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Abstract
Variants of the Newton method are very popular for solving unconstrained
optimization problems. The study on global convergence of the BFGS method has
also made good progress. The q-gradient reduces to its classical version when q
approaches 1. In this paper, we propose a
quantum-Broyden–Fletcher–Goldfarb–Shanno algorithm where the Hessian is
constructed using the q-gradient and descent direction is found at each iteration. The
algorithm presented in this paper is implemented by applying the independent
parameter q in the Armijo–Wolfe conditions to compute the step length which
guarantees that the objective function value decreases. The global convergence is
established without the convexity assumption on the objective function. Further, the
proposed method is verified by the numerical test problems and the results are
depicted through the performance profiles.
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1 Introduction
Several numerical methods have been developed extensively for solving unconstrained
optimization problems. The gradient descent method is one of the most simplest and
commonly used method in the field of the optimization [1]. This method is globally con-
vergent, but suffers from the slow convergence rate as the iterative point approaches the
minimizer. In order to improve the convergence rate, optimizers use the Newton method
[1]. This method is one of the most popular methods due to its quadratic convergence.
A major disadvantage of the Newton method is its slowness or non-convergence for the
starting point not being taken close to an optima, and it also requires one to compute the
inverse of the Hessian at every iteration, which is rather costly. The components of the
Hessian matrix are constructed using the classical derivative, which is positive definite at
every iteration. In quasi-Newton methods, instead of computing the actual Hessian, an
approximation of the Hessian is considered [1]. These methods use only first derivatives
to make an approximation whose computing costs are low.
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The Broyden–Fletcher–Goldfarb–Shanno (BFGS) method is the type of quasi-Newton
methods for solving unconstrained nonlinear optimization problems which came into ex-
istence from the independent work of Broyden [2], Fletcher [3], Goldfarb [4], and Shanno
[5]. Since the 1970s the BFGS method became more and more popular and today it is ac-
cepted as one of the best quasi-Newton methods. Along these years, many attempts have
been made to improve the performance of the quasi-Newton methods [6–18].

The global convergence of the BFGS method have been studied by several authors
[5, 12, 19–21] under the convexity assumption on the objective function. An example was
given in [22] to fail the standard BFGS method for non-convex functions with inexact
line search [12]. A modified BFGS method was developed to converge globally without a
convexity assumption on the objective function [23]. In the reference, Li et al. concerned
with the open problem of whether the BFGS method with inexact line search converges
globally when applied to non-convex unconstrained optimization problems [23]. We pro-
pose a cautious BFGS update and prove that the method with either a Wolfe-type or an
Armijo-type line search converges globally if the function to be minimized has Lipschitz
continuous gradients. The q-calculus, particularly known as quantum calculus, has gained
a lot of interest in various fields of science, mathematics [24], physics [25], quantum theory
[26], statistical mechanics [27] and signal processing [28], etc., where the q-derivative is
employed. It is also known as the Jackson derivative, as the concept was first introduced by
Jackson [29]; it was further studied in the case of a q-difference equation by Carmichael
[30], Mason [31], Adams [32] and Trjitzinsky [33]. The word quantum usually refers to
the smallest discrete quantity of some physical property and it comes from the Latin word
“quantus”, which literally means how many. In mathematics, the quantum calculus is re-
ferred as the calculus without limits and it replaces the classical derivative by a difference
operator.

A q-version of the steepest descent method was first developed in the field of optimiza-
tion to solve single objective nonlinear unconstrained problems. The method was able to
escape from many local minima and reach the global minimum [34]. The q-LMS (Least
Mean Square) algorithm is proposed by employing the q-gradient to compute the secant of
the cost function instead of the tangent [28]. The algorithm takes the larger steps towards
the optimum solution and achieves a higher convergence rate. An improved version of q-
LMS algorithm was developed based on a new class of stochastic q-gradient methods. The
proposed approach shows the high convergence rate by utilizing the concept of error cor-
relation energy, and normalization of signal [35]. Global optimization using the q-gradient
was further studied in [36], where the parameter q is a dilation that is used to control the
degree of localness of the search, solving several multimodal functions. Furthermore, a
modified Newton method based on a deterministic scheme using the q-derivative was
proposed [37, 38]. Recently, a mathematical package for q-series and partition theory ap-
plications has been developed using MATHEMATICA software [39].

A sequence qk is introduced instead of using a fixed positive number q in the Newton
and limited memory BFGS schemes in [37, 40]. After some large value of k, it is obvious
that the Hessian becomes almost the same as the exact Hessian of the objective function.
The concept of q-gradient, in contrast to the classical gradient in the q-least mean squares
algorithm [28], provides extra freedom to control the performance of the algorithm, which
we adopt in our proposed method.
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In this article, we propose a method using the q-derivative for solving unconstrained op-
timization problems. This algorithm is different from the classical BFGS algorithm as the
search process moves from global in the beginning to local at the end. We utilize an inde-
pendent parameter q ∈ (0, 1) in Armijo–Wolfe conditions for finding the step length. The
proposed algorithm with the Armijo–Wolfe line search is globally convergent for general
objective functions. Then we compare the new approach with the existing method.

his paper is organized as follows: In the next section, we give the preliminary idea about
the q-calculus. In Sect. 3, we present the q-BFGS (quantum-Broyden–Fletcher–Goldfarb–
Shanno) method, using q-calculus. In Sect. 4, the global convergence of proposed algo-
rithm is proved. In Sect. 5, we report some numerical experiments. Finally, we present a
conclusion in the last section.

2 Preliminaries
In this section, we present some basic definitions of q-calculus. Given value of q �= 1, we
present the q-integer [n]q [41] by

[n]q =

⎧
⎨

⎩

1–qn

1–q , q �= 1,

n, q = 1,

for n ∈N. The q-derivative Dq[f ] [42] of a function f : R →R is given by

Dq[f ](x) =
f (x) – f (qx)

(1 – q)x
,

whenever scalar q ∈ (0, 1), x �= 0 and Dq[f ](0) = f ′(0) provided f ′(0) exists. Note that

lim
q→1

Dq[f ](x) =
f (x) – f (qx)

(1 – q)x
=

df (x)
dx

,

if f is differentiable. The q-derivative of a function of the form xn is

Dq,x
[
xn] =

⎧
⎨

⎩

1–qn

1–q xn–1, q �= 1,

nxn–1, q = 1.

