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Abstract
In this paper, we investigate the external stability and H∞ control of switching
systems with time-varying delay and impulse. First of all, a modified two-direction
inequality (relation) between the switching numbers and the maximum, minimum
dwell time is proposed. This new inequality is applied to proving the external stability
of switching systems with delay and impulse consisting of subsystems with Hurwitz
stable matrices of internal dynamics. By using this new inequality, a normal L2 norm
constraint is derived rather than weighted L2 norm constraint. In addition, by a
realizable switching law, the obtained result is extended to the switching systems
comprised of subsystems with both Hurwitz stable and unstable matrices of internal
dynamics. The results are finally applied to H∞ control and illustrated by a numerical
example.
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1 Introduction
External stability (ES) is defined as a property of control systems: every L2 input generates
an L2 zero-state output [1–4], which plays an essential role in system analysis. As one type
of systems, switching systems(SSs), consisting of a family of subsystems, and a switching
rule that orchestrates the switching between them [5–8], have been an important frame-
work in the area of input–output analysis. In practice, effects of time delay [9, 10] and
impulse [11, 12] are usually inevitable. Therefore, there are lots of results on system and
input–output analysis of delayed SSs [11–21]. For example of a discrete-time framework,
the problem of robust exponential H∞ filtering for switched fuzzy delayed systems was
investigated in [15]; for example of a continuous-time framework, in [11], fault-tolerant
synchronization for SSs with delay and impulse was considered.

In the field of ES, H∞ control, H∞ model reduction, L2-gain analysis and disturbance
attenuation for the SSs, how to obtain the L2 norm bound constraint is a critical part of
our study. Owing to the essence of SSs and average dwell time(DT) scheme, the concept
of weighted L2 norm bound constraint, instead of the normal L2 norm bound constraint,
has been proposed [16, 17, 22]. However, this weighted concept changes the original phys-
ical meaning of L2. Recently, some researchers tried to remove this label “weighted”, see
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[18] in 2012, [23] in 2016 and [19] in 2017. However, there are still some doubtful prob-
lems. Specifically, Liu and Yuan adopted a normal L2 relation between input and output
in [18] but where the average DT could not be substituted into the integral in (36); In [23],
Eq. (21) could not be directly derived because �(s) could not be guaranteed greater than
zero; Syed Ali et al. employed the square of L2 norm, see (6) in [19], but it is question-
able for the cancelation of eα(T–s) on both sides of the inequality right below (57). Very
recently, a two-direction inequality ( t–τ

Tmax
≤ Nσ (t, τ ) ≤ t–τ

Tmin
) between the switching num-

bers and the maximum, minimum DT was proposed in [11] such that the label “weighted”
can be removed properly. Furthermore, an improved two-direction inequality ( t–τ

Tmax
– 1 ≤

Nσ (t, τ ) ≤ t–τ
Tmin

+1) was provided in [24, 25]. But this improved inequality is still not precise
enough. A more accurate two-direction inequality (max{ t–τ

Tmax
– 1, 0} ≤ Nσ (t, τ ) ≤ t–τ

Tmin
+ 1)

was given in [21]. To the best of our knowledge, this more accurate two-direction inequal-
ity has not been used to study the ES and H∞ control of SSs with delay and impulse.

In order to study the ES of SSs comprised of subsystems with both Hurwitz stable
and unstable matrices, a suitable switching law is necessary. There are a few results that
have been reported in [22, 25–29]. Some state-dependent switching laws were proposed
in [27, 28], while some time-dependent switching laws were presented [22, 25, 26, 29].
The authors of [29] applied fast switching and slow switching, respectively, to unstable
and stable subsystems. In [26], the precondition inft≥t0 [ T–1(t)

T+(t) ] ≥ – β

α
was given to guaran-

tee that –γ t = T–1(t)α + T+(t)β < 0 holds. But this precondition cannot make sure that
–γ t = T–1(t)α + T+(t)β holds or that T–1(t)α + T+(t)β is a linear function as desired. Only
T–1(t)α + T+(t)β < 0 can be deduced there. Another resolution was proposed in [22], a
new separation of switching instants was arranged in advance. By a given parameter c∗ > 0
without a specified sequence of time instants, the switching law in [25] is easier and clearer
to implement than the one in [22]. This makes it worth to study how to adopt the switching
law in [25] to investigate the ES and H∞ control of SSs with delay and impulse.

Motivated by the above discussion, the problem of ES and H∞ control of SSs with delay
and impulse is investigated in this paper. The main contribution of the paper is as follows.
First, a two-direction inequality (relation) between the switching numbers and the maxi-
mum, minimum DT is used such that the label “weighted” can be removed properly and
the normal L2 norm constraint is derived. Second, a suitable switching law is adopted to
deal with the SSs with both Hurwitz stable and unstable subsystems. Third, we take the
overlooked case 0 < μ < 1 into consideration (in almost all mentioned results above the
range of μ is only larger or equal to 1), i.e. the range of switching parameters μ is extended
to the set of all positive real numbers. Fourth, the non-weighted H∞ control [30–32] of
switching control systems with delay and impulse is established, in which the matrices of
internal dynamics of the controlled system are not necessarily all Hurwitz as usual. Finally,
the effectiveness of the results is illustrated by a numerical example.

2 Problem statement and preliminaries
Let Rn denote the n-dimensional real Euclidean space. For x ∈ R

n, ‖x‖ denotes the Eu-
clidean norm of x. We use the notation L2([0,∞),Rn) to denote the class of square
integrable functions from [0,∞) to R

n, i.e. for each x ∈ L2([0,∞),Rn), the L2 norm
of x is ‖x‖L2 = (

∫ ∞
0 ‖x(t)‖2 dt) 1

2 < ∞. Define xt(s) = x(t + s), –d ≤ s ≤ 0, and ‖xt‖d =
sup–d≤s≤0 ‖x(t + s)‖. The notation P > 0 indicates that matrix P is positive definite. λmax(P)
(λmin(P)) denotes the maximum (minimum) eigenvalue of matrix P. α– means such a pos-
itive number that the inequality AT

i Pi + PiAi + α–Pi < 0 holds where Ai is Hurwitz stable,
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while α+ means such a positive number that AT
i Pi + PiAi – α+Pi < 0 holds where Ai is not

Hurwitz stable.
Consider the following switching control system with delay and impulse:

ẋ(t) = Aσ (t)x(t) + Adσ (t)x
(
t – τ (t)

)
+ Bσ (t)u(t), t ∈ [tk–1, tk),

	x = x(tk) – x
(
t–
k
)

= Iσ (t–
k )x

(
t–
k
)
, t = tk ,

y(t) = Cσ (t)x(t) + Cdσ (t)x
(
t – τ (t)

)
+ Eσ (t)u(t),

xt0 = x(t0 + θ ) = φ(θ ), θ ∈ [–d, 0],

(1)

where x(t) ∈ R
n, u(t) ∈ R

m and y(t) ∈ R
p represent the state vector, external input vector

and output vector, respectively. Aσ (t), Adσ (t), Bσ (t), Cσ (t), Cdσ (t), Eσ (t) and Iσ (t) are constant
matrices with appropriate dimensions, where σ (t) is the switching signal, which takes val-
ues from P = {1, 2, . . .} and σ (t) = i ∈ P means the subsystem i is active at t. The switch-
ing time instants tk (k = 1, 2, . . .) satisfy 0 ≤ t0 < t1 < t2 < · · · < tk < · · · , limk→∞ tk = ∞. The
initial function φ(θ ) is piecewise continuous on [–d, 0]. The delay function τ (t) is differ-
entiable and satisfies 0 ≤ τ (t) ≤ d, τ̇ (t) ≤ ρ < 1.

