k) = αk+r (k+r)!
k! U (k + r).

Proof From Eq. (3.1), we have

W(k) =
1
k!

[
dk

dtk w(t)
]

t=t0

=
1
k!

[
dk+r

dtk+r u(αt)
]

t=t0

=
1
k!

[
αk+r dk+r

dt̂k+r
u(t̂)

]

t̂=t0

=
1
k!

αk+r(k + r)!U (k + r),

therefore

W(k) = αk+r (k + r)!
k!

U (k + r). �

Theorem 4.4 If w(t) = dm

dtm u(α1t) dn

dtn v(α2t), then

W(k) =
k∑

r=0

αr+m
1 αk–r+n

2
(r + m)!(k – r + n)!

r!(k – r)!
U (r + m)V(k – r + n), k ≥ 0.

Proof From Eq. (3.1), we have

W(k) =
1
k!

[
dk

dtk w(t)
]

t=t0

=
1
k!

[
dk

dtk

(
dm

dtm u(α1t)
dn

dtn v(α2t)
)]

t=t0

=
1
k!

[ k∑

r=0

(
k
r

)
dr

dtr

(
dm

dtm u(α1t)
)

dk–r

dtk–r

(
dn

dtn v(α2t)
)]

t=t0

=
1
k!

[ k∑

r=0

(
k
r

)

αr+m
1

dr+m

dt̂r+m
u(t̂)αk–r+n

2
dk–r+n

dt̃k–r+n v(t̃)

]

t̂,t̃=t0

=
1
k!

k∑

r=0

k!
r!(k – r)!

αr+m
1 (r + m)!U (r + m)αk–r+n

2 (k – r + n)!V(k – r + n),
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where t̂ = α1t and t̃ = α2t, then

W(k) =
k∑

r=0

αr+m
1 αk–r+n

2
(r + m)!(k – r + n)!

r!(k – r)!
U (r + m)V(k – r + n). �

Theorem 4.5 If w(t) =
∫ lt

0 u(αξ ) dξ , then W(k) = 1
k lkαk–1U (k – 1).

Proof

W(k) =
1
k!

[
dk

dtk w(t)
]

t=t0

=
1
k!

[
l

dk–1

dtk–1 u(lαt)
]

t=t0

=
1
k!

[
l(k – 1)!(lα)k–1U (k – 1)

]
,

therefore

W(k) =
1
k

lkαk–1U (k – 1). �

Theorem 4.6 If w(t) =
∫ lt

0 u(α1ξ )v(α2ξ ) dξ , then

W(k) =
1
k

k–1∑

r=0

lkαr
1α

k–r–1
2 U (r)V(k – r – 1), k ≥ 1.

Proof

W(k) =
1
k!

[
dk

dtk w(t)
]

t=t0

=
1
k!

[
l

dk–1

dtk–1

(
u(lα1t)v(lα2t)

)]

t=t0

=
1
k!

[

l
k–1∑

r=0

(
k – 1

r

)

(lα1)r dr

dt̂r
u(t̂)(lα2)k–r–1 dk–r–1

dt̃k–r–1 v(t̃)

]

t̂,t̃=t0

=
1
k!

l
k–1∑

r=0

(k – 1)!
r!(k – r – 1)!

lrαr
1r!U (r)lk–r–1αk–r–1

2 (k – r – 1)!V(k – r – 1),

where t̂ = lα1t and t̃ = lα2t, then

W(k) =
1
k

k–1∑

r=0

lkαr
1α

k–r–1
2 U (r)V(k – r – 1). �

Theorem 4.7 If w(t) = v(βt)
∫ lt

0 u1(α1ξ )u2(α2ξ ) dξ , then

W(k) =
k–1∑

r=0

k–r–1∑

s=0

1
k – r

lk–rβrαs
1α

k–r–s–1
2 V(r)U1(s)U2(k – r – s – 1), k ≥ 1.

Proof Let y(t) =
∫ lt

0 u1(α1ξ )u2(α2ξ ) dξ . From Theorem 4.6 we have

dk

dtk w(t) =
dk

dtk

(
v(βt)y(t)

)
=

k∑

r=0

(
k
r

)

βr dr

dt̄r v(t̄)
dk–r

dtk–r y(t),
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where t̄ = βt and from Theorem 4.5 we have

dk–r

dtk–r y(t) = l
dk–r–1

dtk–r–1

(
u1(lα1t)u2(lα2t)

)

= l
k–r–1∑

s=0

(
k – r – 1

s

)

(lα1)s ds

dt̂s
u1(t̂)(lα2)k–r–s–1 dk–r–s–1

dt̃k–r–s–1 u2(t̃),

where t̂ = lα1t and t̃ = lα2t, then

W(k) =
1
k!