Let f (x) be a continuous function on [a, b]. Then there exists q̂ ∈ (0, 1) and x ∈ (a, b) [43]
such that

f (b) – f (a) =
(
Dq[f ]

)
(x)(b – a), (1)

for q ∈ (q̂, 1) ∪ (1, q̂–1). The q-partial derivative of a function f : Rn → R at x ∈ R
n with

respect to xi, where scalar q ∈ (0, 1), is given as [34]

Dq,xi [f ](x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
(1–q)xi

[f (x1, x2, . . . , xi–1, xi, xi+1, . . . , xn)

– f (x1, x2, . . . , xi–1, qxi, xi+1, . . . , xn)], xi �= 0,
∂

∂xi
f (x1, x2, . . . , xi–1, 0, xi+1, . . . , xn), xi = 0,

∂
∂xi

f (x1, x2, . . . , xi–1, xi, xi+1, . . . , xn), q = 1.
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We now choose the parameter q as a vector, that is,

q = (q1, . . . , qi, . . . , qn)T ∈R
n.

Then the q-gradient vector [34] of f is

∇qf (x)T =
[

Dq1,x1 [f ](x) · · · Dqi ,xi [f ](x) · · · Dqn ,xn [f ](x)
]

. (2)

Let {qk
i } be a real sequence defined by

qk+1
i = 1 –

qk
i

(k + 1)2 , (3)

for each i = 1, . . . , n, where k ∈ {0} ∪ N and q0
i ∈ (0, 1) is a fixed starting number, then the

sequence {qk
i } converges to (1, . . . , 1)T as k → ∞ [38]. Thus, the q-gradient reduces to its

classical version. For the sake of convenience, we represent the q-gradient vector of f at
xk as

gqk
(
xk) = ∇qk f

(
xk).

Example 1 Consider a function f : R2 →R as f (x) = x2
1x2 +x2

2. Then the q-gradient is given
as

∇qk f (x)T =
[

(1 + qk
1)x1x2 x2

1 + (1 + qk
2)x2

]
.

We focus our attention on solving the following unconstrained optimization prob-
lems:

min
x∈Rn

f (x), (4)

where f : Rn → R is a continuously q-derivative. In the next section, we present the q-
BFGS algorithm.

3 On q-BFGS algorithm
The BFGS method for solving optimization problems (4) generates a sequence {xk} by the
following iterative scheme:

xk+1 = xk + αkdk
qk , (5)

for k = {0} ∪ N, where αk is the step length, and dk
qk is the q-BFGS descent direction ob-

tained by solving the following equation:

g0
q0 = –W 0d0

q0 ,

and, for k ≥ 1, we have

gk
qk = –W kdk

qk , (6)
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where W k is the q-quasi-Newton update Hessian. The sequence {W k} satisfies the follow-
ing equation:

W k+1sk = yk ,

where yk = gk+1
qk – gk

qk . We call the famous BFGS (Broyden [2], Fletcher [3], Goldfarb [4],
and Shanno [5]) updated formula in the context of q-calculus: q-BFGS. Thus, the Hessian
W k is updated by the q-BFGS formula:

W k+1 = W k –
W ksk(sk)T W k

(sk)T W ksk +
yk(yk)T

(yk)T sk , (7)

where sk = xk+1 – xk . A good property of Eq. (7) is that W k+1 should inherit the positive
definiteness of W k as long as (yk)T sk > 0 and numerically support in the sense of classi-
cal BFGS update. The condition (yk)T sk > 0 is guaranteed to hold if the step length αk is
determined by the exact or inexact line search methods. For computing the step length,
the modified Armijo–Wolfe line search conditions due to the q-gradient are presented
as

f
(
xk + αkdk

qk

) ≤ f
(
xk) + σ1αk

(
dk

qk

)T gk
qk (8)

and

∇qf
(
xk + αkdk

qk

)T dk
qk ≥ σ2

(
dk

qk

)T gk
qk , (9)

where 0 < σ1 < σ2 < 1. The first condition (8) is called the Armijo condition; it ensures a
sufficient reduction of the objective function while the second condition (9) is called the
curvature condition which ensures the nonacceptance short step length.

The Armijo-type line search does not ensure the condition (yk)T sk > 0 and hence W k+1

is not positive definite even if W k is positive definite. In order to ensure positive definite-
ness of W k+1, the condition (yk)T sk > 0 is sometimes used to decide whether or not W k is
updated. More specifically, we present the following update due to [23]:

W k+1 =

⎧
⎨

⎩

W k – W k sk (sk )T W k

(sk )T W k sk + yk (yk )T

(yk )T sk , (yk )T sk

‖sk‖2 > ε‖gk
qk

‖β ,

W k , otherwise,
(10)

where ε and β are positive constants.
It is not difficult to see from (10) that the updated matrix W k is symmetric and positive

definite for all k, which is in turn implies that {f (xk)} is a non-increasing sequence when
the modified Armijo–Wolfe line search conditions (8) and (9) are used. On the basis of the
above theory, we present the following q-BFGS Algorithm 1. In the next section, we shall
investigate the global convergence of Algorithm 1.
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Algorithm 1 q-BFGS algorithm
Require: Objective function f : Rn → R, ε is a tolerance for convergence. Choose an

initial point x0 ∈ R
n, fix q1

i ∈ (0, 1), and an initial symmetric positive definite matrix
W 0 ∈R

n×n.
Ensure: Minimizer x∗ encountered with corresponding objective function value f (x∗).

1: Set W 0 = In.
2: for k = 0, 1, 2, . . . do
3: if ‖gk

qk ‖ < ε then
4: Stop.
5: else
6: Compute a search direction dk

qk using (6).
7: Find a step length αk > 0 satisfying (8) and (9).
8: end if
9: Compute next iterate xk+1 = xk + αkdk

qk .
10: Update W k+1 using (10).
11: Set qk+1

i = 1 – qk
i

(k+1)2 for all i = 1, . . . , n.
12: end for

4 Global convergence
In this section, we present the global convergence of Algorithm 1 under the following two
assumptions.

Assumption 1 The objective function f (x) has a lower bound on the level set

� =
{

x ∈R
n | f (x) ≤ f

(
x0)},

where x0 is the starting point of Algorithm 1.

Assumption 2 Let function f be a continuously q-derivative on �, and there exists a con-
stant L > 0 such that ‖gqk (x) – gqk (y)‖ ≤ L(x – y), for each x, y ∈ �.

