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Abstract
In the present article, we elaborate on the notion to obtain bounds for the soft
margin estimator of “Identification of Patient Zero in Static and Temporal
Network-Robustness and Limitations”. To achieve these bounds for the soft margin
estimator, we utilize the concavity of the Gaussian weighting function and
well-known Jensen’s inequality. To acquire some more general bounds for the soft
margin estimator, we consider some general functions defined on rectangles. We also
use the behavior of the Jaccard similarity function to extract some handsome bounds
for the soft margin estimator.
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1 Introduction
One of the most dangerous threats to the human society is the infectious disease. When
this infectious disease becomes an epidemic, it will cause a big loss to human life and dam-
age the economy on a large scale. The epidemic infectious diseases are also very dangerous
in the sense that they are spreading very rapidly to a massive quantity of people in a given
population in a limited period of time. Many factors that are contributing to epidemic in-
fectious diseases are climate change, genetic change, globalization, and urbanization, and
most of these factors are to some extent caused by humans. Many people from different
fields have a lot of contribution to the detection of epidemic source and controlling of epi-
demic spreading. Mathematicians have also played a vital role in the modeling of epidemic
spreading.

The contagion processes are the most attractive dynamic processes for the real life com-
plex network of public interest [11, 12, 22, 24]. To model epidemic spreading, epidemiolo-
gists frequently use the compartmental models such as SIR models [17], SIS models [16],
and SEIR models [20]. These models are very important when explicitly modeling and
estimating the quantity of susceptible and infected individuals in a population at risk.

Epidemiologists have obtained many models for the epidemic source detection by im-
posing some restrictions on the network structure or on the spreading model process of
compartmental models (SIR, SIS) or both [12–14, 23, 25, 28]. The epidemiologists an-
alyze the virous genetic evolution [15, 26] and detect the epidemic source or do back-
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tracking by using given data [10]. Zhu et al. [28] initiated a model in which they estab-
lished that the maximum distance to the infected nodes can be minimized by the source
nodes on infinite trees. Altarelli et al. [8] estimated the epidemic source by using the mes-
sage passing method, where they replaced the independent assumption by a tree-like con-
tact network. Lokhov et al. [21] estimated the probability of a given node to produce the
observed snapshot by considering the SIR model and using message-passing algorithm.
Antulov-Fantulin et al. [9] proposed a model to analyze source probability estimators.
They dropped the independency assumptions on nodes and all network structures and
analyzed the source probability estimators for general compartmental models. The soft
margin estimator for the proposed model of Antulov-Fantulin et al. [9] is given by

P̂(
−→
R = −→r ∗|� = θ ) =

1
n

n∑

i=1

exp

(
–

(ϕ(−→r ∗,−→r θ ,i) – 1)2

a2

)
, (1)

where
−→
Rθ is a binary vector that indicates the random outcomes of the epidemic process,

{−→r θ ,1,−→r θ ,2, . . . ,−→r θ ,n} are the sample vectors that show the n independent outcomes of
the epidemic process with the source term θ , ϕ : Rn × R

n → [0, 1] is a Jaccard similarity
function, which can be calculated by dividing the cardinality of the intersection of the set
of infected nodes in −→r 1,−→r 2 by the cardinality of their union, ϕ(−→r∗ ,−→r θ ,i) is a random vari-
able that measures the similarity between the fixed realization vector −→r∗ and the random
realization vector −→r θ ,i, and exp(– (x–1)2

a2 ) is the Gaussian weighting function with a > 0.
We will use the following hypothesis for the construction of our results throughout the

paper.
H : Let Rθ be a binary vector, {−→r θ ,1,−→r θ ,2, . . . ,−→r θ ,n} be n independent vectors, −→r ∗ be a

fixed realization vector, a be a positive real number, ϕ : Rn × R
n �→ [0, 1] be the Jaccard

similarity function, and P̂(
−→
R = −→r ∗|� = θ ) be the soft margin estimator as given in (1).

In the remaining portion of this section, we are going to discuss briefly convexity and
concavity.

The notion of convex and concave functions is so impressive in all fields of science,
especially in mathematics, because of its notable property. Therefore many generalized
and interesting results for convex and concave functions and their application have been
accomplished [1–7, 18, 19, 27].

Now, the formal definition of convex and concave functions is stated as follows.

Definition 1 Let I be an arbitrary interval in R. Then the function � : I →R is convex if
the inequality

�
(
λx + (1 – λ)y

) ≤ λ�(x) + (1 – λ)�(y) (2)

holds for all x, y ∈ I and λ ∈ [0, 1].
If inequality (2) holds in the reverse direction, then the function � : I → R is said to be

concave.

