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Abstract
The aim of this paper is to study new nonlocal boundary value problems of fractional
differential equations and inclusions supplemented with slit-strips integral boundary
conditions. Based on the functional analysis tools, the existence results for a nonlinear
boundary value problem involving a proportional fractional derivative are presented.
In addition to that, the extension of the problem at hand to its inclusion case is
discussed. The obtained results are very interesting and are well illustrated with
examples.
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1 Introduction
Problems of fractional differential equations arise in mathematical modeling of systems
occurring in many scientific and engineering disciplines. Especially, multi-term fractional
differential equations have been used to model many types of visco-elastic damping [1].
Bagley–Torvik [2] and Basset equations [3] are important examples of this class of equa-
tions. In addition to that, several methods have been suggested in the literature to solve
these problems, for example, piecewise polynomial collocation [4], Haar wavelet method
[5], Legendre wavelet method [6, 7], second kind Chebyshev wavelet method [8], spec-
tral tau and collocation methods [9], and spline collocation method. For recent works on
multi-term fractional differential equations, we refer the reader to [10–13].

For some recent development on this topic, a variety of initial and boundary conditions
(BCs), such as classical, nonlocal, multipoint, periodic/ non-periodic, and integral bound-
ary conditions, have been investigated. The concept of slits-strips conditions was intro-
duced by Ahmad et al. [14, 15]. It was a new idea and had useful applications in imaging
via strip-detectors [16] and acoustics [17]. For examples of boundary value problems for
nonlinear differential equations, one can see [18–21].

Later on, in [22, 23], Anderson suggested a newly defined local derivative that tended to
the original function as the order ρ tended to zero, and hence improved the conformable
derivatives. Following this trend, some authors came up with new types of fractional
derivatives and differences that allow the appearance of exponential function [24, 25] or
the Mittag-Leffler function [26] in the kernel of the operators. Nevertheless, the new non-
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singular kernel type fractional derivatives have the disadvantage that their corresponding
integral operators do not possess a semigroup property, which makes it uneasy to solve
certain complicated fractional systems in their frames.

Inspired by the above works and based on a special case of the proportional- derivative,
Jarad et al. [27] generated Caputo and Riemann–Liouville generalized proportional frac-
tional derivatives involving exponential functions in their kernels. The advantage of the
newly defined derivatives, which made them distinctive, was their corresponding propor-
tional fractional integrals possessing a semigroup property and they provided an undevi-
ating generalization to the existing Caputo and Riemann–Liouville fractional derivatives
and integrals.

In this paper, we study the existence of solutions for nonlinear fractional differential
equations and inclusions of order α ∈ (0, 1). Precisely, we consider the following problems:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a1
CDα+2,ρ

0+ u(t) + a2
CDα+1,ρ

0+ u(t) + a3
CDα,ρ

0+ u(t) = f (t, u(t)), t ∈ [0, 1],

u(0) = u′(0) = 0,
∑m

i=1 δiu(ξi) = 1
ρβ�(β) [a1

∫ η1
0 e

ρ–1
ρ (η1–s)(η1 – s)β–1u(s) ds

+ a2
∫ 1
η2

e
ρ–1
ρ (1–s)(1 – s)β–1u(s) ds],

(1.1)

where CDα,ρ
0+ denotes the generalized proportional fractional (GPF) derivative of Caputo

type, f : [0, 1] × R → R is a continuous function, α ∈ (0, 1), β ∈ (0, 1), ρ ∈ (0, 1], ai (i =
1, 2, 3), 0 < η1 < ξ1 < ξ2 < · · · < ξm < η2 < 1, δi (i = 1, 2, . . . , m) are real constants, and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a1
CDα+2,ρ

0+ u(t) + a2
CDα+1,ρ

0+ u(t) + a3
CDα,ρ

0+ u(t) ∈ F(t, u(t)), t ∈ [0, 1],

u(0) = u′(0) = 0,
∑m

i=1 δiu(ξi) = 1
ρβ�(β) [a1

∫ η1
0 e

ρ–1
ρ (η1–s)(η1 – s)β–1u(s) ds

+ a2
∫ 1
η2

e
ρ–1
ρ (1–s)(1 – s)β–1u(s) ds],

(1.2)

where F : [0, 1] × R → P(R) is a multivalued map, P(R) is the family of all nonempty
subsets of R, and the other quantities are the same as defined in problem (1.1).

Our problems are modeled by multi-term fractional differential equations equipped by
slit-strips integral boundary conditions, and the fractional derivative is of proportional
type. This makes the problems at hand very important from an application point of view.

This paper is organized as follows. In Sect. 2, we present some basic definitions and
properties of GPF integrals and derivatives. In Sect. 3, based on the Leray–Schauder and
Krasnoselskii’s fixed point theorems, we prove the existence results of solutions for bound-
ary value problem (1.1). In addition, some examples are presented to illustrate the main
results. In Sect. 4, we prove the existence results for multivalued problem (1.2). The first
result for problem (1.2), associated with the convex-valued multivalued map, is derived
with the aid of Leray–Schauder nonlinear alternative for multivalued maps, while the re-
sult for a nonconvex-valued map for problem (1.2) is proved by applying a fixed point
theorem due to Covitz and Nadler.

2 Preliminaries
For convenience of the reader, we present here some definitions and lemmas that will be
used in the proof of our main results. For basic notions of GPF integrals and derivatives,
one can see [27]. In what follows, let f (t) ∈ ACn[a, b].
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Definition 1 (GPF integral) For ρ ∈ (0, 1] and α ∈C with �(α) > 0, we define the left GPF
integral of f starting by a:

(
aIα,ρ f

)
(t) =

1
ρα�(α)

∫ t

a
e

ρ–1
ρ (t–s)(t – s)α–1f (s) ds.

Definition 2 (GPF derivative of Caputo type) For ρ ∈ (0, 1] and α ∈ C with �(α) > 0, we
define the left GPF derivative of Caputo type starting by a:

(C
a Dα,ρ f

)
(t) = aIn–α,ρ(Dn,ρ f

)
(t)

=
1

ρn–α�(n – α)

∫ t

a
e

ρ–1
ρ (t–s)(t – s)n–α–1(Dn,ρ f

)
(s) ds,

where n = [�(α)] + 1.

Theorem 3 Let f ∈ L1(a, b) and aIα,ρ f (t) ∈ ACn[a, b]. For ρ ∈ (0, 1] and n = [�(α)] + 1, we
have

aIα,ρ(C
a Dα,ρ f

)
(t) = f (t) –

n–1∑

k=0

(Dk,ρ f )(a)
ρkk!

(t – a)ke
ρ–1
ρ (t–a).

Proposition 4 For any α ∈C with �(α) > 0 and ρ ∈ (0, 1], n = [�(α)] + 1, we have

(C
a Dα,ρ f

)
(t) =

(
aDα,ρ f

)
(t) –

n–1∑

k=0

ρα–k

�(k + 1 – α)
(t – a)k–ae

ρ–1
ρ (t–a)(Dk,ρ f

)
(a).

The following fixed point theorems play a crucial role in our main results.

Theorem 5 (Krasnoselskii’s fixed point theorem [28]) Let N be a closed, convex, bounded,
and nonempty subset of a Banach space X. Let T1, T2 be operators such that

(i) T1(u1) + T2(u2) belong to N whenever u1, u2 ∈N .
(ii) T1 is compact and continuous and T2 is a contraction mapping.

Then there exists u0 ∈N such that u0 = T1(u0) + T2(u0).