Since {f (xk)} is a non-increasing sequence, it is clear that the sequence {xk} generated
by Algorithm 1 is contained in �. We present the index set as

K :=
{

j :
(yj)T sj

‖sj‖2 > ε
∥
∥gj

qj

∥
∥β

}

.

We can again express (10) as

W k+1 =

⎧
⎨

⎩

W k – W k sk (sk )T W k

(sk )T W k sk + yk (yk )T

(yk )T sk , k ∈ K ,

W k .
(11)

The following lemma is used to prove the global convergence of Algorithm 1 within the
context of q-calculus.
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Lemma 3 Let f be satisfied by Assumption 1 and Assumption 2. Let {xk} be generated by
Algorithm 1, with qk

i ∈ (0, 1), where i = 1, . . . , n. If there are positive constants γ1, and γ2

such that the inequalities
1) ‖W ksk‖ ≤ γ1‖sk‖,
2) (sk)T W ksk ≥ γ2‖sk‖2,

hold for infinitely many k, then we have

lim
k→∞

inf
∥
∥gqk

(
xk)∥∥ = 0. (12)

Proof Since sk = αkdk
qk , using Part 1 of this lemma, and (6), we have

∥
∥gk

qk

∥
∥ ≤ γ1

∥
∥dk

qk

∥
∥ (13)

and

γ2
∥
∥dk

qk

∥
∥ ≤ ∥

∥gk
qk

∥
∥. (14)

From (13) and (14), we get

γ1
∥
∥dk

qk

∥
∥ ≥ ∥

∥gqk
(
xk)∥∥ ≥ γ2

∥
∥dk

qk

∥
∥. (15)

Substituting sk = αkdk
qk in Part 2, we get

(
dk

qk

)T W kdk
qk ≥ γ2

∥
∥dk

qk

∥
∥2. (16)

We present the case where the Armijo-type line search (8) is used with backtracking pa-
rameter ρ . If αk �= 1, then we have

σ1ρ
–1αkgqk

(
xk)T dk

qk < f
(
xk + ρ–1αkdk

qk

)
– f

(
xk). (17)

From the q-mean value theorem, there is a θk ∈ (0, 1) such that

f
(
xk + ρ–1αkdk

qk

)
– f

(
xk) = ρ–1αkgqk

(
xk + θkρ

–1αkdk
qk

)T dk
qk ,

that is,

f
(
xk + ρ–1αkdk

qk

)
– f

(
xk) = ρ–1αkgqk

(
xk)T dk

qk

+ ρ–1αk
(
gqk

(
xk + θkρ

–1αkdk
qk

)
– gqk

(
xk))T dk

qk .

From Assumption 2, we get

f
(
xk + ρ–1αkdk

qk

)
– f

(
xk) ≤ ρ–1αkgqk

(
xk)T dk

qk + Lρ–2α2
k
∥
∥dk

qk

∥
∥2. (18)

From (17) and (18), we get for any k ∈ K

αk ≥
–(1 – σ1)ρgk

qk (xk)T dk
qk

L‖dk
qk ‖2

.
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Since –gqk (xk) = W kdk
qk ,

αk ≥
(1 – σ1)ρ(dk

qk )T W kdk
qk

L‖dk
qk ‖2

.

Using (16) in the above inequality we get

αk ≥ min
{

1, (1 – σ1)γ2L–1ρ
}

> 0. (19)

We now consider the case where the Wolfe-type line search (9) is used. From (9) and
Assumption 2, we get

(σ2 – 1)gqk
(
xk)T dk

qk ≤ (
gqk

(
xk + αkdk

qk

)
– gqk

(
xk))T dk

qk ≤ Lαk
∥
∥dk

qk

∥
∥2.

This implies that

αk ≥
(σ2 – 1)gqk (xk)T dk

qk

L‖dk
qk ‖2

.

Since –gk
qk = W kdk

qk ,

αk ≥
(1 – σ2)(dk

qk )T W kdk
qk

L‖dk
qk ‖2

.

Since W kdk
qk ≥ γ2‖dk

qk ‖2,

αk ≥ min
{

1, (1 – σ2)γ2L–1ρ
}

> 0. (20)

The inequalities (19) together with (20) show that {αk}k∈K is bounded below away from
zero when we use the Armijo–Wolfe line search conditions. Moreover,

∞∑

k=0

[
f
(
xk) – f

(
xk+1)] = lim

j→∞

j∑

k=1

[
f
(
xk) – f

(
xk+1)]

= f
(
x1) – lim

j→∞ f
(
xj),

that is,

∞∑

k=0

[
f
(
xk) – f

(
xk+1)] = f

(
x1) – f

(
x∗),

this gives

∞∑

k=1

[
f
(
xk) – f

(
xk+1)] < ∞.
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This together with (9) gives

–
∞∑

k=1

αkgT
qk dk

qk < ∞.

Since gk
qk = –W kdk

qk ,

lim
k→∞

(
dk

qk

)T W kdk
qk = – lim

k→∞
gqk

(
xk)T dk

qk → 0.

This together with (15) and (16) implies (12). �

Lemma 3 indicates that to prove the global convergence of Algorithm 1, it suffices to
show that there are positive constants γ1 and γ2 such that Part 1 and Part 2 hold for in-
finitely many k. For this purpose, we require the following lemma which may be proved in
the light of [20, Theorem 2.1].

Lemma 4 If there are positive constants γ1 and γ2 such that, for each k ≥ 0,

‖yk‖2

(sk)T yk ≤ M,
(sk)T yk

‖sk‖2 ≥ m, (21)

then there exist constants γ1 and γ2 such that, for any positive integer t, Part 1 and Part 2
of Lemma 3 hold for at least 
 t

2� values of k ∈ {1, . . . , t}.

From Lemma 3 and Lemma 4, we now prove the global convergence for Algorithm 1.

Theorem 5 Let f satisfy Assumption 1 and Assumption 2, and {xk} be generated by Algo-
rithm 1. Then Eq. (12) holds.

Proof If K is finite then W k remains constant after a finite number of iterations. Since W k

is symmetric and positive definite for each k, it is obvious that there are constants γ1, and
γ2 such that Part 1 and Part 2 of Lemma 3 hold for all k sufficiently large. If K is infinite,
then for the sake of contradiction (12) is not true. Then there exists a positive constant δ

such that for all k

∥
∥gk

qk

∥
∥ > δ. (22)

Since (yk)T sk ≥ εδα‖sk‖2,

1
(yk)T sk ≤ 1

εδα‖sk‖2 .