There are many inequalities proved for convex and concave functions. Among these in-
equalities, one of the most prominent and dynamic inequality is the well known Jensen’s
inequality in the literature. Jensen’s inequality is one of the most leading and generalized
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inequality in the sense that many inequalities can be assumed from it. The formal state-
ment of Jensen’s inequality can be read in the following theorem.

Theorem 1 Let I be an interval in R, x = (x1, x2, . . . , xn) be an n-tuple such that xi ∈ I for all
i ∈ {1, 2, . . . , n}, and p = (p1, p2, . . . , pn) be a positive n-tuple of real entries with Pn =

∑n
i=1 pi.

If the function � : I →R is convex, then

�

(
1

Pn

n∑

i=1

pixi

)
≤ 1

Pn

n∑

i=1

pi�(xi). (3)

If the function � : I →R is concave, then inequality (3) holds in the reverse direction.

In this paper, we advance the idea to give bounds for the soft margin estimator given
in (1) while accustoming the existing notion of concave function. To achieve bounds for
the soft margin estimator, we consume the concavity of Gaussian weighting function and
Jensen’s inequality. To obtain some more general and clear bounds for soft margin esti-
mator, we use some general functions defined on rectangles, which are monotonic with
respect to the first variable. We also utilize the behavior of the Jaccard similarity function
for obtaining the desire bounds of soft margin estimator.

2 Main results
In order to build our results, we first establish the following lemma, which will support us
in the achievement of our results.

Lemma 1 The Gaussian weighting function � : [0, 1] →R defined by

�(x) = exp

(
–

(x – 1)2

a2

)

is concave for all a ∈ [
√

2,∞).

Proof To show the concavity of Gaussian function �(x), we use the double derivative test.
For this, differentiating two times �(x) with respect to x, we get

� ′′(x) = exp

(
–

(x – 1)2

a2

)[
4(x – 1)2 – 2a2

a4

]
.

Since

exp

(
–

(x – 1)2

a2

)
> 0 and a4 > 0.

So, we just need to show that

4(x – 1)2 – 2a2 ≤ 0.

As

4(x – 1)2 ≤ 4 for all x ∈ [0, 1] (4)
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and

–2a2 ≤ –4 for all a ∈ [
√

2,∞). (5)

Now, adding (4) and (5), we obtain

4(x – 1)2 – 2a2 ≤ 0.

Hence

� ′′(x) = exp

(
–

(x – 1)2

a2

)[
4(x – 1)2 – 2a2

a4

]
≤ 0

for all x ∈ [0, 1] and a ∈ [
√

2,∞).
Consequently,

�(x) = exp

(
–

(x – 1)2

a2

)

is a concave function for all x ∈ [0, 1] and a ∈ [
√

2,∞). �

In the following result, we acquire bounds for soft margin estimator adopting the con-
cavity of the Gaussian function.

Theorem 2 Let hypothesis H hold with a ∈ [
√

2,∞). Then

exp

(
–

( 1
n
∑n

i=1 ϕ(−→r ∗,−→r θ ,i) – 1)2

a2

)

≥ P̂(
−→
R = −→r ∗|� = θ )

≥
(

1 –
1
n

n∑

i=1

ϕ(−→r ∗,−→r θ ,i)

)
exp

(
–

1
a2

)
+

1
n

n∑

i=1

ϕ(−→r ∗,−→r θ ,i). (6)

Proof By Lemma 1, the Gaussian function �(x) = exp(– (x–1)2

a2 ) is concave on [0, 1] for a ∈
[
√

2,∞). Therefore

�(x) = �
(
(1 – x)0 + (x – 0)1

) ≥ (1 – x)�(0) + x�(1)

⇒ exp

(
–

(x – 1)2

a2

)
≥ (1 – x) exp

(
–

1
a2

)
+ x exp(0) = (1 – x) exp

(
–

1
a2

)
+ x. (7)

Now, putting x = ϕ(−→r ∗,−→r θ ,i) in (7), we obtain

exp

(
–

(ϕ(−→r ∗,−→r θ ,i) – 1)2

a2

)
≥ (

1 – ϕ(−→r ∗,−→r θ ,i)
)

exp

(
–

1
a2

)
+ ϕ(−→r ∗,−→r θ ,i). (8)