Remark 2.1 Here ẋ is considered as the right derivative of x based on two considerations.
On the one hand, the derivative at t0 is taken to be a right derivative, since φ(θ ) may not
admit a left derivative at t0 or this left derivative even exists but may not equal the right
hand function. To be consistent with the derivative at t0, ẋ(tk) needs to be the notation of
the right derivative at tk . On the other hand, at tk , the subsystem σ (tk) = σ (t+

k ) is already
active, i.e. ẋ(t) = Aσ (t+

k )x(t) + Adσ (t+
k )x(t – τ (t)) + Bσ (t+

k )u(t). It follows that ẋ(tk) also denotes
the right derivative at tk .

Remark 2.2 The solution x(t) is right continuous at tk , i.e. x(t+
k ) = x(tk), since ẋ(tk) repre-

sents the right derivative at tk and the right derivative is defined based on right continuity.

Definition 2.1 ([1]) The L2 gain of an externally stable system is

γ = sup
u∈L2,u	=θ

‖y‖L2

‖u‖L2
.

(Here θ indicates the zero function.) The L2 gain is the maximum ratio of ‖y‖L2 /‖u‖L2 .

Lemma 2.1 ([21]) For any t ≥ τ ≥ t0, Nσ (t, τ ) denote the number of discontinuities of re-
gion over (τ , t), i.e., the number of region switching over (τ , t),

max

{
t – τ

Tmax
– 1, 0

}

≤ Nσ (t, τ ) ≤ t – τ

Tmin
+ 1, (2)

where Tmax = supk=1,2,...(tk –tk–1), Tmin = infk=1,2,...(tk –tk–1) are the maximum and minimum
DT of system (1).

3 Main results
At the beginning of this section, the ES of SSs with delay and impulse consisting of sub-
systems with Hurwitz A′

is is proved. Then the obtained result is extended to the ES of SSs,
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in which not all subsystems are Hurwitz stable, by employing a switching law. In obtained
results, the normal L2 norm constraint, rather than a weighted L2 norm constraint, is de-
rived by using the new proposed relation (2). Finally, the derived results of ES is applied
to H∞ control.

3.1 External stability
In this subsection, by using Eq. (2), the ES of SSs with delay and impulse consisting of
subsystems that are all Hurwitz stable, and subsystems that are not all Hurwitz stable, is
proved, respectively.

3.1.1 All subsystems are Hurwitz stable
Theorem 3.1 Given scalars α > 0, μ > 0 and the numbers of any two consecutive subsys-
tems i, j ∈ P (σ switches from j to i), the system (1) is externally stable with a L2 gain γ , if
there exist n × n positive definite matrices Pi, Qi, Pj, Qj such that

⎡

⎢
⎢
⎢
⎣

AT
i Pi + PiAi + αPi + Qi PiAdi PiBi CT

i

∗ –(1 – ρ)e–αdQi 0 CT
di

∗ ∗ –�2
μI ET

i

∗ ∗ ∗ –I

⎤

⎥
⎥
⎥
⎦

< 0, (3)

[
μPj (I + Ij)T Pi

∗ Pi

]

≥ 0, Qi ≤ μQj, (4)

and

α >
lnμ

Tmin
, (5)

where �μ = γ

μ

√
α–lnμ/Tmin
α–lnμ/Tmax

if μ > 1; �μ = γ if μ = 1; �μ = γμ

√
α–lnμ/Tmax
α–lnμ/Tmin

if 0 < μ < 1.

Proof Consider the following Lyapunov functional candidate:

Vσ (t)(t, xt) = V1σ (t)(t, xt) + V2σ (t)(t, xt), (6)

where V1σ (t)(t, xt) = xT (t)Pσ (t)x(t) and V2σ (t)(t, xt) =
∫ t

t–τ (t) xT (s) eα(s–t)Qσ (t) x(s) ds. For sim-
plicity, we shall use Vσ (t)(t) to denote Vσ (t)(t, xt).

Suppose σ (t) = i for t ∈ [tk–1, tk), then the derivatives of V1σ (t)(t) and V2σ (t)(t) are

V̇1σ (t)(t) = V̇1i(t)

= ẋT (t)Pix(t) + xT (t)Piẋ(t)

=
[
Aix(t) + Adix

(
t – τ (t)

)
+ Biu(t)

]T Pix(t)

+ xT (t)Pi
[
Aix(t) + Adix

(
t – τ (t)

)
+ Biu(t)

]

= xT (t)
(
AT

i Pi + PiAi
)
x(t) + xT(

t – τ (t)
)
AT

diPix(t)

+ xT (t)PiAdix
(
t – τ (t)

)
+ uT (t)BT

i Pix(t) + xT (t)PiBiu(t)

(7)
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and

V̇2σ (t)(t) = V̇2i(t)

= –α

∫ t

t–τ (t)
xT (s)eα(s–t)Qix(s) ds + xT (t)Qix(t)

–
[
1 – τ̇ (t)

]
e–ατ (t)xT(

t – τ (t)
)
Qix

(
t – τ (t)

)

≤ – αV2i(t) + xT (t)Qix(t) – (1 – ρ)e–αdxT(
t – τ (t)

)
Qix

(
t – τ (t)

)
,

(8)

respectively.
Denote 	(t) = yT (t)y(t) – �

2
μuT (t)u(t). Then we get

V̇i(t) + αVi(t) + 	(t)

≤ xT (t)
(
AT

i Pi + PiAi
)
x(t) + xT(

t – τ (t)
)
AT

diPix(t) + xT (t)PiAdix
(
t – τ (t)

)

+ uT (t)BT
i Pix(t) + xT (t)PiBiu(t) – αV2i(t) + xT (t)Qix(t)

– (1 – ρ)e–αdxT(
t – τ (t)

)
Qix

(
t – τ (t)

)
+ αxT (t)Pix(t) + αV2i(t)

+ xT (t)CT
i Cix(t) + xT (t)CT

i Cdix
(
t – τ (t)

)
+ xT (t)CT

i Eiu(t)

+ xT(
t – τ (t)

)
CT

diCix(t) + xT(
t – τ (t)