We know that ‖yk‖2 ≤ L2‖sk‖2. Thus, we get

‖yk‖2

(yk)T sk ≤ ‖yk‖2

εδα‖sk‖2 .



Mishra et al. Advances in Difference Equations        (2020) 2020:638 Page 10 of 24

From Assumption 2, we get

‖yk‖2

(yk)T sk ≤ M,

for each k ≥ 0, where M = L2

εδα . Applying Lemma 4 to the matrix subsequence {W k}k∈K ,
we conclude that Part 1 and Part 2 of Lemma 3 hold for infinitely many k. There exists
a subsequence of {xk} converging to the q-critical point of (4). As k → ∞, since qk ap-
proaches (1, 1, . . . , 1)T , a q-critical point eventually approximates a critical point. If the ob-
jective function f is convex then every local minimum point is a global minimum point.
Since the sequence {f (xk)} converges, every accumulation point of {xk} is a global optimal
solution of (4). Then Lemma 3 completes the proof. �

The above theorem proved the global convergence of q-BFGS algorithm without the
convexity assumption on the objective function.

5 Numerical experiments
This section reports some numerical experiments with Algorithm 1. We teated on some
test problems taken from [44]. Our numerical experiments are performed on a Laptop
with Intel(R) Core(TM) CPU (i3-4005U@1.70 GHz) and 4 GB RAM, with MATLAB
(2017a).

Table 1 Computational details of Example 2 for sequence {qk}
k qk x = (2, 3)T

f (x) f (qkx) gqk (1) gqk (2)

1 (0.3200, 0.3200)T 8.4877 7.3482 4.0387 0.5585
2 (0.9200, 0.9200)T 8.4877 8.4043 6.8282 0.3474
3 (0.9060, 0.9060)T 8.4877 8.3889 6.7358 0.3501
4 (0.9535, 0.9535)T 8.4877 8.4401 7.0561 0.3413
5 (0.9669, 0.9669)T 8.4877 8.4540 7.1500 0.3390
6 (0.9765, 0.9765)T 8.4877 8.4639 7.2183 0.3373
7 (0.9823, 0.9823)T 8.4877 8.4698 7.2598 0.3363
8 (0.9862, 0.9862)T 8.4877 8.4738 7.2881 0.3357
9 (0.9890, 0.9890)T 8.4877 8.4766 7.3080 0.3352
10 (0.9910, 0.9910)T 8.4877 8.4786 7.3226 0.3349
11 (0.9925, 0.9925)T 8.4877 8.4801 7.3336 0.3346
12 (0.9936, 0.9936)T 8.4877 8.4813 7.3420 0.3344
13 (0.9945, 0.9945)T 8.4877 8.4822 7.3487 0.3343
14 (0.9952, 0.9952)T 8.4877 8.4829 7.3541 0.3341
15 (0.9958, 0.9958)T 8.4877 8.4835 7.3584 0.3340
16 (0.9963, 0.9963)T 8.4877 8.4840 7.3620 0.3339
17 (0.9967, 0.9967)T 8.4877 8.4844 7.3650 0.3339
18 (0.9971, 0.9971)T 8.4877 8.4847 7.3675 0.3338
19 (0.9974, 0.9974)T 8.4877 8.4850 7.3697 0.3338
20 (0.9976, 0.9976)T 8.4877 8.4853 7.3715 0.3337
21 (0.9978, 0.9978)T 8.4877 8.4855 7.3731 0.3337
22 (0.9980, 0.9980)T 8.4877 8.4857 7.3745 0.3337
23 (0.9982, 0.9982)T 8.4877 8.4859 7.3757 0.3336
24 (0.9983, 0.9983)T 8.4877 8.4860 7.3768 0.3336
25 (0.9985, 0.9985)T 8.4877 8.4861 7.3777 0.3336
26 (0.9986, 0.9986)T 8.4877 8.4862 7.3785 0.3336
27 (0.9987, 0.9987)T 8.4877 8.4863 7.3793 0.3336
28 (0.9988, 0.9988)T 8.4877 8.4864 7.3800 0.3335
29 (0.9989, 0.9989)T 8.4877 8.4865 7.3806 0.3335
30 (0.9989, 0.9989)T 8.4877 8.4866 7.3811 0.3335
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Table 2 Computational details of Example 2 for sequence {qk}
k qk x = (–4, 5)T

f (x) f (qkx) gqk (1) gqk (2)

1 (0.3200, 0.3200)T 1.6278 0.4883 0.095486 0.335128
2 (0.9200, 0.9200)T 1.6278 1.5444 0.021585 0.208454
3 (0.9060, 0.9060)T 1.6278 1.5290 0.022236 0.210039
4 (0.9535, 0.9535)T 1.6278 1.5802 0.020129 0.204796
5 (0.9669, 0.9669)T 1.6278 1.5941 0.019582 0.203381
6 (0.9765, 0.9765)T 1.6278 1.6040 0.019203 0.202385
7 (0.9823, 0.9823)T 1.6278 1.6099 0.018979 0.201791
8 (0.9862, 0.9862)T 1.6278 1.6139 0.01883 0.201392
9 (0.9890, 0.9890)T 1.6278 1.6166 0.018726 0.201113
10 (0.9910, 0.9910)T 1.6278 1.6187 0.018651 0.200910
11 (0.9925, 0.9925)T 1.6278 1.6202 0.018595 0.200758
12 (0.9936, 0.9936)T 1.6278 1.6213 0.018552 0.200642
13 (0.9945, 0.9945)T 1.6278 1.6223 0.018518 0.200550
14 (0.9952, 0.9952)T 1.6278 1.6230 0.018491 0.200477
15 (0.9958, 0.9958)T 1.6278 1.6236 0.018469 0.200417
16 (0.9963, 0.9963)T 1.6278 1.6241 0.018451 0.200368
17 (0.9967, 0.9967)T 1.6278 1.6245 0.018436 0.200327
18 (0.9971, 0.9971)T 1.6278 1.6248 0.018423 0.200293
19 (0.9974, 0.9974)T 1.6278 1.6251 0.018412 0.200263
20 (0.9976, 0.9976)T 1.6278 1.6254 0.018403 0.200238
21 (0.9978, 0.9978)T 1.6278 1.6256 0.018395 0.200217
22 (0.9980, 0.9980)T 1.6278 1.6258 0.018388 0.200198
23 (0.9982, 0.9982)T 1.6278 1.6259 0.018382 0.200181
24 (0.9983, 0.9983)T 1.6278 1.6261 0.018377 0.200167
25 (0.9985, 0.9985)T 1.6278 1.6262 0.018372 0.200154
26 (0.9986, 0.9986)T 1.6278 1.6263 0.018368 0.200142
27 (0.9987, 0.9987)T 1.6278 1.6264 0.018364 0.200132
28 (0.9988, 0.9988)T 1.6278 1.6265 0.018361 0.200123
29 (0.9989, 0.9989)T 1.6278 1.6266 0.018358 0.200115
30 (0.9989, 0.9989)T 1.6278 1.6267 0.018355 0.200108