Multiplying both sides of (8) by 1
n and taking summation over i, we get

1
n

n∑

i=1

exp

(
–

(ϕ(−→r ∗,−→r θ ,i) – 1)2

a2

)
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≥
(

1 –
1
n

n∑

i=1

ϕ(−→r ∗,−→r θ ,i)

)
exp

(
–

1
a2

)
+

1
n

n∑

i=1

ϕ(−→r ∗,−→r θ ,i). (9)

Since, by Lemma 1, the Gaussian function �(x) = exp(– (x–1)2

a2 ) is concave. Therefore,
using Theorem 1, we have

exp

(
–

( 1
n
∑n

i=1 ϕ(−→r ∗,−→r θ ,i) – 1)2

a2

)
≥ 1

n

n∑

i=1

exp

(
–

(ϕ(−→r ∗,−→r θ ,i) – 1)2

a2

)
. (10)

Now, comparing (9) and (10), we obtain (6). �

In the following theorem, we get some clearer bounds for soft margin estimator by im-
posing a restriction on the Jaccard function.

Theorem 3 Let all the hypotheses of Theorem 2 hold. If 0 < d ≤ ϕ(−→r ∗,−→r θ ,i) ≤ D < 1, then

exp

(
–

( 1
n
∑n

i=1 ϕ(−→r ∗,−→r θ ,i) – 1)2

a2

)

≥ P̂(
−→
R = −→r ∗|� = θ )

≥ D – 1
n
∑n

i=1 ϕ(−→r ∗,−→r θ ,i)
D – d

exp

(
–

(d – 1)2

a2

)

+
1
n
∑n

i=1 ϕ(−→r ∗,−→r θ ,i) – d
D – d

exp

(
–

(D – 1)2

a2

)
. (11)

Proof By Lemma 1, for a ∈ [
√

2,∞) and x ∈ [d, D], the Gaussian function �(x) =
exp(– (x–1)2

a2 ) is concave. Therefore

�(x) = �

(
(D – x)d + (x – d)D

D – d

)
≥ D – x

D – d
�(d) +

x – d
D – d

�(D)

⇒ exp

(
–

(x – 1)2

a2

)
≥ D – x

D – d
exp

(
–

(d – 1)2

a2

)
+

x – d
D – d

exp

(
–

(D – 1)2

a2

)
. (12)

Now, substituting x = ϕ(−→r ∗,−→r θ ,i) in (12) and then multiplying by 1
n and taking summa-

tion over i, we gain

1
n

n∑

i=1

exp

(
–

(ϕ(−→r ∗,−→r θ ,i) – 1)2

a2

)

≥ D – 1
n
∑n

i=1 ϕ(−→r ∗,−→r θ ,i)
D – d

exp

(
–

(d – 1)2

a2

)

+
1
n
∑n

i=1 ϕ(−→r ∗,−→r θ ,i) – d
D – d

exp

(
–

(D – 1)2

a2

)
. (13)
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By Lemma 1, the Gaussian function �(x) = exp(– (x–1)2

a2 ) is concave. Therefore, using The-
orem 1, we have

exp

(
–

( 1
n
∑n

i=1 ϕ(−→r ∗,−→r θ ,i) – 1)2

a2

)
≥ 1

n

n∑

i=1

exp

(
–

(ϕ(−→r ∗,−→r θ ,i) – 1)2

a2

)
. (14)

Now, comparing (13) and (14), we achieve

exp

(
–

( 1
n
∑n

i=1 ϕ(−→r ∗,−→r θ ,i) – 1)2

a2

)

≥ 1
n

n∑

i=1

exp

(
–

(ϕ(−→r ∗,−→r θ ,i) – 1)2

a2

)

≥ D – 1
n
∑n

i=1 ϕ(−→r ∗,−→r θ ,i)
D – d

exp

(
–

(d – 1)2

a2

)

+
1
n
∑n

i=1 ϕ(−→r ∗,−→r θ ,i) – d
D – d

exp

(
–

(D – 1)2

a2

)
, (15)

which is equivalent to (11). �

In the following theorem, we acquire some general bounds for soft margin estimator by
considering a general function defined on rectangles, which is increasing with respect to
the first variable.