Theorem 6 (Nonlinear alternative of Leray–Schauder type [29]) Let C be a closed and
convex subset of a Banach space E and U be an open subset of C with 0 ∈ U . Suppose that
V : U → C is a continuous, compact (that is, V(U) is a relatively compact subset of C) map.
Then either

(i) V has a fixed point in U , or
(ii) there are u ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with u = λV(u).

For computational convenience, we introduce the notations:

A1 = a1ρ
2, A2 = 2a1ρ(1 – ρ) + a2ρ,

A3 = a1(1 – ρ)2 + a2(1 – ρ) + a3, c0 =
(CD2,ρ

0+ u
)
(0),

C0 = c0(a1 + a2 + a3). (2.1)



Shammakh et al. Advances in Difference Equations        (2020) 2020:645 Page 4 of 28

Lemma 7 Let a1, a2, a3 be positive constants such that A2
2 – 4A1A3 > 0 and

� =
m∑

i=1

δiψ(ξi) – (�1 + �2) �= 0,

then the solution of the linear multi-term fractional differential equations

a1
CDα+2,ρ

0+ u(t) + a2
CDα+1,ρ

0+ u(t) + a3
CDα,ρ

0+ u(t)

= h(t), α ∈ (0, 1),ρ ∈ (0, 1], t ∈ [0, 1], (2.2)

supplemented with BCs (1.1) is given by

u(t) =
1

A1(χ2 – χ1)ρα�(α)

{∫ t

0
w(t)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1

h(τ ) dτ

)

ds

+
ψ(t)
�

[
1

ρβ�(β)

(

a1

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1

h(y) dy
)

dτ ds

+ a2

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1

∫ s

0
w(s)

(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1

h(y) dy
)

dτ ds
)

–
m∑

i=1

δi

∫ ξi

0
w(ξi)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1

h(τ ) dτ

)

ds
]}

, (2.3)

where

w(r) = eχ2(r–s) – eχ1(r–s), r = t, s, ξi, w(s) = eχ2(s–τ ) – eχ1(s–τ ),

χ1 =
–A2 –

√
A2

2 – 4A1A3

2A1
, χ2 =

–A2 +
√

A2
2 – 4A1A3

2A1
,

ψ(t) = ρ

[
(e

ρ–1
ρ t – eχ2t)

(ρ – 1 – ρχ2)
–

(e
ρ–1
ρ t – eχ1t)

(ρ – 1 – ρχ1)

]

,

�1 =
a1

ρβ�(β)

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1ψ(s) ds,

�2 =
a2

ρβ�(β)

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1ψ(s) ds. (2.4)

Proof By Theorem 3 (with a = 0), the general solution of the multi-term fractional differ-
ential equation (2.2) can be written as

a1
CD2,ρ

0+ u(t) + a2
CD1,ρ

0+ u(t) + a3u(t) = Iα,ρ
h(t) + C0e

ρ–1
ρ t ,

where C0 is an unknown arbitrary constant.
Using Proposition 4, we get

A1u′′(t) + A2u′(t) + A3u(t) = Iα,ρ
h(t) + C0e

ρ–1
ρ t . (2.5)
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Now, by the method of variation of parameters, the solution of (2.5) can be written as

u(t) = C1eχ1t + C2eχ2t +
1

A1(χ2 – χ1)

[∫ t

0

(
eχ2(t–s) – eχ1(t–s))

·
(

1
ρα�(α)

∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1

h(τ ) dτ

)

ds + C0ψ(t)
]

. (2.6)

Using the boundary conditions u(0) = u(0)′ = 0, we get C1 = 0, C2 = 0. Thus (2.6) takes the
form

u(t) =
1

A1(χ2 – χ1)

[∫ t

0

(
eχ2(t–s) – eχ1(t–s))

·
(

1
ρα�(α)

∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1

h(τ ) dτ

)

ds + C0ψ(t)
]

. (2.7)

Now, using the last condition in (1.1), we get

C0 =
1
�

{
a1

ρβ�(β)

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

∫ s

0
w(s)

·
(

1
ρα�(α)

∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1

h(y) dy
)

dτ ds

+
a2

ρβ�(β)

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1

∫ s

0
w(s)

·
(

1
ρα�(α)

∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1

h(y) dy
)

dτ ds

–
m∑

i=1

δi

∫ ξi

0
w(ξi)

(
1

ρα�(α)

∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1

h(τ ) dτ

)

ds

}

. (2.8)

Substituting the value of C0 in (2.7), we obtain solution (2.3). Conversely, we can establish
this direction by immediate computation. Applying the GPF derivative of Caputo type
CD2,ρ

0+ on both sides of (2.7) and using Proposition 4, we get

a1
CD2,ρ

0+ u(t) + a2
CD1,ρ

0+ u(t) + a3u(t)

= A1u′′(t) + A2u′(t) + A3u(t)

=
1

A1(χ2 – χ1)

[

A1(χ2 – χ1)Iα,ρ
h
(
t, u(t)

)

+ A1

∫ t

0

(
χ2

2 eχ2(t–s) – χ2
1 eχ1(t–s))Iα,ρ

h
(
s, u(s)

)
ds

+ A2

∫ t

0

(
χ2eχ2(t–s) – χ1eχ1(t–s))Iα,ρ

h
(
s, u(s)

)
ds

+ A3

∫ t

0

(
eχ2(t–s) – eχ1(t–s))Iα,ρ

h
(
s, u(s)

)
ds
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+ C0
(
A1ψ

′′(t) + A2ψ
′(t) + A3ψ(t)

)
]

= Iα,ρ
h
(
t, u(t)

)
+ C0

a3e
ρ–1
ρ t

a1(ρ – 1 – ρχ1)(ρ – 1 – ρχ2)
, (2.9)

where A1, A2, and A3 are defined in (2.1). Now, by applying CDα,ρ
0+ on both sides of (2.9),

we get

a1
CDα+2,ρ

0+ u(t) + a2
CDα+1,ρ

0+ u(t) + a3
CDα,ρ

0+ u(t) = h
(
t, u(t)

)
,

which shows that the obtained solution satisfies the given differential equation. Also, we
can prove easily that the solution satisfies the boundary conditions. �

Remark 8 We confirm Lemma 7 in the case where A1, A2, and A3 fulfill the condition
A2

2 – 4A1A3 > 0. The other cases are A2
2 – 4A1A3 = 0 and A2

2 – 4A1A3 < 0, which are solved
in the same way as above. We include here the solutions and omit the details. Thus, in
Lemma 7, assume that

�̄ =
m∑

i=1

δiψ̄(ξi) – (�̄1 + �̄2) �= 0

and

¯̄� =
m∑

i=1

δi
¯̄ψ(ξi) – ( ¯̄�1 + ¯̄�2) �= 0.