We used the condition

∥
∥gq

(
xk)∥∥ ≤ 10–6,

as the stopping criterion. The program stops if the total iteration number is larger than
400. For each problem we choose the initial matrix W 0 = In, where In is an identity ma-
trix. First, we find the q-gradient of the following problem when the parameter q is not
fixed.

Example 2 Consider a function f : R2 →R such that

f (x) = ex1 + log x2.

We need to find the q-gradient vector at x = (2, 3)T and x = (–4, 5)T . This function uses
the sequence {qk} with an initial vector of

q0 = (0.32, 0.32)T .

In fact, Tables 1 and 2 show the computational values of f (x), f (qkx) and the q-gradient,
where gqk (1) and gqk (2) are the first and second component of q-gradient. We obtain the
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Figure 1 Graphical representation of q-gradient of Tables 1 and 2

q-gradient as

gq30 (x) =

[
7.3811
0.3335

]

, gq30 (x) =

[
0.018355
0.200108

]

,

for x = (2, 3)T and x = (–4, 5)T , respectively, where

q30 = (0.9989, 0.9989),
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Figure 2 Iteration points of Example 3

at k = 30. From Fig. 1, one can observe that qk
1 and qk

2 ∈ (0, 1) for k = 1, . . . , 30. As qk →
(1, 1), the q-gradient reduces to the classical gradient. For this case, we have

g(x) =

[
7.3891
0.3333

]

, g(x) =

[
0.018315
0.200000

]

,

for x = (2, 3)T and x = (–4, 5)T , respectively.

Example 3 Consider an unconstrained objective function [45] f : R →R such that

f (x) = –xe–x.

This function has the unique minimizer x∗ = 1. We run Algorithm 1 with a starting point
x0 = 9.0 and get the minimum function value

f
(
x∗) = –3.67875,

at minimizer x∗ = 1.0 in 7 iterations, which can be seen in Fig. 2. With different starting
points 15, 17 and 19, the algorithm converges to the solution point 1.00, 0.9999 and 0.9998
in iterations 7, 4 and 5, respectively.

Example 4 Consider an unconstrained optimization function f : R2 →R such that

f (x1, x2) = 100
(
x2 – x2

1
)2 + (1 – x1)2.

The Rosenbrock function is a non-convex function, introduced by Rosenbrock in 1960.
We consider this function to measure the performance of Algorithm 1. In this case, a
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Figure 3 Comparison of Algorithm 1 with [23] on Example 4

starting point

x0 = (4, –4)T ,

is taken. The function converges in 20 iterations to get the minimum function value

f
(
x∗) = 0.0039936,
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at minimizer

x∗ = (0.9822, 0.9587)T ,

while we run the Algorithm used in the methodology of [23], the function converges in 29
iterations to get the minimum function value

f
(
x∗) = 1.1145 × 10–15,

at minimizer

x∗ = (0.9998, 0.9996)T ,

in 29 iterations that are shown in Fig. 3. Of course, Fig. 3(a) shows that our proposed
method takes larger steps to converge due to the q-gradient.

With different starting points, we compare our algorithm with [23] on the Rosenbrock
function. The numerical results is shown in Tables 3 and 4 where the columns ‘it’, ‘fe’, and
‘ge’ indicate the total numbers of iterations, the total number of function evaluations, and
the total number of gradient evaluations, respectively. Note the total number of q-gradient
evaluations for q-BFGS and total number of gradient evaluations for BFGS use the same
notation.

Table 3 Numerical results of Example 4

Starting point q-BFGS algorithm

it fe ge x∗ f (x∗)
(4, 3)T 31 199 33 (1.047, 1.088)T 0.0112
(–3, 1)T 13 98 16 (0.914, 0.852)T 0.013401
(–1, 3)T 28 179 32 (1.016, 1.018)T 0.009
(–1.5, 3.7)T 24 158 29 (0.879, 0.753)T 0.007
(–1, 4)T 19 123 19 (0.967, 0.939)T 2.39e–03
(1, –1)T 16 122 18 (1.037, 1.066)T 0.010
(–4, 2)T 23 151 27 (0.928, 0.869)T 0.000
(–1, –4)T 17 116 18 (0.830, 0.691)T 0.015
(–2, 2)T 16 113 19 (0.721, 0.496)T 0.001
(–5, 6)T 27 178 31 (0.908, 0.823)T 0.006
(–3, 6)T 32 199 36 (0.975, 0.948)T 0.002
(4, –5)T 18 125 21 (0.859, 0.721)T 0.003
(4, –7)T 20 142 22 (1.046, 1.084)T 0.011
(–5, –3)T 14 111 16 (0.949, 0.897)T 0.005
(4, –5.6)T 14 109 16 (0.976, 0.959)T 0.004
(–8, 2)T 3 41 4 (1.000, 2.563)T 0.008
(–5, 7)T 26 165 27 (0.991, 0.964)T 0.006
(–2, 6)T 33 199 37 (0.975, 0.941)T 0.008
(1, –5)T 19 152 20 (1.057, 1.113)T 0.014
(–3, –4)T 16 115 17 (0.933, 0.873)T 0.000
(8, 1)T 21 149 27 (0.723, 0.499)T 0.000
(3, –7)T 12 90 13 (0.885, 0.789)T 0.006
(4, –5)T 18 125 21 (0.859, 0.721)T 0.003
(–5, –2)T 17 117 18 (0.940, 0.886)T 0.002
(4, –6)T 16 119 19 (1.119, 1.238)T 0.012
(3, –4)T 12 96 13 (0.993, 0.978)T 0.003
(4, –4)T 15 108 16 (0.815, 0.6813)T 0.011
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Table 4 Numerical results of Example 4