[
dk

dtk w(t)
]

t=t0

=
k∑

r=0

k–r–1∑

s=0

(
k
r

)(
k – r – 1

s

)

lk–rβrαs
1α

k–r–s–1
2

× r!V(r)s!U1(s)(k – r – s – 1)!U2(k – r – s – 1),

therefore

W(k) =
k–1∑

r=0

k–r–1∑

s=0

1
k – r

lk–rβrαs
1α

k–r–s–1
2 V(r)U1(s)U2(k – r – s – 1). �

Theorem 4.8 If w(t) =
∫ lt

0
dm

dtm u(α1ξ ) dn

dtn v(α2ξ ) dξ , then for k ≥ 1

W(k) =
1
k

k–1∑

r=0

(r + m)!(k – r + n – 1)!
r!(k – r – 1)!

lk+m+nαr+m
1 αk–r+n–1

2 U (r + m)V(k – r + n – 1).

Proof

W(k) =
1
k!

[
dk

dtk w(t)
]

t=t0

=
1
k!

[
l

dk–1

dtk–1

(
dm

dtm u(lα1t)
dn

dtn v(lα2t)
)]

t=t0

=
1
k!

[

l
k–1∑

r=0

(
k – 1

r

)

(lα1)r+m dr+m

dt̂r+m
u(t̂)(lα2)k–r+n–1 dk–r+n–1

dt̃k–r+n–1 v(t̃)

]

t̂,t̃=t0

=
1
k!

l
k–1∑

r=0

(k – 1)!
r!(k – r – 1)!

(lα1)r+m(r + m)!U (r + m)

× (lα2)k–r+n–1(k – r + n – 1)!V(k – r + n – 1),

where t̂ = lα1t and t̃ = lα2t, then

W(k) =
1
k

k–1∑

r=0

(r + m)!(k – r + n – 1)!
r!(k – r – 1)!

lk+m+nαr+m
1 αk–r+n–1

2 U (r + m)V(k – r + n – 1). �
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Theorem 4.9 If w(t) = dλ

dtλ v(βt)
∫ lt

0
dm

dtm u1(α1ξ ) dn

dtn u2(α2ξ ) dξ , then for k ≥ 1

W(k) =
k–1∑

r=0

k–r–1∑

s=0

1
k – r

(r + λ)!(s + m)!(k – r – s + n – 1)!
r!s!(k – r – s – 1)!

× lk–r+m+nβr+λαs+m
1 αk–r–s+n–1

2 V(r + λ)U1(s + m)U2(k – r – s + n – 1).

Proof Let y(t) =
∫ lt

0
dm

dtm u1(α1ξ ) dn

dtn u2(α2ξ ) dξ . From Theorem 4.8 we have

dk

dtk w(t) =
dk

dtk

(
dλv(βt)

dtλ
y(t)

)
=

k∑

r=0

(
k
r

)

βr+λ dr+λ

dt̄r+λ
v(t̄)

dk–r

dtk–r y(t),

where t̄ = βt and from Theorem 4.5 we have

dk–r

dtk–r y(t) = l
dk–r–1

dtk–r–1

[
dm

dtm u1(lα1t)
dn

dtn u2(lα2t)
]

= l
k–r–1∑

s=0

(
k – r – 1

s

)

(lα1)s+m ds+m

dt̂s+m
u1(t̂)

× (lα2)k–r–s+n–1 dk–r–s+n–1

dt̃k–r–s+n–1 u2(t̃),

where t̂ = lα1t and t̃ = lα2t, then

W(k) =
1
k!

[
dk

dtk w(t)
]

t=t0

=
k∑

r=0

k–r–1∑

s=0

(
k
r

)(
k – r – 1

s

)

lk–r+m+nβr+λαs+m
1 αk–r–s+n–1

2

× (r + λ)!V(r + λ)(s + m)!U1(s + m)(k – r – s + n – 1)!U2(k – r – s + n – 1),

therefore

W(k) =
k–1∑

r=0

k–r–1∑

s=0

1
k – r

(r + λ)!(s + m)!(k – r – s + n – 1)!
r!s!(k – r – s – 1)!

× lk–r+m+nβr+λαs+m
1 αk–r–s+n–1

2 V(r + λ)U1(s + m)U2(k – r – s + n – 1). �

5 Applications
The principal aim of this section is to apply the modified differential transform method to a
class of linear and nonlinear pantograph type of DEs and VIDEs with proportional delays.
We present the following examples to illustrate the accuracy of the presented method and
compare the new method with the previous result.

Example 5.1 As the first example, we consider the following linear pantograph equation:

u′(t) = –u(t) +
1

10
u
(

t
5

)
–

1
10

e– t
5 , 0 ≤ t ≤ 1, (5.1)
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subject to the initial condition

u(0) = 1. (5.2)

By using Table 1 and Theorem 4.1, Eq. (5.1) transforms to the following recurrence rela-
tions:

(k + 1)U (k + 1) = –U (k) +
1

10

(
1
5

)k

U (k) –
1

10
( –1

5 )k

k!
, (5.3)

and from the initial condition (5.2), we write

U (0) = 1. (5.4)

Substituting Eq. (5.4) in Eq. (5.3) recursively we derive the following results:

U (1) = –1, U (2) =
1
2!

, U (3) =
–1
3!

,

U (4) =
1
4!

, U (5) =
–1
5!