If A1, A2, and A3 satisfy the condition:
(i) A2

2 – 4A1A3 = 0, then the solution of (2.2) is

u(t) =
1

A1ρα�(α)

{∫ t

0
w̄(t)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1

h(τ ) dτ

)

ds

+
ψ̄(t)
�̄

[
1

ρβ�(β)

(

a1

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

∫ s

0
w̄(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1

h(y) dy
)

dτ ds

+ a2

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1

∫ s

0
w̄(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1

h(y) dy
)

dτ ds
)

–
m∑

i=1

δi

∫ ξi

0
w̄(ξi)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1

h(τ ) dτ

)

ds

]}

, (2.10)

where

w̄(r) = (r – s)eχ (r–s), r = t, s, ξi, w̄(s) = (s – τ )eχ (s–τ ),
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χ = –p, p =
A2

2A1
,

ψ̄(t) = text
(

ρ

(ρ – 1 – ρχ )

)

+
(

ρ

(ρ – 1 – ρχ )

)2(
et ρ–1

ρ – eχ t),

�̄1 =
a1

ρβ�(β)

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1ψ̄(s) ds,

�̄2 =
a2

ρβ�(β)

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1ψ̄(s) ds. (2.11)

(ii) A2
2 – 4A1A3 < 0, then the solution of (2.2) is

u(t) =
1

A1βρα�(α)

{∫ t

0
¯̄w(t)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1

h(τ ) dτ

)

ds

+
¯̄ψ(t)
¯̄�

[
1

ρβ�(β)

(

a1

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

∫ s

0
¯̄w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1

h(y) dy
)

dτ ds

+ a2

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1

∫ s

0
¯̄w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1

h(y) dy
)

dτ ds
)

–
m∑

i=1

δi

∫ ξi

0
¯̄w(ξi)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1

h(τ ) dτ

)

ds

]}

, (2.12)

where

¯̄w(r) = sinb(r – s)e–γ (r–s), r = t, s, ξi, ¯̄w(s) = sinb(s – τ )e–γ (s–τ ),

χ1,2 = –γ ± bi, γ =
A2

2A1
,b =

√
4A1A3 – A2

2
2A1

,

¯̄ψ(t) =
1
b

[

e–γ t cos

(

bt –
(

ρ – 1
ρ

– γ

))

– et ρ–1
ρ cos

(
ρ – 1

ρ
– γ

)]

,

¯̄�1 =
a1

ρβ�(β)

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1 ¯̄ψ(s) ds,

¯̄�2 =
a2

ρβ�(β)

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1 ¯̄ψ(s) ds. (2.13)

3 Main results
Denote by C = {u(t) : u(t) ∈ C([0, 1],R)} the Banach space of all continuous functions de-
fined on [0, 1] into R endowed with the norm

‖u‖ = sup
{∣
∣u(t)

∣
∣, t ∈ [0, 1]

}
.

In view of Lemma 7, problem (1.1) can be transformed into the fixed point problem as
follows.
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Case I: For A2
2 – 4A1A3 > 0 as u = Lu, we define an operator L : C −→ C by the following

formula:

(Lu)(t) =
1

A1(χ2 – χ1)ρα�(α)

{∫ t

0
w(t)

·
(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f

(
τ , u(τ )

)
dτ

)

ds

+
ψ(t)
�

[
1

ρβ�(β)

(

a1

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f

(
y, u(y)

)
dy
)

dτ ds

+ a2

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f

(
y, u(y)

)
dy
)

dτ ds
)

–
m∑

i=1

δi

∫ ξi

0
w(ξi)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f

(
τ , u(τ )

)
dτ

)

ds

]}

. (3.1)

For the sake of computational convenience, we set

K =
2

A1(χ2 – χ1)ρα

[
1

�(α + 2)
+

�

|�|

(
(a1η

β+α+1
1 + a2)

ρβ�(α + β + 2)
–

m∑

i=1

δiξ
α+1
i

�(α + 2)

)]

, (3.2)

K̂ =
2�

A1(χ2 – χ1)ρα|�|

[
(a1η

β+α+1
1 + a2)

ρβ�(α + β + 2)
–

m∑

i=1

δiξ
α+1
i

�(α + 2)

]

, (3.3)

� = max
t∈[0,1]

∣
∣
∣
∣ρ

[
(e

ρ–1
ρ t – eχ2t)

(ρ – 1 – ρχ2)
–

(e
ρ–1
ρ t – eχ1t)

(ρ – 1 – ρχ1)

]∣
∣
∣
∣. (3.4)

Theorem 9 Let f : [0, 1] ×R→R be a continuous function such that the following condi-
tions hold:

(H1) |f (t, u) – f (t, v)| ≤ L‖u – v‖, ∀t ∈ [0, 1], L > 0, u, v ∈R,
(H2) |f (t, u)| ≤ μ(t), ∀(t, u) ∈ [0, 1] ×R and μ ∈ C([0, 1],R+) with

‖μ‖ = sup
t∈[0,1]

∣
∣μ(t)

∣
∣.

Then there exists at least one solution for problem (1.1) with A2
2 – 4A1A3 > 0 on [0, 1] if

LK̂ < 1. (3.5)

Proof We consider a closed ball Br = {u ∈ C : ‖u‖ ≤ r} with r ≥ K‖μ‖. We introduce the
operators L1 and L2 on Br as follows:

(L1u)(t) =
1

A1(χ2 – χ1)ρα�(α)

∫ t

0
w(t)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f

(
τ , u(τ )

)
dτ

)

ds,
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(L2u)(t) =
ψ(t)

A1(χ2 – χ1)�

[
1

ρα+β�(α)�(β)

(

a1

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f

(
y, u(y)

)
dy
)

dτ ds

+ a2

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f

(
y, u(y)

)
dy
)

dτ ds
)

–
m∑

i=1

δi

ρα�(α)

∫ ξi

0
w(ξi)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f

(
τ , u(τ )

)
dτ

)

ds

]

.

Notice that L = L1 + L2. For u, v ∈ Br , we have

‖L1u + L2v‖ = sup
t∈[0,1]

{∣
∣
∣
∣
∣

1
A1(χ2 – χ1)ρα�(α)

∫ t

0
w(t)

·
(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f

(
τ , u(τ )

)
dτ

)

ds

+
ψ(t)

A1(χ2 – χ1)�

[
1

ρα+β�(α)�(β)
·
(

a1

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

·
∫ s

0
w(s)

(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f

(
y, v(y)

)
dy
)

dτ ds

+ a2

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f

(
y, v(y)

)
dy
)

dτ ds
)

–
m∑

i=1

δi

ρα�(α)

∫ ξi

0
w(ξi)

·
(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f

(
τ , v(τ )

)
dτ

)

ds

]∣
∣
∣
∣
∣

}

≤ ‖μ‖ sup
t∈[0,1]

{∣
∣
∣
∣
∣

1
A1(χ2 – χ1)ρα�(α)

∫ t

0
w(t)

(
sα

α

)

ds

+
ψ(t)

A1(χ2 – χ1)�

[
1

ρα+β�(α)�(β)
·
(

a1

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

·
∫ s

0
w(s)

(
τα

α

)

dτ ds

+ a2

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1

∫ s

0
w(s)

(
τα

α

)

dτ ds
)

–
m∑

i=1

δi

ρα�(α)

∫ ξi

0
w(ξi)

(
sα

α

)

ds

]∣
∣
∣
∣
∣

}

.
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Thus, we have

‖L1u + L2v‖ ≤ ‖μ‖ sup
t∈[0,1]

{
2

A1(χ2 – χ1)ρα

[
tα+1

�(α + 2)
+

|ψ(t)|
|�|

(
(a1η

β+α+1
1 + a2)

ρβ�(α + β + 2)

–
m∑

i=1

δiξ
α+1
i

�(α + 2)

)]}

≤ ‖μ‖K ≤ r.

Thus, L1u + L2v ∈ Br . Using assumption (H1), we obtain

‖L2u – L2v‖ = sup
t∈[0,1]

{∣
∣
∣
∣
∣

ψ(t)
A1(χ2 – χ1)�

[
1

ρα+β�(α)�(β)

·
(

a1

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1[f

(
y, u(y)

)
– f

(
y, v(y)

)]
dy
)

dτ ds

+ a2

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1[f

(
y, u(y)

)
– f

(
y, v(y)

)]
dy
)

dτ ds
)

–
m∑

i=1

δi

ρα�(α)

∫ ξi

0
w(ξi)

·
(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1[f

(
τ , u(τ )

)
– f

(
τ , v(τ )

)]
dτ

)

ds

]∣
∣
∣
∣
∣

}

≤ L sup
t∈[0,1]

{
2|ψ(t)|

A1(χ2 – χ1)ρα|�|

[
(a1η

β+α+1
1 + a2)

ρβ�(α + β + 2)

–
m∑

i=1

δiξ
α+1
i

�(α + 2)

]}

‖u – v‖

≤ L

{
2�

A1(χ2 – χ1)ρα|�|

[
(a1η

β+α+1
1 + a2)

ρβ�(α + β + 2)
–

m∑

i=1

δiξ
α+1
i

�(α + 2)

]}

‖u – v‖.