)
CT

diCdix
(
t – τ (t)

)

+ xT(
t – τ (t)

)
CT

diEiu(t) + uT (t)ET
i Cix(t) + uT (t)ET

i Cdix
(
t – τ (t)

)

+ uT (t)ET
i Eiu(t) – �

2
μuT (t)u(t)

= ηT (t)

⎡

⎢
⎣

(1, 1) PiAdi + CT
i Cdi PiBi + CT

i Ei

∗ –(1 – ρ)e–αdQi + CT
diCdi CT

diEi

∗ ∗ ET
i Ei – �

2
μI

⎤

⎥
⎦η(t),

where η(t) = [xT (t), xT (t – τ (t)), uT (t)]T and (1, 1) = AT
i Pi + PiAi + αPi + Qi + CT

i Ci.
From (3), by using the Schur complement [33], we obtain

⎡

⎢
⎣

AT
i Pi + PiAi + αPi + Qi PiAdi PiBi

∗ –(1 – ρ)e–αdQi 0
∗ ∗ –�2

μI

⎤

⎥
⎦ –

⎡

⎢
⎣

CT
i

CT
di

ET
i

⎤

⎥
⎦ (–I)–1

[
Ci Cdi Ei

]

=

⎡

⎢
⎣

(1, 1) PiAdi + CT
i Cdi PiBi + CT

i Ei

∗ –(1 – ρ)e–αdQi + CT
diCdi CT

diEi

∗ ∗ ET
i Ei – �

2
μI

⎤

⎥
⎦ < 0.

Therefore, we can deduce that

V̇i(t) + αVi(t) + 	(t) ≤ 0. (9)

Thus, integrating the inequality (9) from tk–1 to t, t ∈ [tk–1, tk), produces

Vi(t) ≤ Vi(tk–1)e–α(t–tk–1) –
∫ t

tk–1

	(s)e–α(t–s) ds. (10)
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Since σ switches from j to i, σ (t–
k–1) = j and σ (t+

k–1) = σ (tk–1) = i. Now we consider the
change of Vσ (t)(t) at t = tk–1 as follows. Firstly,

V1σ (t+
k–1)

(
t+
k–1

)
– μV1σ (t–

k–1)
(
t–
k–1

)

= V1i
(
t+
k–1

)
– μV1j

(
t–
k–1

)

= xT(
t+
k–1

)
Pix

(
t+
k–1

)
– μxT(

t–
k–1

)
Pjx

(
t–
k–1

)

= xT(
t–
k–1

)[
(I + Ij)T Pi(I + Ij) – μpj

]
x
(
t–
k–1

)
.

Using the Schur complement again, it follows from the first inequality in (4) that (I +
Ij)T Pi(I + Ij) – μpj ≤ 0 such that V1i(tk–1) = V1i(t+

k–1) ≤ μV1j(t–
k–1). Secondly,

V2σ (t+
k–1)

(
t+
k–1

)
– μV2σ (t–

k–1)
(
t–
k–1

)

= V2i
(
t+
k–1

)
– μV2j

(
t–
k–1

)

=
∫ t+

k–1

t+
k–1–τ (t+

k–1)
xT (s)eα(s–t+

k–1)Qσ (t+
k–1)x(s) ds

–
∫ t–

k–1

t–
k–1–τ (t–

k–1)
xT (s)eα(s–t–

k–1)μQσ (t–
k–1)x(s) ds

=
∫ tk–1

tk–1–τ (tk–1)
xT (s)eα(s–tk–1)Qix(s) ds

–
∫ tk–1

tk–1–τ (tk–1)
xT (s)eα(s–tk–1)μQjx(s) ds

=
∫ tk–1

tk–1–τ (tk–1)
xT (s)eα(s–tk–1)(Qi – μQj)x(s) ds.

The second inequality in (4) and the calculation above together imply that V2i(tk–1) =
V2i(t+

k–1) ≤ μV2j(t–
k–1). Thus, one has

Vi(tk–1) ≤ μVj
(
t–
k–1

)
. (11)

Using the technique in (2.7) of [22], it follows from (10) and (11) that

Vi(t) ≤ μVj
(
t–
k–1

)
e–α(t–tk–1) –

∫ t

tk–1

	(s)e–α(t–s) ds

≤ μ

[

Vj(tk–2)e–α(tk–1–tk–2) –
∫ tk–1

tk–2

	(s)e–α(tk–1–s) ds
]

× e–α(t–tk–1) –
∫ t

tk–1

	(s)e–α(t–s) ds

≤ · · ·

= μNσ (t,t0)Vσ (t0)(t0)e–α(t–t0) – μNσ (t,t0)
∫ t1

t0

	(s)e–α(t–s) ds (12)

– μNσ (t,t1)
∫ t2

t1

	(s)e–α(t–s) ds – · · · – μNσ (t,tk–1)
∫ t

tk–1

	(s)e–α(t–s) ds
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= Vσ (t0)(t0)e–α(t–t0)+Nσ (t,t0) lnμ –
∫ t1

t0

	(s)e–α(t–s)+Nσ (t,s) lnμ ds

–
∫ t2

t1

	(s)e–α(t–s)+Nσ (t,s) lnμ ds – · · · –
∫ t

tk–1

	(s)e–α(t–s)+Nσ (t,s) lnμ ds

≤ Vσ (t0)(t0)e–α(t–t0)+Nσ (t,t0) lnμ –
∫ t

t0

	(s)e–α(t–s)+Nσ (t,s) lnμ ds.

Under the zero initial condition, we acquire

∫ t

t0

	(s)e–α(t–s)+Nσ (t,s) lnμ ds ≤ –Vi(t) ≤ 0. (13)

That is,

∫ t

t0

yT (s)y(s)e–α(t–s)+Nσ (t,s) lnμ ds

≤ �
2
μ

∫ t

t0

uT (s)u(s)e–α(t–s)+Nσ (t,s) lnμ ds.
(14)

To obtain the ES, we discuss (14) in three cases, that is, μ > 1, μ = 1 and 0 < μ < 1. For the
case of μ > 1 (lnμ > 0). It follows from (2) that lnμ

Tmax
(t – s) – lnμ ≤ Nσ (t, s) lnμ ≤ lnμ

Tmin
(t –

s) + lnμ. Then inequality (14) can be rearranged as follows:

1
μ

∫ t

t0

yT (s)y(s)e–(α– lnμ
Tmax )(t–s) ds

≤ μ�2
μ

∫ t

t0

uT (s)u(s)e–(α– lnμ
Tmin

)(t–s) ds,
(15)

where α – lnμ

Tmax
> 0 and α – lnμ

Tmin
> 0 due to (5) and α > 0.