, . . . .
(5.5)

Therefore, from (3.2) we have

u(t) =
∞∑

k=0

U (k)tk = 1 – t +
t2

2!
–

t3

3!
+

t4

4!
–

t5

5!
+ · · · . (5.6)

To improve Eq. (5.1), we implement the (LPDTM) for the third-order approximation so-
lution

ũ3(t) =
3∑

k=0

U (k)tk = 1 – t +
t2

2!
–

t3

3!
. (5.7)

Applying the Laplace transformation with respect to t for u(t) yields

L
[
u(t)

]
=

1
s

–
1
s2 +

1
s3 –

1
s4 . (5.8)

Let s = 1
t , we have

L
[
u(t)

]
= t – t2 + t3 – t4. (5.9)

For m ≥ 1, n ≥ 1, and m + n ≤ 4, all of the [ m
n ](t)-Padé approximants of Eq. (5.9) yield

[
m
n

]
(t) =

t
1 + t

. (5.10)

In this step, by writing 1
s instead of t in Eq. (5.10) we obtain

[
m
n

]
(t) =

1
s + 1

. (5.11)
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Finally, using the inverse Laplace transform on the Padé approximants (5.11), we arrive at
the improved solution that corresponds to the exact solution u(t) = e–t .

Example 5.2 As the second example, we consider the following linear pantograph equa-
tion:

u′′(t) = 4e– t
2 sin

(
t
2

)
u
(

t
2

)
, 0 ≤ t ≤ 1, (5.12)

subject to the initial conditions

u(0) = 1, u′(0) = –1. (5.13)

By using Table 1, Theorems 4.1 and 4.2, Eq. (5.12) transforms to the following recurrence
relations:

(k + 1)(k + 2)U (k + 2)

= 4
k∑

r2=0

r2∑

r1=0

(
–1
2

)r1(1
2

)k–r1 1
r1!(r2 – r1)!

sin

(
(r2 – r1)π

2

)
U (k – r2), (5.14)

and from the initial conditions (5.13), we write

U (0) = 1, U (1) = –1. (5.15)

Consequently, we find

U (2) = 0, U (3) =
1
3

, U (4) =
–1
6

, U (5) =
1

30
, . . . . (5.16)

Therefore, from (3.2) we have

u(t) =
∞∑

k=0

U (k)tk = 1 – t +
t3

3
–

t4

6
+

t5

30
– · · · . (5.17)

To improve Eq. (5.12), we implement the (LPDTM) for the third-order approximation
solution

ũ3(t) =
3∑

k=0

U (k)tk = 1 – t +
t3

3
. (5.18)

Applying the Laplace transformation with respect to t for u(t) yields

L
[
u(t)

]
=

1
s

–
1
s2 +

2
s4 . (5.19)

Let s = 1
t , we have

L
[
u(t)

]
= t – t2 + 2t4. (5.20)
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For m ≥ 1, n ≥ 1, and m + n ≤ 4, all of the [ m
n ](t)-Padé approximants of Eq. (5.20) yield

[
m
n

]
(t) =

t + t2

1 + 2t + 2t2 . (5.21)

In this step, by writing 1
s instead of t in Eq. (5.21) we obtain

[
m
n

]
(t) =

s + 1
s2 + 2s + 2

=
s + 1

(s + 1)2 + 1
. (5.22)

Finally, using the inverse Laplace transform on the Padé approximants (5.22), we arrive at
an improved solution that corresponds to the exact solution u(t) = e–t cos(t).

Example 5.3 As the third example, we consider the following nonlinear pantograph equa-
tion:

u′′(t) = u(t) –
8
t2 u2

(
t
2

)
, 0 ≤ t ≤ 1, (5.23)

subject to the initial conditions

u(0) = 0, u′(0) = 1. (5.24)

First, we rewrite the equation as follows:

t2u′′(t) = t2u(t) – 8u2
(

t
2

)
. (5.25)

By using Table 1 and Theorem 4.2, Eq. (5.15) transforms to the following recurrence rela-
tions:

k∑

r=0

δ(r – 2)(k – r + 1)(k – r + 2)U (k – r + 2)

=
k∑

r=0

δ(r – 2)U (k – r) – 8
k∑

r=0

(
1
2

)k

U (r)U (k – r), (5.26)

and from the initial conditions (5.24), we write

U (0) = 0, U ′(0) = 1. (5.27)

Substituting Eq. (5.27) in Eq. (5.26) recursively we derive the following results:

U (2) = –1, U (3) =
1
2!

, U (4) =
–1
3!

,

U (5) =
1
4!

, U (6) =
–1
5!

, . . . .
(5.28)

Therefore, from (3.2) we have

u(t) =
∞∑

k=0

U (k)tk = t – t2 +
t3

2!
–

t4

3!
+

t5

4!
–

t6

5!
+ · · · . (5.29)
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To improve Eq. (5.23), we implement the (LPDTM) for the third-order approximation
solution

ũ3(t) =
3∑

k=0

U (k)tk = t – t2 +
t3

2!
. (5.30)

Applying the Laplace transformation with respect to t for u(t) yields

L
[
u(t)

]
=

1
s2 –

2
s3 +

3
s4 . (5.31)

Let s = 1
t , we have

L
[
u(t)

]
= t2 – 2t3 + 3t4. (5.32)

For m ≥ 1, n ≥ 1, and m + n ≤ 4, all of the [ m
n ](t)-Padé approximants of Eq. (5.32) yield

[
m
n

]
(t) =

t2

1 + 2t + t2 . (5.33)

In this step, by writing 1
s instead of t in Eq. (5.33) we obtain

[
m
n

]
(t) =

1
s2 + 2s + 1

=
1

(s + 1)2 . (5.34)

Finally, using the inverse Laplace transform on the Padé approximants (5.34), we arrive at
an improved solution that corresponds to the exact solution u(t) = te–t .