Starting point BFGS algorithm [23]

it fe ge x∗ f (x∗)
(4, 3)T 31 173 33 (0.999, 0.999)T 7.75e–16
(–3, 1)T 19 115 22 (0.999, 0.999)T 1.01e–16
(–1, 3)T 30 172 35 (1.000, 1.000)T 6.33e–17
(–1.5, 3.7)T 30 171 35 (0.999, 0.999)T 4.14e–16
(–1, 4)T 25 142 29 (0.999, 0.999)T 1.62e–16
(1, –1)T 15 91 17 (1.000, 1.000)T 8.33e–17
(–4, 2)T 27 158 33 (0.999, 0.999)T 1.87e–15
(–1, –4)T 22 132 26 (1.000, 1.000)T 3.02e–16
(–2, 2)T 27 149 31 (0.999, 0.998)T 8.51e–15
(–5, 6)T 30 171 34 (0.999, 0.999)T 4.02e–16
(–3, 6)T 25 149 29 (0.999, 0.999)T 7.89e–16
(4, –5)T 22 126 24 (0.999, 0.999)T 3.90e–16
(4, –7)T 21 128 24 (1.000, 1.000)T 1.22e–15
(–5, –3)T 22 125 23 (0.999, 0.999)T 1.08e–15
(4, –5.6)T 24 141 28 (0.999, 0.999)T 3.96e–16
(–8, 2)T 11 74 13 (1.000, 1.000)T 4.03e–16
(–5, 7)T 30 175 37 (1.000, 1.000)T 2.70e–16
(–2, 6)T 36 192 41 (0.999, 0.999)T 7.46e–17
(1, –5)T 16 97 20 (1.000, 1.000)T 2.94e–16
(–3, –4)T 26 151 30 (0.999, 0.999)T 1.76e–16
(8, 1)T 31 178 34 (0.999, 0.999)T 7.60e–16
(3, –7)T 12 77 15 (0.999, 0.999)T 1.30e–16
(4, –5)T 22 126 24 (0.999, 0.999)T 3.90e–16
(–5, –2)T 21 125 24 (1.000, 1.000)T 3.63e–16
(4, –6)T 22 134 26 (0.999, 0.999)T 7.36e–16
(3, –4)T 18 110 23 (0.999, 0.999)T 3.93e–16
(4, –4)T 24 140 25 (0.999, 0.999)T 3.97e–16

Dolan and Moré [46] presented an appropriate technique to demonstrate the per-
formance profiles, which is a statistical process. The performance ratio is presented
as

ρp,s =
r(p,s)

min{r(p,s) : 1 ≤ r ≤ ns} , (23)

where r(p,s) refers to the iteration, function evaluations and q-gradient evaluations, respec-
tively for solver s spent on problem p and ns refers to the number of problems in the model
test. The cumulative distribution function is expressed as

Ps(τ ) =
1
np

size{p ∈ ρ(p,s) ≤ τ }, (24)

where Ps(τ ) is the probability that a performance ratio ρ(p,s) is within a factor of τ of the
best possible ratio. That is, for a subset of the methods being analyzed, we plot the frac-
tion ρs(τ ) of problems for which any given method is within a factor τ of the best. We use
this tool to show the performance of Algorithm 1. Here, Fig. 4(a), Fig. 4(b) and Fig. 4(c)
show that q-BFGS method solves about 82%, 59% and 89% of Rosenbrock test problem
with the least number of iterations, function evaluations and gradient evaluations, respec-
tively.
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Figure 4 Performance profiles based on the number of iterations, the number of function evaluations and
the number of gradient evaluations given in Tables 3 and 4
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Example 5 Consider an unconstrained optimization problem f : R2 →R such that

f (x1, x2) = 2 + (x1 – 2)2 + (x2 – 2)2.

With a starting point x0 = (0.5, 0.5)T , the function converges to x∗ = (2, 2)T that is shown
in Fig. 5(a). The global minima of this function can also be observed in Fig. 5(b).

Figure 5 Visualization of Example 5
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Figure 6 Visualization of Example 6

Table 5 Numerical results of Example 6

k fe qe f (x∗)
0 1 1 8.86966
1 7 2 1.05224
2 19 3 1.01602
3 24 4 0.0702737
4 29 5 0.0055612
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Table 6 Set of Test Problems

Problem
number

Problem’s name Starting Point

1 Rastrigin (0.2, 0.1)T

2 mvfChichinadze (4.5, 0.52)T

3 Price Function (1, –2)T

4 Beale (3, 1.5)T

5 mvfBohachevsky1 (0.1, 0.2)T

6 mvfBohachevsky2 (1, –5.8)T

7 Box-Betts exponential (–8, –33, –1)T

8 Branin (9.3, 3)T

9 Three-Hump Camel (–3.4, 0)T

10 Six Hump Camel (–0.6, 2)T

11 Chichinadze (5, 7, 0.4)T

12 Colville (0.7, 0.413)T

13 Easom (3, 3.8)T

14 Exp2 (1, 10)T

15 Goldstein–Price (2, –1.2)T

16 Griewank10 (2, –1.2)T

17 Hansen (4.9, 5.2)T

18 Hartman 3D (–1, 2, 1)T

19 SHEKEL (3, 4, 4, 4)T

Example 6 Consider the following Rastrigin function:

f (x) = 20 + x2
1 + x2

2 – 10(cos 2πx1) + cos 2πx2.

The Rastrigin function is a non-convex. The visualization of in an area from –1 to 1 is
shown in Fig. 6(a) with many local minima, and the global optimum at (0, 0)T in an area
from –1 to 1 is shown in Fig. 6(b) with successive iterative points. The numerical results
of this function is shown in Table 5.

We have used the 19 test problems as shown in Table 6 with attributes problem num-
ber, problem’s name and starting point, respectively. Table 7 shows the computational re-
sults for q-BFGS and BFGS method [23] on small scale test problems. Of course, Fig. 7(a),
Fig. 7(b) and Fig. 7(c) show that the q-BFGS method solves about 95%, 79% and 90% of the
test problems with the least number of iterations, function evaluations and gradient eval-
uations, respectively. Therefore, this is concluded that the q-BFGS performs better than
the BFGS of [23] and improves the performance in fewer iterations, function evaluations,
and gradient evaluations, respectively.