Theorem 4 Let hypothesis H hold with a ∈ [
√

2,∞). Also assume that ϒ is an interval
in R, F : ϒ × ϒ → R is an increasing function with respect to the first variable, and φ :
[0, 1] → ϒ is an arbitrary function. Then

F
(

exp

(
–

( 1
n
∑n

i=1 ϕ(−→r ∗,−→r θ ,i) – 1)2

a2

)
,φ(y)

)

≥ F
(
P̂(

−→
R = −→r ∗|� = θ ),φ(y)

)

≥ min
x,y∈[0,1]

F
(

(1 – x) exp

(
–

1
a2

)
+ x,φ(y)

)
. (16)

Proof By utilizing inequality (6) and increasing the property of F with respect to the first
variable, we get (16). �

In the following result, we obtain some more general bounds for soft margin estimator
by using a general function defined on rectangles and imposing a restriction on the Jaccard
function.

Theorem 5 Let hypothesis H hold with a ∈ [
√

2,∞). Also assume that ϒ is an interval
in R and F : ϒ × ϒ → R is an increasing function with respect to the first variable. If
0 < d ≤ ϕ(−→r ∗,−→r θ ,i) ≤ D < 1 and φ : [d, D] → ϒ is an arbitrary function, then

F
(

exp

(
–

( 1
n
∑n

i=1 ϕ(−→r ∗,−→r θ ,i) – 1)2

a2

)
,φ(y)

)
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≥ F
(
P̂(

−→
R = −→r ∗|� = θ ),φ(y)

)

≥ min
x,y∈[d,D]

F
(

D – x
D – d

exp

(
–

(d – 1)2

a2

)

+
x – d
D – d

exp

(
–

(D – 1)2

a2

)
,φ(y)

)
. (17)

Furthermore, the right-hand side of (17) is a decreasing function of D and an increasing
function of d.

Proof By utilizing inequality (11) and increasing the property of F with respect to the first
variable, we obtain (17).

Now, we show that the right-hand side of (17) is a decreasing function of D.
Let d ≤ k1 < k2 ≤ D. By Lemma 1, the Gaussian function �(x) = exp(– (x–1)2

a2 ) is concave
for a ∈ [

√
2,∞). Therefore, the first-order divided difference of �(x) is decreasing, that is,

exp(– (k1–1)2

a2 ) – exp(– (d–1)2

a2 )
k1 – d

≥ exp(– (k2–1)2

a2 ) – exp(– (d–1)2

a2 )
k2 – d

. (18)

Multiplying both sides of (18) by x – d and then adding exp(– (d–1)2

a2 ), we get

exp(– (k1–1)2

a2 ) – exp(– (d–1)2

a2 )
k1 – d

(x – d) + exp

(
–

(d – 1)2

a2

)

≥ exp(– (k2–1)2

a2 ) – exp(– (d–1)2

a2 )
k2 – d

(x – d) + exp

(
–

(d – 1)2

a2

)

⇒ {exp(– (k1–1)2

a2 ) – exp(– (d–1)2

a2 )}(x – d) + exp(– (d–1)2

a2 )(k1 – d)
k1 – d

≥ {exp(– (k2–1)2

a2 ) – exp(– (d–1)2

a2 )}(x – d) + exp(– (d–1)2

a2 )(k2 – d)
k2 – d

⇒ k1 – x
k1 – d

exp

(
–

(d – 1)2

a2

)
+

x – d
k1 – d

exp

(
–

(k1 – 1)2

a2

)

≥ k2 – x
k2 – d

exp

(
–

(d – 1)2

a2

)
+

x – d
k2 – d

exp

(
–

(k2 – 1)2

a2

)
. (19)

By utilizing (19) and the fact that [d, k1] ⊆ [d, k2] and F is increasing with respect to the
first variable, we attain

min
x,y∈[d,k1]

F
(

k1 – x
k1 – d

exp

(
–

(d – 1)2

a2

)
+

x – d
k1 – d

exp

(
–

(k1 – 1)2

a2

)
,φ(y)

)

≥ min
x,y∈[d,k2]

F
(

k2 – x
k2 – d

exp

(
–

(d – 1)2

a2

)
+

x – d
k2 – d

exp

(
–

(k2 – 1)2

a2

)
,φ(y)

)
. (20)

Hence, (20) proves that the right-hand side of (17) is a decreasing function of D.
Similarly, we can prove that the right-hand side of (17) is an increasing function of d. �
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In the succeeding theorem, we acquire some general bounds for soft margin estimator
by taking a general function defined on rectangles and decreasing with respect to the first
variable.