Example 5.4 As the fourth example, we consider the following nonlinear pantograph
equation:

u′′′
(

t
2

)
– 2u′′

(
t
2

)
u′

(
t
2

)
+

1
4

u(t) =
1
4

cosh

(
t
2

)
, 0 ≤ t ≤ 1, (5.35)

subject to the initial conditions

u(0) = 1, u′(0) = 2, u′′(0) = 0. (5.36)

By using Table 1, Theorems 4.3 and 4.4, Eq. (5.35) transforms to the following recurrence
relations:

(
1
2

)k+3

(k + 1)(k + 2)(k + 3)U (k + 3)

– 2
k∑

r=0

(
1
2

)k+3

(r + 2)(r + 1)(k – r + 1)U (r + 2)U (k – r + 1) +
1
4
U (k)

=
1
8

( ( 1
2 )k + ( –1

2 )k

k!

)
, (5.37)
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and from the initial conditions (5.36), we write

U (0) = 1, U (1) = 2, U (2) = 0. (5.38)

Substituting Eq. (5.38) in Eq. (5.37) recursively we derive the following results:

U (3) =
1
3

, U (4) = 0, U (5) =
1

60
, U (6) = 0, . . . . (5.39)

Therefore, from (3.2) we have

u(t) =
∞∑

k=0

U (k)tk = 2t +
t3

3
+

t5

60
+ · · · . (5.40)

To improve Eq. (5.35), we implement the (LPDTM) for the third-order approximation
solution

ũ3(t) =
3∑

k=0

U (k)tk = 2t +
t3

3
. (5.41)

Applying the Laplace transformation with respect to t for u(t) yields

L
[
u(t)

]
=

2
s2 +

2
s4 . (5.42)

Let s = 1
t , we have

L
[
u(t)

]
= 2t2 + 2t4. (5.43)

For m ≥ 1, n ≥ 1, and m + n ≤ 6, all of the [ m
n ](t)-Padé approximants of Eq. (5.43) yield

[
m
n

]
(t) =

2t2

1 – t2 . (5.44)

In this step, by writing 1
s instead of t in Eq. (5.44) we obtain

[
m
n

]
(t) =

2
s2 – 1

=
1

s – 1
–

1
s + 1

. (5.45)

Finally, using the inverse Laplace transform on the Padé approximants (5.45), we arrive at
an improved solution that corresponds to the exact solution u(t) = et – e–t .

Example 5.5 As the fifth example, we consider the following linear VIDEs with propor-
tional delay:

u′′(t) + u
(

t
2

)
–

3
4

u(t) –
∫ t

0
ξu(ξ ) dξ

= –
11
4

sin(t) + t cos(t) + sin

(
t
2

)
, 0 ≤ t ≤ 1, (5.46)
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subject to the initial conditions

u(0) = 0, u′(0) = 1. (5.47)

By using Table 1, Theorems 4.1, 4.5 and 4.6, Eq. (5.46) transforms to the following recur-
rence relations:

(k + 1)(k + 2)U (k + 2) +
(

1
2

)k

U (k) –
3
4
U (k) –

1
k

k–1∑

r=0

δ(r – 1)U (k – r)

= –
11
4

1
k!

sin

(
kπ

2

)
+

k∑

r=0

δ(r – 1)
1

(k – r)!
cos

(
(k – r)π

2

)

+
( 1

2 )k

k!
sin

(
kπ

2

)
, (5.48)

and from the initial conditions (5.47), we write

U (0) = 0, U (1) = 1. (5.49)

Substituting Eq. (5.49) in Eq. (5.48) recursively we derive the following results:

U (2) = 0, U (3) =
–1
3!

, U (4) = 0, U (5) =
1
5!

, . . . . (5.50)

Therefore, from (3.2) we have

u(t) =
∞∑

k=0

U (k)tk = t –
t3

3!
+

t5

5!
+ · · · . (5.51)

To improve Eq. (5.46), we implement the (LPDTM) for the fourth-order approximation
solution

ũ4(t) =
4∑

k=0

U (k)tk = t –
t3

3!
. (5.52)

Applying the Laplace transformation with respect to t for u(t) yields

L
[
u(t)

]
=

1
s2 –

1
s4 . (5.53)

Let s = 1
t , we have

L
[
u(t)

]
= t – t4. (5.54)

For m ≥ 1, n ≥ 1, and m + n ≤ 4, all of the [ m
n ](t)-Padé approximants of Eq. (5.54) yield

[
m
n

]
(t) =

t2

1 + t2 . (5.55)
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In this step, by writing 1
s instead of t in Eq. (5.55) we obtain

[
m
n

]
(t) =

1
s2 + 1

. (5.56)

Finally, using the inverse Laplace transform on the Padé approximants (5.56), we arrive at
an improved solution that corresponds to the exact solution u(t) = sin(t).