Integrating both sides of (15) from t = t0 to ∞ and interchanging the order of integrals
lead to

∫ ∞

t0

∫ t

t0

yT (s)y(s)e–(α– lnμ
Tmax )(t–s) ds dt

≤ μ2
�

2
μ

∫ ∞

t0

∫ t

t0

uT (s)u(s)e–(α– lnμ
Tmin

)(t–s) ds dt,
(16)

∫ ∞

t0

yT (s)y(s)e–(α– lnμ
Tmax )(–s)

∫ ∞

s
e–(α– lnμ

Tmax )t dt ds

≤ μ2
�

2
μ

∫ ∞

t0

uT (s)u(s)e–(α– lnμ
Tmin

)(–s)
∫ ∞

s
e–(α– lnμ

Tmin
)t dt ds.

(17)

By substituting �μ = γ

μ

√
α–lnμ/Tmin
α–lnμ/Tmax

into (17), we obtain

∫ ∞

t0

yT (s)y(s) ds ≤ γ 2
∫ ∞

t0

uT (s)u(s) ds. (18)

The remaining arguments for the other two cases, μ = 1 and 0 < μ < 1, are analogous to
the above analysis and will not be reproduced here. Consider u(s) = 0, for s ∈ [0, t0], then
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we have
∫ ∞

0
yT (s)y(s) ds ≤ γ 2

∫ ∞

0
uT (s)u(s) ds, (19)

which implies that the system (1) is externally stable with a L2 gain γ . �

Remark 3.1 The switching parameter 0 < μ < 1 was usually overlooked, as mentioned also
in [11]. Only μ ≥ 1 was considered in [16–18, 22] and in [19] that was η ≥ 1. If the sets
of those matrices (such as Pi, Qi in this work) were finite, as assumed in [16–19, 22], it
would be not easy to consider this overlooked case. However, in [11, 25] and this work,
the switching index set, see P below (1), is not restricted to be finite such that the just
mentioned sets of matrices can be infinite. Moreover, in conditions like Qi ≤ μQj, i and
j are only any two consecutive (j is just after i) rather than two arbitrary indices as in
[16–19, 22]. These together make the case 0 < μ < 1 feasible, i.e. the range of μ can be all
positive real numbers.

Remark 3.2 It follows from (12) and Theorem 3.1, the zero-input state ‖x(t)‖ ≤ Kμ

‖xt0‖d e–αμ(t–t0), where Kμ =
√

μ[λmax(Pσ (t0))+dλmax(Qσ (t0))]
infi∈P (λmin(Pi))

, αμ = 1
2 (α – lnμ

Tmin
) if μ > 1; Kμ =

√
λmax(Pσ (t0))+dλmax(Qσ (t0))

infi∈P (λmin(Pi))
, αμ = 1

2α if μ = 1; Kμ =
√

λmax(Pσ (t0))+dλmax(Qσ (t0))
μ infi∈P (λmin(Pi))

, αμ = 1
2 (α – lnμ

Tmax
)

if 0 < μ < 1.

3.1.2 Not all subsystems are Hurwitz stable
In the following, we consider to investigate the ES of SSs consisting of subsystems that are
not all Hurwitz stable.

For a subsystem Ai (Hurwitz stable), similar to (6)–(10), Adi, Bi, Ci, Di on [tk–1, tk), re-
placing α with α– under the condition (3), then, for t ∈ [tk–1, tk), we can derive that

Vi(t) ≤ Vi(tk–1)e–α–(t–tk–1) –
∫ t

tk–1

	(s)e–α–(t–s) ds. (20)

For a subsystem Ai (not Hurwitz), there always exist Pi > 0 and α+ > 0 (as long as α+ is
large enough), such that AT

i Pi + PiAi – α+Pi < 0. If the condition

⎡

⎢
⎢
⎢
⎣

AT
i Pi + PiAi – α+Pi + Qi PiAdi PiBi CT

i

∗ –(1 – ρ)e–αdQi 0 CT
di

∗ ∗ –�2
μI ET

i

∗ ∗ ∗ –I

⎤

⎥
⎥
⎥
⎦

< 0 (21)

holds, we can deduce that

V̇i(t) + αV2i(t) – α+V1i(t) + 	(t) ≤ 0, (22)

then

V̇i(t) – α+Vi(t) + 	(t) ≤ 0. (23)
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Therefore, the following inequality holds:

Vi(t) ≤ Vi(tk–1)eα+(t–tk–1) –
∫ t

tk–1

	(s)eα+(t–s) ds. (24)

Under the inequality in (4), using the same arguments as in (12), (13) and (14), from t0

to t, t ∈ [tk–1, tk), we can get

Vi(t) ≤ Vσ (t0)(t0)eα+T+(t,t0)–α–T–(t,t0)+Nσ (t,t0) lnμ

–
∫ t

t0

	(s)eα+T+(t,s)–α–T–(t,s)+Nσ (t,s) lnμ ds,
(25)

And then
∫ t

t0

yT (s)y(s)eα+T+(t,s)–α–T–(t,s)+Nσ (t,s) lnμ ds

≤ �
2
μ

∫ t

t0

uT (s)u(s)eα+T+(t,s)–α–T–(t,s)+Nσ (t,s) lnμ ds,
(26)

where T+(t, τ ), T–(t, τ ) denote the total active time of those subsystems with Hurwitz A′
is,

not Hurwitz A′
is over (τ , t), respectively.

Taking the case μ > 1 as an example, the exponential index on the left side of (26):
α+T+(t, s) – α–T–(t, s) + Nσ (t, s) lnμ may be reduced to be –(α– – lnμ

Tmax
)(t – s), while the

same index on the right side of (26) may not be immediately increased to be in the form:
–λ(t – s), λ > 0. Now, we choose a scalar α∗ ∈ (0,α–) arbitrarily and propose the following
switching law.

Switching Law 3.1 ([25]) Given a sequence of time instants t1 < t2 < · · · < tk < · · · ,
limk→∞ tk = ∞, where tk , k = 1, 2, . . . , is the switching instant and t1 > t0, such that, for
given scalars α+ > 0, α– > 0, 0 < α∗ < α– and c∗ > 0, the inequality α+T+(t, τ ) – α–T–(t, τ ) ≤
c∗ – α∗(t – τ ) holds, for any t ≥ τ ≥ t0.