6 Conclusion
We have proposed a q-BFGS update and shown that the method converges globally with
the Armijo–Wolfe line search conditions. The variant of the proposed method behaves
like the classical BFGS method in limiting case where the existence of second-order par-
tial derivatives at every point is not required. First-order q-differentiability of the function
is sufficient to prove the global convergence of the proposed method. The q-gradient en-
ables the q-BFGS quasi-Newton search process to be carried out in a more diverse set of
directions and takes larger steps to converge. The reported numerical results show that
the proposed method is efficient in comparison to the existing method for solving un-
constrained optimization problems. However, other modified BFGS methods using the
q-derivative are yet to study.
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Table 7 Comparison details with [23]

Problem
number

q-BFGS

it fe ge x∗ f (x∗)
1 4 29 5 (–0.062, –0.036)T 0.000
2 5 33 6 (5.901, 0.509)T –42.868
3 34 200 40 (0.001, –0.012)T 2.36E–12
4 7 42 9 (2.999, 0.499)T 9.06E–15
5 6 35 7 (–0.002, –0.000)T 2.18e–06
6 8 60 9 (0.000, 0.000)T 6.60e–07
7 3 21 5 (–10.2, –6, 2.66)T 4.71e–18
8 5 27 6 (9.426, 2.478)T 0.398
9 7 41 9 (–0.012, 0.006)T 5.68e–11
10 7 39 9 (–0.095, 0.717)T –1.032
11 5 30 6 (6.2868, 0.4000)T –41.835
12 23 137 25 (1.0, 1.0, 1.0, 1.0)T 2.11e–16
13 6 32 7 (3.1417, 3.1416)T –1
14 4 23 5 (–1.9686, 16.1968)T 4.16e–22
15 9 73 11 (0.0026, –1.0000)T 3.0006
16 7 44 8 (0.0002, –0.0143)T 1.08E–07
17 9 55 10 (4.976, 4.858)T –176.542
18 12 98 14 (0.110, 0.556, 0.852)T –3.863
19 6 47 9 (4.000, 3.999, 4.000, 3.999)T –10.536

Problem
number

q-BFGS

it fe ge x∗ f (x∗)
1 7 44 8 (2.6e–06, –3.3e–06)T 0
2 3 21 4 (5.506, 0.507)T –42.868
3 36 202 42 (0.003, –0.016)T 1.3612e–11
4 8 47 10 (2.999, 0.499)T 6.33e–15
5 7 40 8 (5.23e–051.3e–06)T 6.46e–14
6 9 51 11 (8.9e–06, –1.32e–05)T 1.39e–15
7 3 21 5 (–10.2, –6, 2.66)T 4.36e–18
8 6 32 7 (9.425, 2.475)T 0.398
9 7 41 9 (–0.011, 0.006)T 2.66e–16
10 8 44 10 (–0.089, 0.712)T –1.032
11 5 31 7 (6.2868, 0.4000)T –41.835
12 24 144 26 (1.0, 1.0, 1.01.0)T 6.12e–14
13 7 36 8 (3.1441, 3.1422)T –1
14 4 23 5 (–1.9690, 16.1962)T 4.16e–22
15 10 62 13 (0.0000, –1.0000)T 3
16 8 41 9 (–6.75e–05, 5.4e–06)T 0
17 9 56 11 (4.976, 4.858)T –176.542
18 13 103 15 (0.115, 0.556, 0.853)T –3.863
19 6 52 8 (4.000, 3.999, 4.000, 3.999)T –10.536
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Figure 7 Performance profiles based on the number of iterations, the number of function evaluations and
the number of gradient evaluations given in Table 7

Acknowledgements
The authors would like to thank the editors and the anonymous reviewers for their constructive comments and
suggestions that have helped to improve the present paper. The fourth author was supported by Bu-Ali Sina University.



Mishra et al. Advances in Difference Equations        (2020) 2020:638 Page 23 of 24

This research was supported by the Science and Engineering Research Board (Grant No. DST-SERB- MTR-2018/000121)
and the University Grants Commission (IN) (Grant No. UGC-2015-UTT-59235).

Funding
Not applicable.

Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Authors’ contributions
The authors declare that the study was realized in collaboration with equal responsibility. All authors read and approved
the final manuscript.

Author details
1Department of Mathematics, Banaras Hindu University, 221005 Varanasi, India. 2Department of Mathematics, Indian
Institute of Technology Kharagpur, Kharagpur, India. 3Department of Mathematics, Sir Gurudas Mahavidyalaya, 700067
Kolkata, India. 4Department of Mathematics, Bu-Ali Sina University, 65178 Hamedan, Iran. 5DST-Centre for
Interdisciplinary Mathematical Sciences, Banaras Hindu University, 221005 Varanasi, India. 6Department of Medical
Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 24 July 2020 Accepted: 3 November 2020

References
1. Mishra, S.K., Ram, B.: Introduction to Unconstrained Optimization with R. Springer, Singapore (2019).

https://doi.org/10.1007/978-981-15-0894-3
2. Broyden, C.G.: The convergence of a class of double-rank minimization algorithms. IMA J. Appl. Math. 6(1), 76–90

(1970). https://doi.org/10.1093/imamat/6.1.76
3. Fletcher, R.: A new approach to variable metric algorithms computer. Comput. J. 13(3), 317–322 (1970).

https://doi.org/10.1093/comjnl/13.3.317
4. Goldfarb, A.: A family of variable metric methods derived by variational means. Math. Comput. 24(109), 23–26 (1970).

https://doi.org/10.1090/S0025-5718-1970-0258249-6
5. Schanno, J.: Conditions of quasi-Newton methods for function minimization. Math. Comput. 24(111), 647–650

(1970). https://doi.org/10.1090/S0025-5718-1970-0274029-X
6. Salim, M.S., Ahmed, A.R.: A quasi-Newton augmented Lagrangian algorithm for constrained optimization problems.