Example 5.6 As the sixth example, we consider the following nonlinear VIDEs with pro-
portional delay:

u′(t)u(t) – u
(

t
2

)
–

3
2

u
(

t
2

)∫ t

0
u(ξ )u

(
ξ

2

)
dξ = 0, 0 ≤ t ≤ 1, (5.57)

subject to the initial condition

u(0) = 1. (5.58)

By using Table 1 and Theorems 4.1, 4.2 and 4.7, Eq. (5.57) transforms to the following
recurrence relations:

k∑

r=0

(r + 1)U (r + 1)U (k – r) –
(

1
2

)k

U (k)

–
3
2

k–1∑

r=0

k–r–1∑

s=0

1
k – r

(
1
2

)k–s–1

U (r)U (s)U (k – r – s – 1) = 0, (5.59)

and from the initial condition (5.58), we write

U (0) = 1. (5.60)

Substituting Eq. (5.60) in Eq. (5.59) recursively we derive the following results:

U (1) = 1, U (2) =
1
2!

, U (3) =
1
3!

,

U (4) =
1
4!

, U (5) =
1
5!

, . . . .
(5.61)

Therefore, from (3.2) we have

u(t) =
∞∑

k=0

U (k)tk = 1 + t +
t2

2!
+

t3

3!
+

t4

4!
+

t5

5!
+ · · · . (5.62)

To improve Eq. (5.57), we implement the (LPDTM) for the third-order approximation
solution

ũ3(t) =
3∑

k=0

U (k)tk = 1 + t +
t2

2!
+

t3

3!
. (5.63)
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Applying the Laplace transformation with respect to t for u(t) yields

L
[
u(t)

]
=

1
s

+
1
s2 +

1
s3 +

1
s4 . (5.64)

Let s = 1
t , we have

L
[
u(t)

]
= t + t2 + t3 + t4. (5.65)

For m ≥ 1, n ≥ 1, and m + n ≤ 4, all of the [ m
n ](t)-Padé approximants of Eq. (5.65) yield

[
m
n

]
(t) =

t
1 – t

. (5.66)

In this step, by writing 1
s instead of t in Eq. (5.66) we obtain

[
m
n

]
(t) =

1
s – 1

. (5.67)

Finally, using the inverse Laplace transform on the Padé approximants (5.67), we arrive at
an improved solution that corresponds to the exact solution u(t) = et .

Example 5.7 Lastly, we consider the following nonlinear VIDEs with proportional delay:

1
4

u′
(

t
2

)
+

1
8

u(t)u
(

t
2

)
– u′′

(
t
2

)∫ t
2

0
u(ξ )u′(ξ ) dξ = 0, 0 ≤ t ≤ 1, (5.68)

subject to the initial condition

u(0) = 1, u′(0) = –1. (5.69)

By using Table 1, Theorems 4.2, 4.3, 4.8 and 4.9 Eq. (5.68) transforms to the following
recurrence relations:

(
1
2

)k+3

(k + 1)U (k + 1) +
k∑

r=0

(
1
2

)k–r+3

U (r)U (k – r)

–
k–1∑

r=0

k–r–1∑

s=0

(r + 2)!(k – r – s)!
(k – r)!r!

(
1
2

)k+2

U (r + 2)U (s)U (k – r – s) = 0, (5.70)

and from the initial conditions (5.69), we write

U (0) = 1, U (1) = –1. (5.71)

Substituting Eq. (5.71) in Eq. (5.70) recursively we derive the following results:

U (2) =
1
2!

, U (3) =
–1
3!

, U (4) =
1
4!

, U (5) =
–1
5!

, . . . . (5.72)
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Therefore, from (3.2) we have

u(t) =
∞∑

k=0

U (k)tk = 1 – t +
t2

2!
–

t3

3!
+

t4

4!
–

t5

5!
+ · · · . (5.73)

To improve Eq. (5.68), we implement the (LPDTM) for the third-order approximation
solution

ũ3(t) =
3∑

k=0

U (k)tk = 1 – t +
t2

2!
–

t3

3!
. (5.74)

Applying the Laplace transformation with respect to t for u(t) yields

L
[
u(t)

]
=

1
s

–
1
s2 +

1
s3 –

1
s4 . (5.75)

Let s = 1
t , we have

L
[
u(t)

]
= t – t2 + t3 – t4. (5.76)

For m ≥ 1, n ≥ 1, and m + n ≤ 4, all of the [ m
n ](t)-Padé approximants of Eq. (5.76) yield

[
m
n

]
(t) =

t
1 + t

. (5.77)

In this step, by writing 1
s instead of t in Eq. (5.77) we obtain

[
m
n

]
(t) =

1
s + 1

. (5.78)

Finally, using the inverse Laplace transform on the Padé approximants (5.78), we arrive at
an improved solution that corresponds to the exact solution u(t) = e–t .

Comparing our result with the solutions obtained in [13, 14, 17, 58, 59], we can see that
the results are the same.

Results for Examples 5.1–5.7 are reported in Figs. 1–7 and Tables 2–8, respectively. In
these tables, the terms uE , un,R and e(u) stand for exact solution, nth order approximate
solution of DTM and their absolute error, respectively.