Theorem 3.2 Given scalars α > 0, 0 < α– < α, α+ > 0, c∗ > 0, μ > 0 and the numbers of any
two consecutive subsystems i, j ∈ P (σ switches from j to i), the system (1), under Switching
Law 3.1, is externally stable with a L2 gain γ , if there exist real n × n positive definite
matrices Pi, Qi, Pj, Qj such that, for each subsystem (Ai is Hurwitz),

⎡

⎢
⎢
⎢
⎣

AT
i Pi + PiAi + α–Pi + Qi PiAdi PiBi CT

i

∗ –(1 – ρ)e–αdQi 0 CT
di

∗ ∗ –�2
μI ET

i

∗ ∗ ∗ –I

⎤

⎥
⎥
⎥
⎦

< 0; (27)

for each subsystem (Ai is not Hurwitz),

⎡

⎢
⎢
⎢
⎣

AT
i Pi + PiAi – α+Pi + Qi PiAdi PiBi CT

i

∗ –(1 – ρ)e–αdQi 0 CT
di

∗ ∗ –�2
μI ET

i

∗ ∗ ∗ –I

⎤

⎥
⎥
⎥
⎦

< 0, (28)
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[
μPj (I + Ij)T Pi

∗ Pi

]

≥ 0, Qi ≤ μQj, (29)

and

α∗ >
lnμ

Tmin
, (30)

where �μ = γ

μ

√
α∗–lnμ/Tmin

ec∗ (α––lnμ/Tmax) if μ > 1; �μ = γ
√

α∗
ec∗α–

if μ = 1; �μ = γμ

√
α∗–lnμ/Tmax

ec∗ (α––lnμ/Tmin) if
0 < μ < 1.

Proof Under Switching Law 3.1, one has

eα+T+(t,s)–α–T–(t,s) ≤ ec∗–α∗(t–s). (31)

To obtain the ES, we also investigate (26) in three cases, that is μ > 1, μ = 1 and 0 < μ < 1.
For the case of μ > 1. It follows from (2) that lnμ

Tmax
(t – s) – lnμ ≤ Nσ (t, s) lnμ ≤ lnμ

Tmin
(t – s) +

lnμ. From (26), we obtain

∫ t

t0

yT (s)y(s)e–α–(t–s)+Nσ (t,s) lnμ ds ≤ �
2
μ

∫ t

t0

uT (s)u(s)e–α∗(t–s)+Nσ (t,s) lnμ ds. (32)

Then

1
μ

∫ t

t0

yT (s)y(s)e–(α–– lnμ
Tmax )(t–s) ds ≤ μ�2

μ

∫ t

t0

uT (s)u(s)e–(α∗– lnμ
Tmin

)(t–s) ds. (33)

Using α∗ > lnμ

Tmin
(then α∗ – lnμ

Tmin
> 0 and α– – lnμ

Tmax
> 0 due to α∗ < α–) and selecting �μ =

γ

μ

√
α∗–lnμ/Tmin

ec∗ (α––lnμ/Tmax) , then following a similar process to (16) to (19), we can conclude that
the control system (1), under Switching Law 3.1 is externally stable with a L2 gain γ . �

Remark 3.3 It follows from (25), Switching Law 3.1 and Theorem 3.2 that the state ‖x(t)‖
≤ K̂μ‖xt0‖d e–α̂μ(t–t0), where K̂μ = e

c∗
2

√
μ[λmax(Pσ (t0))+dλmax(Qσ (t0))]

infi∈P (λmin(Pi))
, α̂μ = 1

2 (α∗ – lnμ

Tmin
) if μ > 1;

K̂μ = e
c∗
2

√
λmax(Pσ (t0))+dλmax(Qσ (t0))

infi∈P (λmin(Pi))
, α̂μ = 1

2α∗ if μ = 1; K̂μ = e
c∗
2

√
λmax(Pσ (t0))+dλmax(Qσ (t0))

μ infi∈P (λmin(Pi))
, α̂μ =

1
2 (α∗ – lnμ

Tmax
) if 0 < μ < 1.

In fact, for the case 0 < μ < 1, without Switching Law 3.1, we also have the following
conclusion.

Corollary 3.1 Given scalars α > 0, 0 < α– < α, α+ > 0, 0 < μ < 1 and the numbers of any two
consecutive subsystems i, j ∈ P (σ switches from j to i), the system (1) is externally stable
with a L2 gain γ , if there exist real n × n positive definite matrices Pi, Qi, Pj, Qj such that,
for each subsystem (Ai is Hurwitz),

⎡

⎢
⎢
⎢
⎣

AT
i Pi + PiAi + α–Pi + Qi PiAdi PiBi CT

i

∗ –(1 – ρ)e–αdQi 0 CT
di

∗ ∗ –�2
μI ET

i

∗ ∗ ∗ –I

⎤

⎥
⎥
⎥
⎦

< 0; (34)
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for each subsystem (Ai is not Hurwitz),

⎡

⎢
⎢
⎢
⎣

AT
i Pi + PiAi – α+Pi + Qi PiAdi PiBi CT

i

∗ –(1 – ρ)e–αdQi 0 CT
di

∗ ∗ –�2
μI ET

i

∗ ∗ ∗ –I

⎤

⎥
⎥
⎥
⎦

< 0, (35)

[
μPj (I + Ij)T Pi

∗ Pi

]

≥ 0, Qi ≤ μQj, (36)

and

α+ <
| lnμ|
Tmax

, (37)

where �μ = γμ

√
–α++| lnμ|/Tmax
α–+| lnμ|/Tmin

.

Proof Taking a similar process to (20) to (26), we have

∫ t

t0

yT (s)y(s)eα+T+(t,s)–α–T–(t,s)+Nσ (t,s) lnμ ds

≤ �
2
μ

∫ t

t0

uT (s)u(s)eα+T+(t,s)–α–T–(t,s)+Nσ (t,s) lnμ ds.
(38)

Since t–s
Tmax

– 1 ≤ Nσ (t, s) ≤ t–s
Tmin

+ 1, –| lnμ|
Tmin

(t – s) + lnμ ≤ Nσ (t, s) lnμ ≤ –| lnμ|
Tmax

(t – s) – lnμ.
Then

μ

∫ t

t0

yT (s)y(s)e–(α–+ | lnμ|
Tmin

)(t–s) ds

≤ 1
μ
�

2
μ

∫ t

t0

uT (s)u(s)e–(–α++ | lnμ|
Tmax )(t–s) ds.

(39)

Suppose α+ < | lnμ|
Tmax

and choose �μ = γμ

√
–α++| lnμ|/Tmax
α–+| lnμ|/Tmin

. Then following a similar process
to (16) to (19), we can prove that the control system (1), consisting of both subsystems
with Hurwitz A′

is and subsystems with A′
is that are not Hurwitz, is externally stable with

a L2 gain γ . �

Remark 3.4 It follows from (25) and the Corollary 3.1 that, for the case 0 < μ < 1, we have
the zero-input state

∥
∥x(t)

∥
∥ ≤

√
λmax(Pσ (t0)) + dλmax(Qσ (t0))

μ infi∈P(λmin(Pi))
‖xt0‖de– 1

2 (–α++ | lnμ|
Tmax )(t–t0).

Remark 3.5 The Corollary 3.1 does not use Switching Law 3.1, the right side of in-
equality (38) is enlarged as �2

μ

∫ t
t0

uT (s)u(s)eα+(t–s)+Nσ (t,s) lnμ ds instead of �2
μ

∫ t
t0

uT (s)u(s) ×
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e–α∗(t–s)+Nσ (t,s) lnμ ds. As an additional condition, α+ < | lnμ|
Tmax

is imposed. Therefore, Theo-
rem 3.2 is less conservative.