Therefore,

‖L2u – L2v‖ = LK̂‖u – v‖,

which, in view of condition (3.5), shows that L2 is a contraction.
Next, we show thatL1 is compact and continuous. Notice that the continuity of f implies

that the operator L1 is continuous. Also, L1 is uniformly bounded on Br as

‖L1u‖ = sup
t∈[0,1]

{∣
∣
∣
∣

1
A1(χ2 – χ1)ρα�(α)

∫ t

0
w(t)
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·
(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f

(
τ , u(τ )

)
dτ

)

ds
∣
∣
∣
∣

}

≤ 2‖μ‖
A1(χ2 – χ1)ρα�(α + 2)

.

Let us fix sup(t,u)∈[0,1]×Br |f (t, u(t))| = f̄ , and take 0 < t1 < t2 < 1. Then

∣
∣(L1u)(t2) – (L1u)(t1)

∣
∣ =

∣
∣
∣
∣

1
A1(χ2 – χ1)ρα�(α)

[∫ t1

0

[
w(t2) – w(t1)

]

·
(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f

(
τ , u(τ )

)
dτ

)

ds

+
∫ t2

t1

w(t2)
(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f

(
τ , u(τ )

)
dτ

)]∣
∣
∣
∣

≤ 2f̄
A1(χ2 – χ1)ρα�(α + 2)

∣
∣tα+1

2 – tα+1
1

∣
∣→ 0

as (t2 – t1) → 0, independently of u ∈ Br . This implies that L1 is relatively compact on Br ,
it follows by the Arzelá–Ascoli theorem that the operator L1 is compact on Br . By using
Krasnoselskii’s fixed point theorem, there exists at least one solution on [0, 1]. �

Now we apply the Leray–Schauder nonlinear alternative to prove the existence of solu-
tions for problem (1.1) with A2

2 – 4A1A3 > 0.

Theorem 10 Let f : [0, 1] ×R →R be a continuous function. Assume that
(H3) There exist a function q ∈ C([0, 1],R+) and a nondecreasing function g : R+ → R

+

such that |f (t, u)| ≤ q(t)g(‖u‖), ∀(t, u) ∈ [0, 1] ×R.
(H4) There exists a constant M > 0 such that

M
‖q‖g(M)K

> 1.

Then problem (1.1) with A2
2 – 4A1A3 > 0 has at least one solution on [0, 1].

Proof We consider the operator L : C −→ C defined by (3.1). We show that L maps
bounded sets into bounded sets in C . For a positive number r, let Br = {u ∈ C : ‖u‖ ≤ r} be
a bounded set in C . Then we have

‖Lu‖ = sup
t∈[0,1]

∣
∣
∣
∣
∣

1
A1(χ2 – χ1)ρα�(α)

{∫ t

0
w(t)

·
(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f

(
τ , u(τ )

)
dτ

)

ds

+
ψ(t)
�

[
1

ρβ�(β)
.
(

a1

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f

(
y, u(y)

)
dy
)

dτ ds

+ a2

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1

∫ s

0
w(s)
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·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f

(
y, u(y)

)
dy
)

dτ ds
)

–
m∑

i=1

δi

∫ ξi

0
w(ξi)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f

(
τ , u(τ )

)
dτ

)

ds

]}∣
∣
∣
∣
∣
,

≤ ‖q‖g
(‖u‖) sup

t∈[0,1]

{
2

A1(χ2 – χ1)ρα

[
tα+1

�(α + 2)
+

|ψ(t)|
|�|

·
(

(a1η
β+α+1
1 + a2)

ρβ�(α + β + 2)
–

m∑

i=1

δiξ
α+1
i

�(α + 2)

)]}

,

≤ ‖q‖g
(‖u‖)K ≤ ‖q‖g(r)K .

Next, we show that L maps bounded sets into equicontinuous sets of C . Let t1, t2 ∈ [0, 1]
with t1 < t2 and u ∈ Br , where Br is a bounded set of C . Then we obtain

∣
∣(Lu)(t2) – (Lu)(t1)

∣
∣ =

∣
∣
∣
∣

1
A1(χ2 – χ1)ρα�(α)

{∫ t1

0

[
w(t2) – w(t1)

]

·
(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f

(
τ , u(τ )

)
dτ

)

ds

+
∫ t2

t1

w(t2)
(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f

(
τ , u(τ )

)
dτ

)

ds
∣
∣
∣
∣

+
|ψ(t2) – ψ(t1)|

|�|

[
1

ρβ�(β)
.
(

a1

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

·
∫ s

0
w(s)

(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f

(
y, u(y)

)
dy
)

dτ ds

+ a2

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f

(
y, u(y)

)
dy
)

dτ ds
)

–
m∑

i=1

δi

∫ ξi

0
w(ξi)

·
(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f

(
τ , u(τ )

)
dτ

)

ds

]}

≤ 2‖q‖g(r)
A1(χ2 – χ1)ρα

[
|tα+1

2 – tα+1
1 |

�(α + 2)

+
|ψ(t2) – ψ(t1)|

|�|

(
(a1η

β+α+1
1 + a2)

ρβ�(α + β + 2)
–

m∑

i=1

δiξ
α+1
i

�(α + 2)

)]

,

which tends to zero independently of u ∈ Br as t2 –t2 → 0. AsL satisfies the above assump-
tions, it follows by the Arzelá–Ascoli theorem that L : C −→ C is completely continuous. It
remains to show the boundedness of the set of solutions of u = λLu for λ ∈ [0, 1]. Indeed,
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let u be a solution. Then, for t ∈ [0, 1], we have

∣
∣u(t)

∣
∣ =

∣
∣λLu(t)

∣
∣

≤ ∣
∣Lu(t)

∣
∣,

which, on taking the norm for t ∈ [0, 1], yields

‖u‖ ≤ ‖q‖g(r)K ,

and then

‖u‖
‖q‖g(r)K

≤ 1.

In view of (H4), there exists M such that ‖u‖ �= M. Let us set

U =
{

u ∈ C : ‖u‖ < M
}

.

Note that the operator L : U → C is continuous and completely continuous. From the
choice of U , there is no u ∈ ∂U such that u = λL(u) for some λ ∈ (0, 1). Consequently,
by the nonlinear alternative of Leray–Schauder type, we deduce that L has a fixed point
u ∈ U , which is a solution of problem (1.1) with A2

2 – 4A1A3 > 0. �

Case II: For A2
2 –4A1A3 = 0 as u = J u, we define an operatorJ : C −→ C by the following

formula:

(J u)(t) =
1

A1ρα�(α)

{∫ t

0
w̄(t)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f

(
τ , u(τ )

)
dτ

)

ds

+
ψ̄(t)
�̄

[
1

ρβ�(β)

(

a1

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

∫ s

0
w̄(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f

(
y, u(y)

)
dy
)

dτ ds

+ a2

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1

∫ s

0
w̄(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f

(
y, u(y)

)
dy
)

dτ ds
)

–
m∑

i=1

δi

∫ ξi

0
w̄(ξi)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f

(
τ , u(τ )

)
dτ

)

ds

]}

. (3.6)

For the sake of computational convenience, we set

Q =
2

A1ρα

[
1

�(α + 3)
+

�̄

|�̄|

(
(a1η

β+α+2
1 + a2)

ρβ�(α + β + 3)
–

m∑

i=1

δiξ
α+2
i

�(α + 3)

)]

, (3.7)

Q̂ =
2�̄

A1ρα|�̄|

(
(a1η

β+α+2
1 + a2)

ρβ�(α + β + 3)
–

m∑

i=1

δiξ
α+2
i

�(α + 3)

)

, (3.8)
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�̄ = max
t∈[0,1]

∣
∣
∣
∣te

xt
(

ρ

(ρ – 1 – ρχ )

)

+
(

ρ

(ρ – 1 – ρχ )

)2(
et ρ–1

ρ – eχ t)
∣
∣
∣
∣. (3.9)

Corollary 11 Let f : [0, 1] × R → R be a continuous function satisfying conditions (H1)
and (H2). Then problem (1.1) with A2

2 – 4A1A3 = 0 has at least one solution on [0, 1] if

LQ̂ < 1.