6 Conclusion
Most pantograph equations with proportional delays are usually difficult to solve analyt-
ically. In many cases, it is required to obtain approximate solutions. In this work, for this
purpose, the modified differential transform method, a combined form of the differen-
tial transform method with Laplace transforms, and the Padé approximant (LPDTM) is
effectively used to find the exact solution of linear and nonlinear pantograph type of dif-
ferential and Volterra integro-differential equations (DEs and VIDEs) with proportional
delays. In fact, the main advantage of this method is its capability of combining the two
strongest methods for finding a fast convergent series solution of pantograph equations.
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Figure 1 Comparison of the exact solution (blue)
and the approximate solutions (red) of Example 5.1

Figure 2 Comparison of the exact solution (blue)
and the approximate solutions (red) of Example 5.2

Figure 3 Comparison of the exact solution (blue)
and the approximate solutions (red) of Example 5.3

Furthermore, as seen from the examples, the results indicate the reliability and efficiency
of the method and show that it needs less effort to achieve the results, and is a promising
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Figure 4 Comparison of the exact solution (blue)
and the approximate solutions (red) of Example 5.4

Figure 5 Comparison of the exact solution (blue)
and the approximate solutions (red) of Example 5.5

Figure 6 Comparison of the exact solution (blue)
and the approximate solutions (red) of Example 5.6

and powerful method over other methods for solving many linear and nonlinear panto-
graph type of DEs and VIDEs with proportional delays arising in mathematical physics.
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Figure 7 Comparison of the exact solution (blue)
and the approximate solutions (red) of Example 5.7

Table 2 Numerical result of Example 5.1

t uE u10,R u12,R n = 10, e(u) n = 12, e(u)

0.1 0.9048374181 0.9048374181 0.9048374181 3.592657686× 10–11 3.592657661× 10–12

0.3 0.7408182206 0.7408182206 0.7408182206 1.923883628× 10–11 1.928210586× 10–11

0.5 0.6065306598 0.6065306598 0.6065306598 1.80099255× 10–11 6.287137150× 10–12

0.7 0.4965853044 0.4965853039 0.4965853044 4.49700608× 10–10 1.676531197× 10–11

0.9 0.4065696671 0.4065696598 0.4065696671 7.35104179× 10–9 7.90460030× 10–11

Table 3 Numerical result of Example 5.2

t uE u5,R u7,R n = 5, e(u) n = 7, e(u)

0 1 1 1 0 0
0.2 0.8024106473 0.8024106667 0.8024106464 1.936597× 10–8 9.5149031× 10–10

0.4 0.6174056479 0.6174079999 0.6174053993 2.3520953× 10–6 2.48539620× 10–7

0.6 0.4529537891 0.4529920000 0.4529475657 3.8210890× 10–5 6.22339571× 10–6

0.8 0.3130505040 0.3133226667 0.3129897854 2.7216259× 10–5 6.07186798× 10–5

Table 4 Numerical result of Example 5.3

t uE u8,R u11,R n = 8, e(u) n = 11, e(u)

0.1 0.09048374180 0.09048374181 0.09048374181 3.568128916× 10–12 3.592657686× 10–12

0.3 0.2222454662 0.2222454658 0.2222454663 4.6785714× 10–10 4.528351013× 10–12

0.5 0.3032653298 0.3032652840 0.3032653298 4.58254531× 10–8 5.85598678× 10–11

0.7 0.3476097127 0.3476087846 0.3476097130 9.2816132× 10–7 2.78563346× 10–10

0.9 0.3659126937 0.3659039660 0.3659127002 8.72761061× 10–6 6.64594981× 10–9

Table 5 Numerical result of Example 5.4

t uE u7,R u11,R n = 7, e(u) n = 11, e(u)

0.1 0.2003335 0.2003335 0.2003335 3.964923968× 10–11 3.965475164× 10–11

0.3 0.6090405873 0.6090405868 0.6090405869 5.1527572× 10–10 4.067048190× 10–10

0.5 1.042190611 1.042190600 1.042190611 1.0808188× 10–8 1.914523041× 10–11

0.7 1.517167403 1.517167180 1.517167403 2.2275522× 10–7 6.429500776× 10–10

0.9 2.053033451 2.053031300 2.053033451 2.1506409× 10–6 3.3635213× 10–10

The method can be extended easily with some modifications to the fractional delay differ-
ential equations. It is our aim for future work.
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Table 6 Numerical result of Example 5.5

t uE u7,R u9,R n = 7, e(u) n = 9, e(u)

0 0 0 0 0 0
0.2 0.1986693308 0.1986693309 0.1986693309 7.015540× 10–12 5.604605256× 10–12

0.4 0.3894183423 0.3894183415 0.3894183422 7.160351× 10–10 6.3634890× 10–12

0.6 0.5646424734 0.5646424457 0.5646424735 2.7695714× 10–8 7.571457× 10–11

0.8 0.7173560909 0.7173557232 0.7173560931 3.6774173× 10–7 2.1263475× 10–9

Table 7 Numerical result of Example 5.6

t uE u7,R u10,R n = 7, e(u) n = 10, e(u)