Remark 3.6 By employing the new proposed two-direction inequality (2), after the steps
(15)–(19), (33) and (39), the normal L2 norm constraint instead of the weighted L2 norm
constraint is obtained. However, only the weighted L2 norm constraint was derived in
[16, 17, 22]. This can be easily seen in the proof steps (2.10)–(2.15) in [22], (33)–(34) in
[16] and (49)–(50) in [17]. The “average dwell time” method is adopted in these references,
that is, the one-direction inequality Nσ (0, τ ) ≤ τ

τa
is applied.

3.2 Application to H∞ control
In this section, we apply the derived results of ES to H∞ control. The so-called H∞
control is named from the H∞ functions defined on the H∞ (Hardy) space (see page
1 in [30]): H∞ := {F : C → C|F is analytic, supRe(s)>0 |F(s)| < ∞} equipped with the norm
‖F‖∞ := supRe(s)>0 |F(s)|, for F ∈ H∞. As is well known (also see page 4 in [31]), transfer
functions for finite dimensional linear control systems are rational functions with real
coefficients. Thus, we may consider the subset of H∞ consisting of real-rational func-
tions: RH∞ ⊂ H∞. In fact [31], a transfer function F(s) ∈ RH∞ if and only if F is proper
(lims→∞ F(s) < ∞) and stable (F has no poles in the closed right half complex plane). In this
case, ‖F‖∞ = supω∈R |F(jω)| = supu∈L2,u	=θ ‖y‖L2 /‖u‖L2 , where u, y denote the input, output
of the considered control system [1]. Therefore, the transfer function of a linear control
system F(s) is a real-rational H∞ function implies that the control system is externally sta-
ble, i.e. every L2 input only excites an L2 zero-state output. If the input is considered to
be a disturbance, then ES measures the robustness of the zero-state output on the distur-
bance, i.e. it ensures that the zero-state output excited by the energy-bounded (because
the square of the L2 norm of a signal can be considered as the energy content of the signal)
disturbance will not blow up.

For linear control systems, H∞ control is to find a control (consisting of measured vari-
ables) such that the norm of the transfer function from the disturbance (input) ud to the
output y (something we want to minimize) ‖Fd→y‖∞ is minimized, i.e. the zero-state out-
put excited by disturbance yd is minimized [32]. For nonlinear control systems including
the system considered in this paper, they do not have transfer functions as the linear ones
do. However, the same name H∞ control is employed for the following control objective:
to find a control such that the controlled system is asymptotically stable when no distur-
bances are present, and moreover, has finite L2 gain from ud to y, under the zero initial
condition (is externally stable from ud to y), see page 6 in [31]. As we see above, for ei-
ther linear or nonlinear control systems, H∞ control has the same physical meaning: the
H∞ controller starts to stabilize the system after the energy-bounded disturbance has al-
ready decayed to zero, then maintains the stabilized system to be externally stable from
the disturbance to the output such that effect of the disturbance on the output is attenu-
ated during the steady period. This specializes the practical importance of H∞ control in
industry roared with noises. However, by the existing average dwell time approach, those
results obtained for switched system are only on weak noise attenuation index of weighted
form than cannot truly reflect the practical meaning of H∞ problems [17].

In this section, by adopting maximum, minimum dwell time and the new proposed two-
direction inequality (2), we state the details for the non-weighted H∞ control of switching
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control systems with delay and impulse. Consider (1) with both control input uc and dis-
turbance input ud as follows:

ẋ(t) = Aσ (t)x(t) + Adσ (t)x
(
t – τ (t)

)
+ Bσ (t)

(
uc(t) + ud(t)

)
, t ∈ [tk–1, tk),

	x = x(tk) – x
(
t–
k
)

= Iσ (t–
k )x

(
t–
k
)
, t = tk ,

y(t) = Cσ (t)x(t) + Cdσ (t)x
(
t – τ (t)

)
+ Eσ (t)

(
uc(t) + ud(t)

)
,

xt0 = x(t0 + θ ) = φ(θ ), θ ∈ [–d, 0].

(40)

As just discussed, the control (input) uc is comprised of measured variables. A special
(and common) form is uc = Kσ (t)x (state feedback), where Kσ (t) is the control gain to be
designed and x is the state variable that is pre-assumed to be measurable (available). Gen-
erally, uc may be also designed as a function of xt (delayed state feedback), x(t–

k ) (impulsive
state feedback) and y (output feedback) as needed, if they can be measured.

Controlled by uc = Kσ (t)x, the system above can be rewritten as

ẋ(t) = Āσ (t)x(t) + Adσ (t)x
(
t – τ (t)

)
+ Bσ (t)ud(t), t ∈ [tk–1, tk),

	x = x(tk) – x
(
t–
k
)

= Iσ (t–
k )x

(
t–
k
)
, t = tk ,

y(t) = C̄σ (t)x(t) + Cdσ (t)x
(
t – τ (t)

)
+ Eσ (t)ud(t),

xt0 = x(t0 + θ ) = φ(θ ), θ ∈ [–d, 0],

(41)

where Āσ (t) = Aσ (t) + Bσ (t)Kσ (t) and C̄σ (t) = Cσ (t) + Eσ (t)Kσ (t). The H∞ control problem is to
find Kσ (t) such that (41) is asymptotically stable when ud = 0, and is externally stable from
ud to y, i.e. ‖y(t)‖L2 ≤ γ ∗‖ud(t)‖L2 for some prescribed constant γ ∗, when φ(θ ) = 0.

Comparing (41) with (1), it can be concluded that the objectives of H∞ control are all
achieved (since exponential stability implies asymptotic stability and the ES is already
proven) in different cases if Aσ (t), Cσ (t) are replaced by Āσ (t), C̄σ (t), respectively, in the cor-
responding theorems. To avoid tediousness, we only state a theorem for the H∞ control
corresponding to Theorem 3.2. The result corresponding to Theorem 3.1 is left to the
reader.

Theorem 3.3 Given scalars α > 0, 0 < α– < α, α+ > 0, c∗ > 0, μ > 0 and the numbers of any
two consecutive subsystems i, j ∈ P (σ switches from j to i), the H∞ control problem of (40),
under the switching law S3.1, is solved, if there exist real n × n positive definite matrices Pi,
Qi, Pj, Qj and appropriate dimensions matrices Ki, Kj such that, for each subsystem (Āi is
Hurwitz),

⎡

⎢
⎢
⎢
⎣

ĀT
i Pi + PiĀi + α–Pi + Qi PiAdi PiBi C̄T

i

∗ –(1 – ρ)e–αdQi 0 CT
di

∗ ∗ –�2
μI ET

i

∗ ∗ ∗ –I

⎤

⎥
⎥
⎥
⎦

< 0; (42)
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for each subsystem (Āi is not surely Hurwitz),

⎡

⎢
⎢
⎢
⎣

ĀT
i Pi + PiĀi – α+Pi + Qi PiAdi PiBi C̄T

i

∗ –(1 – ρ)e–αdQi 0 CT
di

∗ ∗ –�2
μI ET

i

∗ ∗ ∗ –I

⎤

⎥
⎥
⎥
⎦

< 0, (43)

[
μPj (I + Ij)T Pi

∗ Pi

]

≥ 0, Qi ≤ μQj, (44)

and

α∗ >
lnμ

Tmin
, (45)

where �μ = γ ∗
μ

√
α∗–lnμ/Tmin

ec∗ (α––lnμ/Tmax) , if μ > 1;�μ = γ ∗
√

α∗
ec∗α–

if μ = 1;�μ = γ ∗μ
√

α∗–lnμ/Tmax
ec∗ (α––lnμ/Tmin)

if 0 < μ < 1.