Corollary 12 Let f : [0, 1] × R → R be a continuous function. Then problem (1.1) with
A2

2 – 4A1A3 = 0 has at least one solution on [0, 1], if (H3) and the condition
(H5) There exists a constant M1 > 0 such that

M1

‖q‖g(M1)Q
> 1,

where Q is defined by (3.7), are satisfied.

Case III: For A2
2 –4A1A3 < 0 as u = Gu, we define an operator G : C −→ C by the following

formula:

(Gu)(t) =
1

A1bρα�(α)

{∫ t

0
¯̄w(t)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f

(
τ , u(τ )

)
dτ

)

ds

+
¯̄ψ(t)
¯̄�

[
1

ρβ�(β)
(a1

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

∫ s

0
¯̄w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f

(
y, u(y)

)
dy
)

dτ ds

+ a2

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1

∫ s

0
¯̄w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f

(
y, u(y)

)
dy
)

dτ ds)

–
m∑

i=1

δi

∫ ξi

0
¯̄w(ξi)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f

(
τ , u(τ )

)
dτ

)

ds

]}

. (3.10)

For the sake of computational convenience, we set

H =
1

A1bρα

[
1

�(α + 2)
+

¯̄�
| ¯̄�|

(
(a1η

β+α+1
1 + a2)

ρβ�(α + β + 2)
–

m∑

i=1

δiξ
α+1
i

�(α + 2)

)]

, (3.11)

Ĥ =
¯̄̄
�

A1bρα| ¯̄�|

(
(a1η

β+α+1
1 + a2)

ρβ�(α + β + 2)
–

m∑

i=1

δiξ
α+1
i

�(α + 2)

)

, (3.12)

¯̄� = max
t∈[0,1]

∣
∣
∣
∣
1
b

[

–et ρ–1
ρ cos

(
ρ – 1

ρ
– γ

)

+ e–γ t cos

(

bt –
(

ρ – 1
ρ

– γ

))]∣
∣
∣
∣. (3.13)

Corollary 13 Let f : [0, 1] × R → R be a continuous function satisfying conditions (H1)
and (H2). Then problem (1.1) with A2

2 – 4A1A3 < 0 has at least one solution on [0, 1] if

LĤ < 1.
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Corollary 14 Let f : [0, 1] × R → R be a continuous function. Then problem (1.1) with
A2

2 – 4A1A3 < 0 has at least one solution on [0, 1] if (H3) and the condition
(H6) There exists a constant M2 > 0 such that

M2

‖q‖g(M2)H
> 1,

where H is defined by (3.11), are satisfied.

We conclude this section with some examples showing the applicability of our main
results.

Example 1 Consider the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

CD
5
2 , 1

4
0+ u(t) + 3 CD

3
2 , 1

4
0+ u(t) + 2 CD

1
2 , 1

4
0+ u(t) = et√

63+t
+ tan–1 u(t)

2t5+40 , t ∈ [0, 1],

u(0) = u′(0) = 0,
∑2

i=1 δiu(ξi) = 1
ρβ�(β) [a1

∫ η1
0 e

ρ–1
ρ (η1–s)(η1 – s)β–1u(s) ds

+ a2
∫ 1
η2

e
ρ–1
ρ (1–s)(1 – s)β–1u(s) ds],

(3.14)

where a1 = 1, a2 = 3, a3 = 2, ρ = 1
4 , α = β = 1

2 , δ1 = 1, δ2 = 2, η1 = 1
8 , η2 = 1

4 , ξ1 = 1
6 , ξ2 = 1

5 .
Clearly, |f (t, u)| ≤ et√

63+t
+ π

2(2t5+40) , |f (t, u) – f (t, v)| ≤ L|u – v|, with L = 1
42 . Using the given

values, we find that � = 0.02217983, � = 0.0059975, and K = 25.4438. Also we have

LK̂ ≈ 0.31923 ≤ 1.

Thus, all the conditions of Theorem 9 are satisfied and problem (3.14) has at least one
solution on [0, 1].

Example 2 Consider the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

CD
5
2 , 1

4
0+ u(t) + 3 CD

3
2 , 1

4
0+ u(t) + 2 CD

1
2 , 1

4
0+ u(t) = t

5
√

t2+35
(eu(t) + 1

2 ), t ∈ [0, 1],

u(0) = u′(0) = 0,
∑2

i=1 δiu(ξi) = 1
ρβ�(β) [a1

∫ η1
0 e

ρ–1
ρ (η1–s)(η1 – s)β–1u(s) ds

+ a2
∫ 1
η2

e
ρ–1
ρ (1–s)(1 – s)β–1u(s) ds],

(3.15)

supplemented with the boundary conditions of problem (3.14). Evidently, |f (t, u)| ≤
q(t)g(‖u‖) with g(‖u‖) = ‖u‖ + 1

2 (where g is defined by g(M) = M + 1
2 ) and q(t) = t

5
√

t2+35
and ‖q‖ = 1

30 . By condition (H4), that is, M
‖q‖g(M)K > 1, we find that M > 2.79221. Thus, we

deduce by Theorem 10 that problem (3.15) has at least one solution on [0, 1].

4 Inclusion problem
In this section, we extend our study to the multivalued analogue of problem (1.2). We
recall some basic notions needed throughout this section.

For a normed space (X,‖ · ‖), let

Pcp,c(X) =
{
Y ∈P(X) : Y is compact and convex

}
.
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A multivalued map F : [0, 1] ×R →P(R) is called Carathéodory if
(i) t 
→ F(t, u) is measurable for each u ∈R;

(ii) u 
→ F(t, u) is upper semicontinuous for almost all t ∈ [0, 1];
Further, a Carathéodory function F is called L1-Carathéodory if

(iii) for each a > 0, there exists ϕa ∈ L1([0, 1],R+) such that

∥
∥F(t, u)

∥
∥ = sup

{|x| : x ∈ F(t, u)
}≤ ϕa(t)

for all ‖u‖ < a and for a.e. t ∈ [0, 1].

Definition 15 A function u ∈ C is called a solution of problem (1.2) if we can find a func-
tion f ∈ L1([0, 1],R) with f (t) ∈ F(t, u) for a.e. t ∈ [0, 1] and

u(t) =
1

A1(χ2 – χ1)ρα�(α)

{∫ t

0
w(t)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f (τ ) dτ

)

ds

+
ψ(t)
�

[
1

ρβ�(β)

(

a1

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f (y) dy

)

dτ ds

+ a2

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f (y) dy

)

dτ ds
)

–
m∑

i=1

δi

∫ ξi

0
w(ξi)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f (τ ) dτ

)

ds

]}

,

where ψ(t), �, �1, and �2 are given by (2.4).