J. Intell. Fuzzy Syst. 35(2), 2373–2382 (2018). https://doi.org/10.3233/JIFS-17899
7. Hedayati, V., Samei, M.E.: Positive solutions of fractional differential equation with two pieces in chain interval and

simultaneous Dirichlet boundary conditions. Bound. Value Probl. 2019, 141 (2019).
https://doi.org/10.1186/s13661-019-1251-8

8. Dixon, L.C.W.: Variable metric algorithms: necessary and sufficient conditions for identical behavior of nonquadratic
functions. J. Optim. Theory Appl. 10, 34–40 (1972). https://doi.org/10.1007/BF00934961

9. Samei, M.E., Yang, W.: Existence of solutions for k-dimensional system of multi-term fractional q-integro-differential
equations under anti-periodic boundary conditions via quantum calculus. Math. Methods Appl. Sci. 43(7), 4360–4382
(2020). https://doi.org/10.1002/mma.6198

10. Powell, M.J.D.: On the convergence of the variable metric algorithm. IMA J. Appl. Math. 7(1), 21–36 (1971).
https://doi.org/10.1093/imamat/7.1.21

11. Ahmadi, A., Samei, M.E.: On existence and uniqueness of solutions for a class of coupled system of three term
fractional q-differential equations. J. Adv. Math. Stud. 13(1), 69–80 (2020)

12. Dai, Y.H.: Convergence properties of the BFGS algoritm. SIAM J. Optim. 13(3), 693–701 (2002).
https://doi.org/10.1137/S1052623401383455

13. Samei, M.E., Hedayati, V., Rezapour, S.: Existence results for a fraction hybrid differential inclusion with
Caputo–Hadamard type fractional derivative. Adv. Differ. Equ. 2019, 163 (2019).
https://doi.org/10.1186/s13662-019-2090-8

14. Samei, M.E., Hedayati, V., Ranjbar, G.K.: The existence of solution for k-dimensional system of Langevin
Hadamard-type fractional differential inclusions with 2k different fractional orders. Mediterr. J. Math. 17, 37 (2020).
https://doi.org/10.1007/s00009-019-1471-2

15. Aydogan, M., Baleanu, D., Aguilar, J.F.G., Rezapour, S. Samei, M.E.: Approximate endpoint solutions for a class of
fractional q-differential inclusions by computational results. Fractals 28, 2040029 (2020).
https://doi.org/10.1142/S0218348X20400290

https://doi.org/10.1007/978-981-15-0894-3
https://doi.org/10.1093/imamat/6.1.76
https://doi.org/10.1093/comjnl/13.3.317
https://doi.org/10.1090/S0025-5718-1970-0258249-6
https://doi.org/10.1090/S0025-5718-1970-0274029-X
https://doi.org/10.3233/JIFS-17899
https://doi.org/10.1186/s13661-019-1251-8
https://doi.org/10.1007/BF00934961
https://doi.org/10.1002/mma.6198
https://doi.org/10.1093/imamat/7.1.21
https://doi.org/10.1137/S1052623401383455
https://doi.org/10.1186/s13662-019-2090-8
https://doi.org/10.1007/s00009-019-1471-2
https://doi.org/10.1142/S0218348X20400290


Mishra et al. Advances in Difference Equations        (2020) 2020:638 Page 24 of 24

16. Baleanu, D., Darzi, R., Agheli, B.: Fractional hybrid initial value problem featuring q-derivatives. Acta Math. Univ.
Comen. 88, 229–238 (2019)

17. Baleanu, D., Shiri, B.: Collocation methods for fractional differential equations involving non-singular kernel. Chaos
Solitons Fractals 116, 136–145 (2018). https://doi.org/10.1016/j.chaos.2018.09.020

18. Shiri, B., Baleanu, D.: System of fractional differential algebraic equations with applications. Chaos Solitons Fractals
120, 203–212 (2019). https://doi.org/10.1016/j.chaos.2019.01.028

19. Byrd, R., Nocedal, J., Yuan, Y.: Global convergence of a class of quasi-Newton methods on convex problems. SIAM J.
Numer. Anal. 24(5), 1171–1189 (1987)

20. Byrd, R.H., Nocedal, J.: A tool for the analysis of quasi-Newton methods with application to unconstrained
minimization. SIAM J. Numer. Anal. 26(3), 727–739 (1989). https://doi.org/10.1137/0726042

21. Wei, Z., Li, G.Y., Qi, L.: New quasi-Newton methods for unconstrained optimization problems. Appl. Math. Comput.
175(2), 1156–1188 (2006). https://doi.org/10.1016/j.amc.2005.08.027

22. Mascarenhas, W.F.: The bfgs method with exact line searches fails for non-convex objective functions. Math. Program.
99(1), 49–61 (2004). https://doi.org/10.1007/s10107-003-0421-7

23. Li, D.H., Fukushima, M.: On the global convergence of the BFGS method for nonconvex unconstrained optimization
problems. SIAM J. Optim. 11(4), 1054–1064 (2001). https://doi.org/10.1137/S1052623499354242
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43. Rajković, P.M., Stanković, M.S., Marinković, S.D.: Mean value theorems in q-calculus. Mat. Vesn. 54, 171–178 (2002)
44. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7(1),

17–41 (1981)
45. Yuan, Y.X.: A modified bfgs algorithm for unconstrained optimization. IMA J. Numer. Anal. 11(3), 325–332 (1991).

https://doi.org/10.1093/imanum/11.3.325
46. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213

(2002). https://doi.org/10.1007/s101070100263

https://doi.org/10.1016/j.chaos.2018.09.020
https://doi.org/10.1016/j.chaos.2019.01.028
https://doi.org/10.1137/0726042
https://doi.org/10.1016/j.amc.2005.08.027
https://doi.org/10.1007/s10107-003-0421-7
https://doi.org/10.1137/S1052623499354242
https://doi.org/10.1016/j.aml.2011.06.009
https://doi.org/10.2991/jnmp.2003.10.4.5
https://doi.org/10.1186/1687-1847-2013-282
https://doi.org/10.1016/j.physa.2004.03.082
https://doi.org/10.1007/978-3-642-20009-0_58
https://doi.org/10.1007/s00034-019-01091-4
https://doi.org/10.1016/j.ejor.2016.01.001
http://arxiv.org/abs/arXiv:1702.01518
https://doi.org/10.1007/978-981-10-4642-1_17
http://arxiv.org/abs/arXiv:1910.12410
https://doi.org/10.1007/s12190-020-01432-6
https://doi.org/10.1007/978-1-4614-6946-9
https://doi.org/10.1093/imanum/11.3.325
https://doi.org/10.1007/s101070100263

	On q-BFGS algorithm for unconstrained optimization problems
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	On q-BFGS algorithm
	Global convergence
	Numerical experiments
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	Consent for publication
	Authors' contributions
	Author details
	Publisher's Note
	References