0 1 1 1 0 0
0.2 1.221402758 1.221402759 1.221402759 9.5908440× 10–11 1.608396569× 10–10

0.4 1.491824698 1.491824681 1.491824698 1.73614159× 10–8 3.561531174× 10–10

0.6 1.822118800 1.822118354 1.822118801 4.45704276× 10–7 3.04866784× 10–10

0.8 2.225540928 2.225536366 2.225540927 4.56226537× 10–6 1.79197330× 10–9

Table 8 Numerical result of Example 5.7

t uE u7,R u10,R n = 7, e(u) n = 10, e(u)

0.1 0.9048374180 0.9048374181 0.9048374181 3.568128916× 10–11 3.592657686× 10–11

0.3 0.7408182207 0.7408182191 0.7408182206 1.59385714× 10–9 1.923883628× 10–11

0.5 0.6065306597 0.6065305680 0.6065306598 9.1750016× 10–8 1.80099255× 10–11

0.7 0.4965853038 0.4965839780 0.4965853044 1.32589299× 10–6 4.49700608× 10–10

0.9 0.4065696597 0.4065599623 0.4065696671 9.69737847× 10–6 7.35104179× 10–9
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15. Sezer, M., Yalçinbaş, S., Gülsu, M.: A Taylor polynomial approach for solving generalized pantograph equations with

nonhomogeneous term. Int. J. Comput. Math. 85(7), 1055–1063 (2008)
16. Cakir, M., Arslan, D.: The Adomian decomposition method and the differential transform method for numerical

solution of multi-pantograph delay differential equations. Appl. Math. 6, 1332–1343 (2015)
17. Ezz-Eldien, S.S., Doha, E.H.: Fast and precise spectral method for solving pantograph type Volterra integro-differential

equations. Numer. Algorithms 81, 57–77 (2019)
18. Yuzbasi, S., Karacayir, M.: A numerical approach for solving high-order linear delay Volterra integro-differential

equations. Int. J. Comput. Methods 15(3), Article ID 1850042 (2018)
19. Rebenda, J., Šmarda, Z.: A differential transformation approach for solving functional differential equations with

multiple delays. Commun. Nonlinear Sci. Numer. Simul. 48, 246–257 (2017)
20. Rameh, R.B., Cherry, E.M., Weber dos Santos, R.: Single-variable delay-differential equation approximations of the

Fitzhugh–Nagumo and Hodgkin–Huxley models. Commun. Nonlinear Sci. Numer. Simul. 82, Article ID 105066 (2020)
21. Chena, X., Wang, L.: The variational iteration method for solving a neutral functional-differential equation with

proportional delays. Comput. Math. Appl. 59, 2696–2702 (2010)
22. Zhou, J.K.: Differential Transformation and Its Application for Electrical Circuits. Huazhong University Press, Wuhan

(1986)
23. Chen, C.K., Ho, S.H.: Solving partial differential equations by two-dimensional differential transform method. Appl.

Math. Comput. 106(2–3), 171–179 (1999)
24. Ayaz, F.: Solutions of the system of differential equations by differential transform method. Appl. Math. Comput.

147(2), 547–567 (2004)
25. Arikoglu, A., Ozkol, I.: Solution of boundary value problems for integro-differential equations by using differential

transform method. Appl. Math. Comput. 168(2), 1145–1158 (2005)
26. Arikoglu, A., Ozkol, I.: Solution of fractional differential equations by using differential transform method. Chaos

Solitons Fractals 34(5), 1473–1481 (2007)
27. Odibat, Z., Momani, S.: A generalized differential transform method for linear partial differential equations of

fractional order. Appl. Math. Lett. 21, 194–199 (2008)
28. Momani, S.M., Erturk, V.S.: Solutions of nonlinear oscillators by the modified differential transform method. Comput.

Math. Appl. 55, 833–842 (2008)
29. Chang, S.-H., Chang, I.L.: A new algorithm for calculating one-dimensional differential transform of nonlinear

functions. Appl. Math. Comput. 195, 799–808 (2008)
30. Keskin, Y., Oturanc, G.: Reduced differential transform method for partial differential equations. Int. J. Nonlinear Sci.

Numer. Simul. 10(6), 741–749 (2009)
31. Keskin, Y.: Ph.D. Thesis, Selcuk University, in Turkish (2010)
32. Keskin, Y., Oturanc, G.: The reduced differential transform method: a new approach to fractional partial differential

equations. Nonlinear Sci. Lett. A 1(2), 207–217 (2010)
33. Keskin, Y., Oturanc, G.: The reduced differential transformation method for solving linear and nonlinear wave

equations. Iran. J. Sci. Technol. 34(2), 113–122 (2010)
34. Ayaz, F.: Applications of differential transform method to differential-algebraic equations. Appl. Math. Comput. 152(3),

649–657 (2004)
35. Benhammouda, B., Vazquez-Leal, H.: Analytical solution of a nonlinear index-three DAEs system modelling a

slider-crank mechanism. Discrete Dyn. Nat. Soc. 2015, Article ID 206473 (2015)
36. Benhammouda, B.: Solution of nonlinear higher-index Hessenberg DAEs by Adomian polynomials and differential

transform method. SpringerPlus 4, Article ID 648 (2015)
37. Celik, E., Tabatabaei, K.: Solving a class of Volterra integral equation systems by the differential transform method. Int.