We define the set of selections of F by SF ,u := {x ∈ L1([0, 1],R) : x(t) ∈ F(t, u(t)) on [0, 1]}
for each u ∈ C . The following lemma is helpful in the sequel.

Lemma 16 ([30]) Let X be a Banach space. Let F : [0, 1] × R → Pcp,c(R) be an L1-
Carathéodory multivalued map, and let T be a linear continuous mapping from L1([0, 1],
R) to C([0, 1],R). Then the operator

T ◦ SF : C
(
[0, 1],R

)→Pcp,c
(
C
(
[0, 1],R

))
, u 
→ (T ◦ SF )(u) = T (SF ,u)

is a closed graph operator in C([0, 1],R) × C([0, 1],R).

4.1 The upper semicontinuous case
In the following result, we assume that the multivalued map F is convex-valued and apply
the Leray–Schauder nonlinear alternative for multivalued maps to prove the existence of
solutions for the problem at hand.
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Theorem 17 Assume that:
(A1) F : [0, 1] ×R →Pcp,c(R) is L1-Carathéodory.
(A2) There exist a function q ∈ C([0, 1],R+) and a continuous nondecreasing function g :

[0,∞) → (0,∞) such that

∥
∥F(t, u)

∥
∥
P := sup

{|x| : x ∈ F(t, u)
}≤ q(t)g

(‖u‖) for each (t, u) ∈ [0, 1] ×R.

(A3) There exists a constant M > 0 such that

M
‖q‖g(M)K

> 1.

Then problem (1.2) with A2
2 – 4A1A3 > 0 has at least one solution on [0, 1].

Proof Define an operator T : C →P(C) by

T(u) =

{

h(t) ∈ C : h(t) =
1

A1(χ2 – χ1)ρα�(α)

{∫ t

0
w(t)

·
(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f (τ ) dτ

)

ds

+
ψ(t)
�

[
1

ρβ�(β)

(

a1

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f (y) dy

)

dτ ds

· +a2

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1 ·

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f (y) dy

)

dτ ds
)

–
m∑

i=1

δi

∫ ξi

0
w(ξi)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f (τ ) dτ

)

ds

]

, f ∈ SF ,u

}

. (4.1)

It is clear that fixed points of T are solutions of problem (1.2). So, we need to verify that
the operator T satisfies all the conditions of Leray–Schauder nonlinear alternative. This
will be done in several steps.

Step 1. T(u) is convex for each u ∈ C . Indeed, if h1, h2 belongs to T(u), then there exist
f1, f2 ∈ SF ,u such that, for each t ∈ [0, 1], we get

hi(t) =
1

A1(χ2 – χ1)ρα�(α)

{∫ t

0
w(t)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1fi(τ ) dτ

)

ds

+
ψ(t)
�

[
1

ρβ�(β)

(

a1

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1fi(y) dy

)

dτ ds

+ a2

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1

∫ s

0
w(s)
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·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1fi(y) dy

)

dτ ds
)

–
m∑

i=1

δi

∫ ξi

0
w(ξi)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1fi(τ ) dτ

)

ds

]}

, i = 1, 2.

For 0 ≤ σ ≤ 1 and for each t ∈ [0, 1], we obtain

[
σh1 + (1 – σ )h2

]
(t) =

1
A1(χ2 – χ1)ρα�(α)

{∫ t

0
w(t)

·
(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1[σ f1(τ ) + (1 – σ )f2(τ )

]
dτ

)

ds

+
ψ(t)
�

[
1

ρβ�(β)

(

a1

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1[σ f1(y) + (1 – σ )f2(y)

]
dy
)

dτ ds

+ a2

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1[σ f1(y) + (1 – σ )f2(y)

]
dy
)

dτ ds
)

–
m∑

i=1

δi

∫ ξi

0
w(ξi)

·
(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1[σ f1(τ ) + (1 – σ )f2(τ )

]
dτ

)

ds

]}

.

Hence, by the convexity of SF ,u, it follows that σh1 + (1 – σ )h2 ∈ T(u).
Step 2. T(u) maps bounded sets into bounded sets in C . Let Br = {u ∈ C : ‖u‖ ≤ r} be

a bounded ball in C , where r is a positive number. Thus, for each h ∈ T(u), u ∈ Br , there
exists f ∈ SF ,u such that

h(t) =
1

A1(χ2 – χ1)ρα�(α)

{∫ t

0
w(t)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f (τ ) dτ

)

ds

+
ψ(t)
�

[
1

ρβ�(β)

(

a1

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f (y) dy

)

dτ ds

+ a2

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f (y) dy

)

dτ ds
)

–
m∑

i=1

δi

∫ ξi

0
w(ξi)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f (τ ) dτ

)

ds

]}

.



Shammakh et al. Advances in Difference Equations        (2020) 2020:645 Page 19 of 28

In view of (A2), for each t ∈ [0, 1], we find that

∣
∣h(t)

∣
∣≤ 1

A1(χ2 – χ1)ρα�(α)

{∫ t

0

∣
∣w(t)

∣
∣

·
(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1q(τ )g

(‖u‖)dτ

)

ds

+
|ψ(t)|
|�|

[
1

ρβ�(β)
·
(

a1

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

∫ s

0

∣
∣w(s)

∣
∣

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1q(y)g

(‖u‖)dy
)

dτ ds

+ a2

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1

∫ s

0

∣
∣w(s)

∣
∣

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1q(y)g

(‖u‖)dy
)

dτ ds
)

–
m∑

i=1

δi

∫ ξi

0

∣
∣w(ξi)

∣
∣

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1q(τ )g

(‖u‖)dτ

)

ds

]}

≤ ‖q‖g
(‖u‖)K ,

which leads to ‖h‖ ≤ ‖q‖g(r)K , where K is given by (3.2).
Step 3. T(u) maps bounded sets into equicontinuous sets of C . Let t1, t2 ∈ [0, 1], t1 < t2,

and u ∈ Br . Then we have

∣
∣h(t2) – h(t1)

∣
∣≤ 1

A1(χ2 – χ1)ρα�(α)

{∣
∣
∣
∣

∫ t1

0

[
w(t2) – w(t1)

]

·
(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f (τ ) dτ

)

ds

+
∫ t2

t1

w(t2)
(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f (τ ) dτ

)

ds
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

ψ(t2) – ψ(t1)
�

[
1

ρβ�(β)
·
(

a1

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

·
∫ s

0
w(s)

(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f (y) dy

)

dτ ds

+ a2

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f (y) dy

)

dτ ds
)

–
m∑

i=1

δi

∫ ξi

0
w(ξi)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f (τ ) dτ

)

ds

]∣
∣
∣
∣
∣

}

≤ 2‖q‖g(r)
A1(χ2 – χ1)ρα

[
|tα+1

2 – tα+1
1 |

�(α + 2)
+

(ψ(t2) – ψ(t1))
|�|

·
(

(a1η
β+α+1
1 + a2)

ρβ�(α + β + 2)
–

m∑

i=1

δiξ
α+1
i

�(α + 2)

)]

,
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which tends to zero independent of u ∈ Br as (t2 – t1) → 0. Combining the outcome of
Steps 1–3 with the Arzelá–Ascoli theorem leads to the conclusion that T : C → C is com-
pletely continuous.

Step 4. T has a closed graph. Suppose that there exists un → u∗, hn ∈ T(un) and hn → h∗.
Then we have to establish that h∗ ∈ T(u∗). Since hn ∈ T(un), there exists fn ∈ SF ,un . In
consequence, for each t ∈ [0, 1], we get

hn(t) =
1

A1(χ2 – χ1)ρα�(α)

{∫ t

0
w(t)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1fn(τ ) dτ

)

ds

+
ψ(t)
�

[
1

ρβ�(β)

(

a1

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1fn(y) dy

)

dτ ds

+ a2

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1fn(y) dy

)

dτ ds
)

–
m∑

i=1

δi

∫ ξi

0
w(ξi)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1fn(τ ) dτ

)

ds

]}

.