Remark 3.7 It follows from Remark 3.3, under the same conditions as in Theorem 3.3,

the state ‖x(t)‖ ≤ K̃μ‖xt0‖de–α̃μ(t–t0), where K̃μ = e
c∗
2

√
μ[λmax(Pσ (t0))+dλmax(Qσ (t0))]

infi∈P (λmin(Pi))
, α̃μ =

1
2 (α∗ – lnμ

Tmin
) if μ > 1; K̃μ = e

c∗
2

√
λmax(Pσ (t0))+dλmax(Qσ (t0))

infi∈P (λmin(Pi))
, α̃μ = 1

2α∗ if μ = 1; K̃μ =

e
c∗
2

√
λmax(Pσ (t0))+dλmax(Qσ (t0))

μ infi∈P (λmin(Pi))
, α̃μ = 1

2 (α∗ – lnμ

Tmax
) if 0 < μ < 1.

Remark 3.8 After substituting Āi, C̄i, nonlinear terms like PiBiKi and KT
i BT

i Pi appear in
(42) and (43). We can first left and right multiply (42), (43) by diag(P–1

i , I, I, I). Then we
apply the Schur complement and use –Q–1

i ≤ –2εiI + ε2
i Qi, εi > 0 to derive the following

linear matrix inequalities of P–1
i , Qi and Yi:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1, 1)1 Adi Bi P–1
i CT

i + Y T
i ET

i P–1
i

∗ –(1 – ρ)e–αdQi 0 CT
di 0

∗ ∗ –�2
μI ET

i 0
∗ ∗ ∗ –I 0
∗ ∗ ∗ ∗ –2εiI + ε2

i Qi

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1, 1)2 Adi Bi P–1
i CT

i + Y T
i ET

i P–1
i

∗ –(1 – ρ)e–αdQi 0 CT
di 0

∗ ∗ –�2
μI ET

i 0
∗ ∗ ∗ –I 0
∗ ∗ ∗ ∗ –2εiI + ε2

i Qi

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0,

where (1, 1)1 = AiP–1
i + P–1

i AT
i + α–P–1

i + BiYi + Y T
i BT

i , (1, 1)2 = AiP–1
i + P–1

i AT
i – α+P–1

i +
BiYi + Y T

i BT
i and Yi = KiP–1

i , obeying (42), (43), respectively. It follows that Ki = YiPi.
As for the first inequality in (44), we can first left and right multiply it by diag(P–1

j , I).
Then left and right multiply it by diag(I, P–1

i ) to derive an equivalent linear matrix inequal-
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ity as

[
μP–1

j P–1
j (I + Ij)T

∗ P–1
i

]

≥ 0.

Thus, all matrix inequalities in Theorem 3.3 are already transformed to linear matrix in-
equalities of P–1

i , Qi and Yi that can be solved by Matlab.

Remark 3.9 It is arbitrary to pre-assume that a certain Āi is Hurwitz or not surely Hurwitz,
as long as feasible solutions for the inequalities can be found; see Example 4.1, where Ā1

is pre-assumed to be Hurwitz.

4 Illustrative example
In this section, we provide an example of H∞ control with numerical simulations to illus-
trate previous results.

Example 4.1 Consider the switching control system with delay and impulse initialized as
follows:

A1 =

[
–1 0
0 –1

]

, Ad1 =

[
–0.1 0

0 –0.1

]

, B1 =

[
0.1
0.1

]

, I1 =

[
–0.1 0

0 –0.1

]

,

C1 =
[
0.1 0.1

]
, Cd1 =

[
0.1 0.1

]
, E1 = 0.1,

A2 =

[
0.5 0
0 0.5

]

, Ad2 =

[
0.05 0

0 0.05

]

, B2 =

[
0.1
0.1

]

, I2 =

[
0.05 0

0 0.05

]

,

C2 =
[
0.1 0.1

]
, Cd2 =

[
0.1 0.1

]
, E2 = 0.1.

Let α– = 1, α+ = 2, α∗ = 0.25 < α– and c∗ = 2.25, then we can select the switching signal σ (t)
satisfied Switching Law 3.1. From Remark 3.6 in [25], here we choose a simple switching
law realization as shown in Fig. 1. The first active subsystem is a Hurwitz stable subsystem.

Figure 1 Switching law σ (t)
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Figure 2 Disturbance input ud(t)

And the switching time is periodic. Let t2j – t2j–1 = T+ = 1, t2j–1 – t2j–2 = T– = 6, j = 1, 2, . . . ,
then T+ ≤ c∗/(α+ + α∗) and T– ≥ 2T+(α+ + α∗)/(α– – α∗) are satisfied. Therefore, Tmax =
T– = 6, Tmin = T+ = 1. In fact, any switching signal can be selected as long as Switching
Law 3.1 is satisfied.

Select the disturbance input ud(t) = sin( 2π
7 t)[H(t) – H(t – 7)] + sin( 2π

7 (t – 14))[H(t – 14) –
H(t – 21)] ∈ L2[0,∞) as shown in Fig. 2 and the initial condition φ(θ ) = φ(θ1, θ2) = [θ1 +
1, θ2 + 1]T , where H(t) is the Heaviside step function. Given the delay function τ (t) = 0.1 +
0.1 sin t, then we can select d = 0.2 and ρ = 0.1 such that τ (t) ≤ d, τ̇ (t) ≤ ρ < 1 as required.

All other common parameters for three cases are given as γ ∗ = 1, α = 1.01(α > α–), ε1 =
0.6 and ε2 = 0.6.