J. Nonlinear Sci. 16(1), 87–91 (2013)
38. Odibat, Z.: Differential transform method for solving Volterra integral equation with separable kernels. Math. Comput.

Model. 48, 1144–1149 (2008)
39. Moosavi Noori, S.R., Taghizadeh, N.: Application of reduced differential transform method for solving

two-dimensional Volterra integral equations of the second kind. Appl. Appl. Math. 14(2), 1003–1019 (2019)
40. Moosavi Noori, S.R., Taghizadeh, N.: Study on solving two-dimensional linear and nonlinear Volterra partial

integro-differential equations by reduced differential transform method. Appl. Appl. Math. 15(1), 394–407 (2020)

https://doi.org/10.3389/fphy.2020.00372


Moosavi Noori and Taghizadeh Advances in Difference Equations        (2020) 2020:649 Page 25 of 25

41. Arikoglu, A., Ozkol, I.: Solutions of integral and integro-differential equation systems by using differential transform
method. Comput. Math. Appl. 56, 2411–2417 (2008)

42. Tari, A., Shahmorad, S.: Differential transform method for the system of two-dimensional nonlinear Volterra
integro-differential equations. Comput. Math. Appl. 61, 2621–2629 (2011)

43. Moghadam, M.M., Saeedi, H.: Application of differential transform for solving the Volterra integro-partial equations.
Iran. J. Sci. Technol. 34(1), 59–70 (2010)

44. Eslami, M., Taleghani, S.A.: Differential transform method for conformable fractional partial differential equations. Iran.
J. Numer. Anal. Optim. 9(2), 17–29 (2019)

45. Secer, A., Akinlar, M.A., Cevikel, A.: Efficient solutions of systems of fractional PDEs by the differential transform
method. Adv. Differ. Equ. 2012, 188 (2012)

46. Deepanjan, D.: The generalized differential transform method for solution of a free vibration linear differential
equation with fractional derivative damping. J. Appl. Math. Comput. Mech. 18(2), 19–29 (2019)

47. Acan, O., Al Qurashi, M.M., Baleanu, D.: Reduced differential transform method for solving time and space local
fractional partial differential equations. J. Nonlinear Sci. Appl. 10(10), 5230–5238 (2017)

48. Durur, H., Ilhan, E., Bulut, H.: Novel complex wave solutions of the (2 + 1)-dimensional hyperbolic nonlinear
Schrödinger equation. Fractal Fract. 4(3), 41 (2020)

49. Gao, W., Senel, M., Yel, G., Baskonus, H.M., Senel, B.: New complex wave patterns to the electrical transmission line
model arising in network system. AIMS Math. 5(3), 1881–1892 (2020)

50. Hajipour, M., Jajarmi, A., Baleanu, D.: On the accurate discretization of a highly nonlinear boundary value problem.
Numer. Algorithms 79(3), 679–695 (2018)

51. Al-Refai, M.: Maximum principles for nonlinear fractional differential equations in reliable space. Prog. Fract. Differ.
Appl. 6(2), 95–99 (2020)

52. Singh, J., Kumar, D., Hammouch, Z., Atangana, A.: A fractional epidemiological model for computer viruses pertaining
to a new fractional derivative. Appl. Math. Comput. 316, 504–515 (2018)

53. Gao, W., Veeresha, P., Prakasha, D.G., Senel, B., Baskonus, H.M.: Iterative method applied to the fractional nonlinear
systems arising in thermoelasticity with Mittag-Leffler kernel. Fractals (2020).
https://doi.org/10.1142/S0218348X2040040X

54. Yel, G., Baskonus, H.M., Gao, W.: New dark–bright soliton in the shallow water wave model. AIMS Math. 5(4),
4027–4044 (2020)

55. García Guirao, J.L., Baskonus, H.M., Kumar, A.: Regarding new wave patterns of the newly extended nonlinear
(2 + 1)-dimensional Boussinesq equation with fourth order. Mathematics 8(3), 341 (2020)

56. Baker, G.A.: Essentials of Padé Approximants. Academic Press, San Diego (1975)
57. Benhammouda, B., Vazquez-Leal, H., Sarmiento-Reyes, A.: Modified reduced differential transform method for partial

differential algebraic equations. J. Appl. Math. 2014, Article ID 279481 (2014)
58. Bahsi, M.M., Çevik, M.: Numerical solution of pantograph-type delay differential equations using

perturbation-iteration algorithms. J. Appl. Math. 2015, Article ID 139821 (2015)
59. Yuzbasi, S.: Laguerre approach for solving pantograph-type Volterra integro-differential equations. Appl. Math.

Comput. 232, 1183–1199 (2014)

https://doi.org/10.1142/S0218348X2040040X

	Modiﬁed differential transform method for solving linear and nonlinear pantograph type of differential and Volterra integro-differential equations with proportional delays
	Abstract
	MSC
	Keywords

	Introduction
	Padé approximant
	Summary of the method
	Main results
	Applications
	Conclusion
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	Consent for publication
	Authors' contributions
	Publisher's Note
	References