Next, we have to show that there exists f ∗ ∈ SF ,u∗ such that, for each t ∈ [0, 1],

h∗(t) =
1

A1(χ2 – χ1)ρα�(α)

{∫ t

0
w(t)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f ∗(τ ) dτ

)

ds

+
ψ(t)
�

[
1

ρβ�(β)

(

a1

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f ∗(y) dy

)

dτ ds

+ a2

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f ∗(y) dy

)

dτ ds
)

–
m∑

i=1

δi

∫ ξi

0
w(ξi)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f ∗(τ ) dτ

)

ds

]}

.

Considering the continuous linear operator T : L1([0, 1],R) → C , we get

f 
→ T (f )(t) =
1

A1(χ2 – χ1)ρα�(α)

{∫ t

0
w(t)

·
(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f (τ ) dτ

)

ds

+
ψ(t)
�

[
1

ρβ�(β)

(

a1

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

∫ s

0
w(s)
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·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f (y) dy

)

dτ ds

+ a2

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f (y) dy

)

dτ ds
)

–
m∑

i=1

δi

∫ ξi

0
w(ξi)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f (τ ) dτ

)

ds

]}

.

Note that

∥
∥hn(t) – h∗(t)

∥
∥ = sup

t∈[0,1]

∣
∣
∣
∣
∣

1
A1(χ2 – χ1)ρα�(α)

{∫ t

0
w(t)

·
(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1[fn(τ ) – f ∗(τ )

]
dτ

)

ds

+
ψ(t)
φ

[
1

ρβ�(β)

(

a1

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1[fn(y) – f ∗(y)

]
dy
)

dτ ds

+ a2

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1[fn(y) – f ∗(y)

]
dy
)

dτ ds
)

–
m∑

i=1

δi

∫ ξi

0
w(ξi)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1[fn(τ ) – f ∗(τ )

]
dτ

)

ds

]}∣
∣
∣
∣
∣

tends to 0 as n → ∞. Thus, it follows by Lemma 16 that T ◦SF ,u is a closed graph operator.
Furthermore, hn(t) ∈ T (SF ,un ). Since un → u∗, we have

h∗(t) =
1

A1(χ2 – χ1)ρα�(α)

{∫ t

0
w(t)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f ∗(τ ) dτ

)

ds

+
ψ(t)
�

[
1

ρβ�(β)

(

a1

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f ∗(y) dy

)

dτ ds

+ a2

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f ∗(y) dy

)

dτ ds
)

–
m∑

i=1

δi

∫ ξi

0
w(ξi)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f ∗(τ ) dτ

)

ds

]}

for some f ∗ ∈ SF ,u∗ .
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Step 5. There exists an open set V ⊆ C with u /∈ vT(u) for any v ∈ (0, 1) and all u ∈ ∂V .
Let u be a solution of (1.2). Then there exists f ∈ L1([0, 1],R) with f ∈ SF ,u such that, for
t ∈ [0, 1], we have

u(t) =
λ

A1(χ2 – χ1)ρα�(α)

{∫ t

0
w(t)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f (τ ) dτ

)

ds

+
ψ(t)
�

[
1

ρβ�(β)

(

a1

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f (y) dy

)

dτ ds

+ a2

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f (y) dy

)

dτ ds
)

–
m∑

i=1

δi

∫ ξi

0
w(ξi)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f (τ ) dτ

)

ds

]}

.

Using the computations done in Step 2, for each t ∈ [0, 1], we get

∣
∣u(t)

∣
∣ =

∣
∣λLu(t)

∣
∣

≤ ∣
∣Lu(t)

∣
∣,

which, on taking the norm for t ∈ [0, 1], yields

‖u‖ ≤ ‖q‖g(r)K ,

and then

‖u‖
‖q‖g(r)K

≤ 1,

By (A3), there exists M such that ‖u‖ �= M. Let us set

V =
{

u ∈ C : ‖u‖ < M
}

.

Note that the operator T : V → P(C) is a compact multivalued map, u.s.c. with convex
closed values. With the given choice of V , it is not possible to find u ∈ ∂V satisfying u ∈
vT(u) for some v ∈ (0, 1). Consequently, by the nonlinear alternative of Leray–Schauder
type, the operator T has a fixed point u ∈ V , which corresponds to a solution of problem
(1.2) with A2

2 – 4A1A3 > 0. �

4.2 The Lipschitz case
This subsection concerns the existence of solutions for problem (1.2) with a nonconvex-
valued right-hand side by applying a fixed point theorem for multivalued maps due to
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Covitz and Nadler [31]: “If T : Z →Pcl(Z) is a contraction, then FixT �= φ, where Pcl(Z) =
{Y ∈P(Z) : Y is closed}.”

Let (Z , d) be a metric space induced from the normed space (Z ,‖ · ‖). Consider Hd :
P(Z) ×P(Z) →R∪ {∞} given by

Hd(A, B) = max
{

sup
a∈A

d(a, B), sup
b∈B

d(A, b)
}

,

where d(A, b) = infa∈A d(a; b) and d(a, B) = infb∈B d(a; b). Then (Pb,cl(Z), Hd) is a metric
space, where Pb,cl(Z) = {Y ∈P(Z) : Y is bounded and closed}.

Theorem 18 Assume that
(A4) F : [0, 1] × R → Pcp(R) is such that F(·, u) : [0, 1] → Pcp(R) is measurable for each

u ∈R, where Pcp(R) = {Y ∈P(R) : Y is compact};
(A5) Hd(F(t, u), F(t, û)) ≤ � (t)|u – û| for almost all t ∈ [0, 1] and u, û ∈ R with � ∈

C([0, 1],R+) and d(0, F(t, 0)) ≤ � (t) for almost all t ∈ [0, 1].
Then problem (1.2) with A2

2 – 4A1A3 > 0 has at least one solution on [0, 1] if

‖�‖K < 1. (4.2)

Proof Let us verify that the operator T : C →P(C), defined in (4.1), satisfies the hypothesis
of the Covitz and Nadler fixed point theorem. We establish it in two steps.

Step 1. T(u) is nonempty and closed for every f ∈ SF ,u. Since the set-valued map F(·, u(·))
is measurable, it admits a measurable selection f : [0, 1] → R by the measurable selection
theorem ([32], Theorem III.6). By (A4), we have

∣
∣f (t)

∣
∣≤ � (t)

(
1 +

∣
∣u(t)

∣
∣
)
,

that is, f ∈ L1([0, 1],R). So, F is integrable bounded. Therefore, SF ,u �= φ.
Now, we establish that T(u) is closed for each u ∈ C . Let {mn}n≥0 ∈ T(u) be such that

mn → m as n → ∞ in C . Then, m ∈ C and we can find fn ∈ SF ,un such that, for each t ∈ [0, 1],

mn(t) =
1

A1(χ2 – χ1)ρα�(α)

{∫ t

0
w(t)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1fn(τ ) dτ

)

ds

+
ψ(t)
�

[
1

ρβ�(β)

(

a1

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1fn(y) dy

)

dτ ds

+ a2

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1fn(y) dy

)

dτ ds
)

–
m∑

i=1

δi

∫ ξi

0
w(ξi)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1fn(τ ) dτ

)

ds

]}

.
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As F has compact values, we can pass onto a subsequence (if necessary) to obtain that fn

converges to f in L1([0, 1],R). So f ∈ SF ,u. Then, for each t ∈ [0, 1], we get

mn(t) → m(t) =
1

A1(χ2 – χ1)ρα�(α)

{∫ t

0
w(t)

·
(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f (τ ) dτ

)

ds

+
ψ(t)
�

[
1

ρβ�(β)

(

a1

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f (y) dy

)

dτ ds

+ a2

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f (y) dy

)

dτ ds
)

–
m∑

i=1

δi

∫ ξi

0
w(ξi)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f (τ ) dτ

)

ds

]}

,

which implies that m ∈ T(u).
Step 2. We show that there exists 0 < � < 1 (� = ‖�‖K ) satisfying

Hd
(
T(u), T(û)

)≤ �‖u – û‖ for each u, û ∈ C.