Theorem 6 Let hypothesis H hold with a ∈ [
√

2,∞). Also assume that ϒ is an interval in
R, F : ϒ ×ϒ →R is a decreasing function with respect to the first variable and φ : [0, 1] →
ϒ is an arbitrary function. Then

F
(

exp

(
–

( 1
n
∑n

i=1 ϕ(−→r ∗,−→r θ ,i) – 1)2

a2

)
,φ(y)

)

≤ F
(
P̂(

−→
R = −→r ∗|� = θ ),φ(y)

)

≤ max
x,y∈[0,1]

F
(

(1 – x) exp

(
–

1
a2

)
+ x,φ(y)

)
. (21)

Proof By utilizing inequality (6) and decreasing the property of F with respect to the first
variable, we get (21). �

In the next result, we secure more certain general bounds for soft margin estimator by
using a general function, which is decreasing with respect to the first variable, defined on
rectangles and also imposing restriction on the Jaccard function.

Theorem 7 Let hypothesis H hold with a ∈ [
√

2,∞). Also assume that ϒ is an interval in
R and F : ϒ × ϒ → R is a decreasing function with respect to the first variable. If 0 < d ≤
ϕ(−→r ∗,−→r θ ,i) ≤ D < 1 and φ : [d, D] → ϒ is an arbitrary function, then

F
(

exp

(
–

( 1
n
∑n

i=1 ϕ(−→r ∗,−→r θ ,i) – 1)2

a2

)
,φ(y)

)

≤ F
(
P̂(

−→
R = −→r ∗|� = θ ),φ(y)

)

≤ max
x,y∈[d,D]

F
(

D – x
D – d

exp

(
–

(d – 1)2

a2

)

+
x – d
D – d

exp

(
–

(D – 1)2

a2

)
,φ(y)

)
. (22)

Furthermore, the right-hand side of (22) is an increasing function of D and a decreasing
function of d.

Proof By using inequality (11) and decreasing the property of F with respect to the first
variable, we get (22).

Now, we show that the right-hand side of (22) is an increasing function of D.
Let d ≤ k1 < k2 ≤ D. By Lemma 1, the Gaussian function �(x) = exp(– (x–1)2

a2 ) is concave
for a ∈ [

√
2,∞). Therefore, the first-order divided difference of �(x) is decreasing, that is,

exp(– (k1–1)2

a2 ) – exp(– (d–1)2

a2 )
k1 – d

≥ exp(– (k2–1)2

a2 ) – exp(– (d–1)2

a2 )
k2 – d

. (23)
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Multiplying both sides of (23) by x – d and then adding exp(– (d–1)2

a2 ), we get

exp(– (k1–1)2

a2 ) – exp(– (d–1)2

a2 )
k1 – d

(x – d) + exp

(
–

(d – 1)2

a2

)

≥ exp(– (k2–1)2

a2 ) – exp(– (d–1)2

a2 )
k2 – d

(x – d) + exp

(
–

(d – 1)2

a2

)

⇒ {exp(– (k1–1)2

a2 ) – exp(– (d–1)2

a2 )}(x – d) + exp(– (d–1)2

a2 )(k1 – d)
k1 – d

≥ {exp(– (k2–1)2

a2 ) – exp(– (d–1)2

a2 )}(x – d) + exp(– (d–1)2

a2 )(k2 – d)
k2 – d

⇒ k1 – x
k1 – d

exp

(
–

(d – 1)2

a2

)
+

x – d
k1 – d

exp

(
–

(k1 – 1)2

a2

)

≥ k2 – x
k2 – d

exp

(
–

(d – 1)2

a2

)
+

x – d
k2 – d

exp

(
–

(k2 – 1)2

a2

)
. (24)

By utilizing (24) and the fact that [d, k1] ⊆ [d, k2] and F is decreasing with respect to the
first variable, we obtain

max
x,y∈[d,k1]

F
(

k1 – x
k1 – d

exp

(
–

(d – 1)2

a2

)
+

x – d
k1 – d

exp

(
–

(k1 – 1)2

a2

)
,φ(y)

)

≤ max
x,y∈[d,k2]

F
(

k2 – x
k2 – d

exp

(
–

(d – 1)2

a2

)
+

x – d
k2 – d

exp

(
–

(k2 – 1)2

a2

)
,φ(y)

)
. (25)

Hence (25) confirms that the right-hand side of (22) is an increasing function of D.
Similarly, we can prove that the right-hand side of (22) is a decreasing function of d. �

3 Conclusion
In this paper, we extracted some useful bounds for the soft margin estimator given in (1)
with the help of notion of concavity. Acquiring these beneficial bounds, we exercised the
characteristics of the Jaccard similarity function. To obtain some more advanced bounds
for the soft margin estimator, we considered some broad function defined on rectangles
and monotonic with respect to the first variable.
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