Case 1: 0 < μ < 1. Select μ = 0.98, then �μ = 0.1586 and α∗ > lnμ/Tmin = –0.0202. In this
case, we consider (A1 + B1Kj, Ad1, B1, I1, C1 + E1Kj, Cd1, E1), j = 1, 3, 5, . . . , 9 as the controlled
subsystem j = 1, 3, 5, . . . , 9, and (A2 + B2Ki, Ad2, B2, I2, C2 + E2Ki, Cd2, E2), j = 2, 4, 6, . . . , 10, as
the controlled subsystem j = 2, 4, 6, . . . , 10. Note that in the switching signal, see Fig. 1, the
lower ‘1’s represent 1, 3, 5, . . . , 9 and the upper ‘2’s represent 2, 4, 6, . . . , 10, from left to right.
Employing the linear matrix inequality tool box of Matlab, we derive

P1 =

[
2.5714 –1.2904

–1.2904 2.5714

]

, Q1 =

[
2.0723 –0.1300

–0.1300 2.0723

]

,

P2 =

[
1.7038 –0.8411

–0.8411 1.7038

]

, Q2 =

[
1.0502 –0.6317

–0.6317 1.0502

]

,

P3 =

[
1.2712 –0.5577

–0.5577 1.2712

]

, Q3 =

[
0.8672 –0.4842

–0.4842 0.8672

]

,

P4 =

[
1.3189 –0.5085

–0.5085 1.3189

]

, Q4 =

[
0.7349 –0.3881

–0.3881 0.7349

]

,

P5 =

[
1.0562 –0.3770

–0.3770 1.0562

]

, Q5 =

[
0.6212 –0.3020

–0.3020 0.6212

]

,
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P6 =

[
1.1485 –0.3693

–0.3693 1.1485

]

, Q6 =

[
0.5253 –0.2344

–0.2344 0.5253

]

,

P7 =

[
0.9375 –0.2832

–0.2832 0.9375

]

, Q7 =

[
0.4342 –0.1686

–0.1686 0.4342

]

,

P8 =

[
1.0295 –0.2778

–0.2778 1.0295

]

, Q8 =

[
0.3507 –0.1115

–0.1115 0.3507

]

,

P9 =

[
0.8405 –0.2137

–0.2137 0.8405

]

, Q9 =

[
0.2616 –0.0498

–0.0498 0.2616

]

,

P10 =

[
0.8597 –0.1445

–0.1445 0.8597

]

, Q10 =

[
0.1602 0.0211
0.0211 0.1602

]

,

K1 =
[

–13.5184 –13.5184
]

, K2 =
[

–2.4877 –2.4877
]

,

K3 =
[

–7.3631 –7.3631
]

, K4 =
[
–2.4773 –2.4773

]
,

K5 =
[

–6.9145 –6.9145
]

, K6 =
[
–2.4720 –2.4720

]
,

K7 =
[

–6.5315 –6.5315
]

, K8 =
[
–2.4724 –2.4724

]
,

K9 =
[

–6.0558 –6.0558
]

, K10 =
[

–2.4844 –2.4844
]

.

Then the conditions for this case in Theorem 3.3, where Ā1 (or A1 + B1Kj) is pre-assumed
to be Hurwitz, are satisfied. From Remark 3.7, Kμ = 8.1513 and αμ = 0.1267.

Case 2: μ = 1. In this case, �μ = 0.1623 and α∗ > lnμ/Tmin = 0. Using Matlab, we obtain

P1 =

[
0.9213 –0.2664

–0.2664 0.9213

]

, Q1 =

[
0.4469 –0.3123

–0.3123 0.4469

]

,

P2 =

[
1.0734 –0.3074

–0.3074 1.0734

]

, Q2 =

[
0.4469 –0.1087

–0.1087 0.4469

]

,

K1 =
[

–6.7553 –6.7553
]

, K2 =
[
–2.4085 –2.4085

]
.

Thus, all conditions in Theorem 3.3 (where Ā1 is pre-assumed to be Hurwitz) hold. It
follows from Remark 3.7 that Kμ = 4.3379 and αμ = 0.1250.

Case 3: μ > 1. Select μ = 1.01, then �u = 0.1576 and α∗ > lnμ/Tmin = 0.0100. By Matlab,
we get

P1 =

[
1.0091 –0.3389

–0.3389 1.0091

]

, Q1 =

[
0.5889 –0.3123

–0.3123 0.5889

]

,

P2 =

[
1.1750 –0.3900

–0.3900 1.1750

]

, Q2 =

[
0.5889 –0.3123

–0.3123 0.5889

]

,

K1 =
[

–6.7104 –6.7104
]

, K2 =
[
–2.4849 –2.4849

]
.
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Figure 3 ‖x(t)‖ and its exponential bound in three cases

Figure 4 Ratios in three cases

Therefore, conditions in Theorem 3.3 (where Ā1 is pre-assumed to be Hurwitz) are all
satisfied. According to Remark 3.7, Kμ = 4.6746 and αμ = 0.1200.

As expected, the zero-input (ud(t) ≡ 0) states with the initial condition φ(θ ) in these
three cases are bounded by Kμ‖xt0‖de–αμ(t–t0): 11.5277e–0.1267t (case 1), 6.6109e–0.1200t (case
2) and 6.1347e–0.1250t (case 3), see Fig. 3, respectively; and γ0(t) defined as (

∫ t
0 y2(s) ds/

∫ t
0 u2

d(s) ds) 1
2 , under the zero initial condition, for each case, is less than γ = 1; see Fig. 4.

Therefore, the H∞ control goal has been achieved.
As introduced before, the H∞ controller uc = Kσ (t)x starts to stabilize the system (the

state x1 with the initial condition φ(θ ) completely equaling x2 in each case is almost sta-
bilized between t = 7 s and t = 14 s, and after t = 21 s, see Fig. 5) after the energy-bounded
disturbance ud has already decayed to zero (between t = 7 s and t = 14 s, and after t = 21 s;
see Fig. 2), then maintains the stabilized system to be externally stable from the distur-
bance to the output such that the effect of the disturbance on the output is attenuated dur-
ing the steady period, see γ2(t) of each case in Fig. 4, defined as (

∫ t
14 y2(s) ds/

∫ t
14 u2

d(s) ds) 1
2

under the initial condition φ(θ ), which is less than γ ∗ = 1 and is of almost the same
form as γ0(t). However, before the system is stabilized for the first time, i.e. during the
transient period, the ES cannot be ensured, see γ1(t) of each case in Fig. 4, defined as
(
∫ t

0 y2(s) ds/
∫ t

0 u2
d(s) ds) 1

2 under the initial condition φ(θ ), which is larger than γ around
t = 0 s.
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Figure 5 States in three cases

5 Conclusion
The ES and H∞ control problem of SSs with delay and impulse has been investigated in
this paper. After introducing the definitions of the maximum, minimum DT, we have ap-
plied the relation between the number of switchings and the maximum, minimum DT to
prove the ES of SSs consisting of subsystems that are all Hurwitz stable. For those SSs com-
prised of subsystems that are not all Hurwitz stable, a realizable switching law has been
employed to study their ES. And then the normal L2 norm constraint has been derived.
The label “weighted” has been removed properly in this paper. Finally, these results have
been applied to H∞ control and illustrated by a numerical example. In the future, we will
first study the ES of nonlinear switching control systems without impulse or with impulse,
then investigate the stability of SSs with switching signals driven by stochastic processes.
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