Let us take u, û ∈ C and h1 ∈ T(u). Then there exists f1(t) ∈ F(t, u(t)) such that, for each
t ∈ [0, 1],

h1(t) =
1

A1(χ2 – χ1)ρα�(α)

{∫ t

0
w(t)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f1(τ ) dτ

)

ds

+
ψ(t)
�

[
1

ρβ�(β)

(

a1

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f1(y) dy

)

dτ ds

+ a2

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f1(y) dy

)

dτ ds
)

–
m∑

i=1

δi

∫ ξi

0
w(ξi)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f1(τ ) dτ

)

ds

]}

.

By (A5), we have that Hd(F(t, u), F(t, û)) ≤ � (t)|u(t) – û(t)|. So, there exists v(t) ∈ F(t, û(t))
satisfying |f1(t) – v| ≤ � (t)|u(t) – û(t)|, t ∈ [0, 1].
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Define W : [0, 1] →P(R) by

W(t) =
{

v ∈ R :
∣
∣f1(t) – v

∣
∣≤ � (t)

∣
∣u(t) – û(t)

∣
∣
}

.

As the multivalued operator W(t) ∩ F(t, û(t)) is measurable by (Proposition III.4 [32]), we
can find a function f2(t), which is a measurable selection for W . So f2(t) ∈ F(t, û(t)), and
for each t ∈ [0, 1], we have |f1(t) – f2(t)| ≤ � (t)|u(t) – û(t)|. For each t ∈ [0, 1], we define

h2(t) =
1

A1(χ2 – χ1)ρα�(α)

{∫ t

0
w(t)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f2(τ ) dτ

)

ds

+
ψ(t)
�

[
1

ρβ�(β)

(

a1

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f2(y) dy

)

dτ ds

+ a2

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1f2(y) dy

)

dτ ds
)

–
m∑

i=1

δi

∫ ξi

0
w(ξi)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1f2(τ ) dτ

)

ds

]}

.

As a result, we get

∣
∣h1(t) – h2(t)

∣
∣ =

∣
∣
∣
∣
∣

1
A1(χ2 – χ1)ρα�(α)

{∫ t

0
w(t)

·
(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1[f1(τ ) – f2(τ )

]
dτ

)

ds

+
ψ(t)
�

[
1

ρβ�(β)

(

a1

∫ η1

0
e

ρ–1
ρ (η1–s)(η1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1[f1(y) – f2(y)

]
dy
)

dτ ds

+ a2

∫ 1

η2

e
ρ–1
ρ (1–s)(1 – s)β–1

∫ s

0
w(s)

·
(∫ τ

0
e

ρ–1
ρ (τ–y)(τ – y)α–1[f1(y) – f2(y)

]
dy
)

dτ ds
)

–
m∑

i=1

δi

∫ ξi

0
w(ξi)

(∫ s

0
e

ρ–1
ρ (s–τ )(s – τ )α–1[f1(τ ) – f2(τ )

]
dτ

)

ds

]}∣
∣
∣
∣
∣

≤ K‖�‖‖u – û‖.

Hence,

‖h1 – h2‖ ≤ K‖�‖‖u – û‖.
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Analogously, we can interchange the roles of u and û to get

Hd
(
T(u), T(û)

)≤ K‖�‖‖u – û‖,

which implies that T is a contraction by condition (4.2). Therefore, by the conclusion of
the Covitz and Nadler fixed point theorem, T has a fixed point u, which corresponds to a
solution of (1.2). �

Now, we will discuss the remaining two cases as follows.

Corollary 19 Assume that (A1) and (A2) hold. In addition, we assume that
(A6) There exists a constant M > 0 such that

M
‖q‖g(M)Q

> 1.

Then problem (1.2) with A2
2 – 4A1A3 = 0 has at least one solution on [0, 1].

Corollary 20 Assume that (A4) and (A5) hold. Then problem (1.2) with A2
2 – 4A1A3 = 0

has at least one solution on [0, 1] if

‖�‖Q < 1. (4.3)

Corollary 21 Assume that (A1) and (A2) hold. In addition, we assume that
(A7) There exists a constant M > 0 such that

M
‖q‖g(M)H

> 1.

Then problem (1.2) with A2
2 – 4A1A3 < 0 has at least one solution on [0, 1].

Corollary 22 Assume that (A4) and (A5) hold. Then problem (1.2) with A2
2 – 4A1A3 < 0

has at least one solution on [0, 1] if

‖�‖H < 1. (4.4)

The following examples show the applicability of inclusion results.

Example 3 Consider the following problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

CD
5
2 , 1

4
0+ u(t) + 3 CD

3
2 , 1

4
0+ u(t) + 2 CD

1
2 , 1

4
0+ u(t) ∈ F(t, u(t)), t ∈ [0, 1],

u(0) = u′(0) = 0,
∑2

i=1 δiu(ξi) = 1
ρβ�(β) [a1

∫ η1
0 e

ρ–1
ρ (η1–s)(η1 – s)β–1u(s) ds

+ a2
∫ 1
η2

e
ρ–1
ρ (1–s)(1 – s)β–1u(s) ds],

(4.5)

where F : [0, 1] ×R →P(R) is a multivalued map given by

u → F(t, u) =
[

u4

u4 + 2
+ t2 + 5,

u
u + 1

+ t + 1
]

. (4.6)
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For f ∈ F , we have

|f | ≤ max

[
u4

u4 + 2
+ t2 + 5,

u
u + 1

+ t + 1
]

≤ 7.

Here, a1 = 1, a2 = 3, a3 = 2, ρ = 1
4 , α = β = 1

2 , δ1 = 1, δ2 = 2, η1 = 1
8 , η2 = 1

4 , ξ1 = 1
6 , ξ2 = 1

5 .
Clearly,

∥
∥F(t, u)

∥
∥
P := sup

{|x| : x ∈ F(t, u)
}≤ q(t)g

(‖u‖), u ∈R,

with q(t) = 1, g(‖u‖) = 7. Using the given values, we find that � = 0.02217983, � =
0.0059975, andK = 25.4438. Thus,

M > ‖q‖g(M)K ≈ 178.1066.

Clearly, all the conditions of Theorem 17 are satisfied. So, there exists at least one solution
of problem (4.5) on [0, 1].

Example 4 Consider the fractional inclusion boundary value problem (4.5) with F :
[0, 1] ×R →P(R) given by

u → F(t, u) =
[

0,
1

(t + 6)2

(

sin u +
1

15

)]

. (4.7)

Clearly, Hd(F(t, u), F(t, û)) ≤ � (t)|u – û|, where � (t) = 1
(t+6)2 . Also d(0, F(t, 0)) ≤ � (t) for

almost all t ∈ [0, 1] and

‖�‖K ≈ 0.706772222 < 1.

Since all the conditions of Theorem 18 hold, problem (4.5) with F given by (4.7) has at
least one solution on [0, 1].
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