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Abstract
Consider the following stochastic differential equation (SDE):

Xt = x +
∫ t

0
b(s,Xs)ds +

∫ t

0
σ (s,Xs)dBs, 0 ≤ t ≤ T , x ∈ R,

where {Bs}0≤s≤T is a 1-dimensional standard Brownian motion on [0, T ]. Suppose that
q ∈ (1,∞], p ∈ (1,∞), b = b1 + b2, b1 ∈ Lq(0, T ; Lp(R)) such that 1/p + 2/q < 1 and b2 is
bounded measurable, with σ ∈ L∞(0, T ;Cu(R)) there being a real number δ > 0 such
that σ 2 ≥ δ. Then there exists a weak solution to the above equation. Moreover, (i) if
σ ∈ C([0, T ];Cu(R)), all weak solutions have the same probability law on 1-dimensional
classical Wiener space on [0, T ] and there is a density associated with the above SDE;
(ii) if b2 = 0, p ∈ [2,∞) and σ ∈ L2(0, T ;C1/2

b (R)), the pathwise uniqueness holds.
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1 Introduction and main results
Consider the following stochastic differential equation (SDE) in R

d :

dXt = b(t, Xt) dt + σ (t, Xt) dBt , 0 < t ≤ T , X0 = x ∈R
d, (1.1)

where T > 0 is a given real number, b : [0, T] × R
d −→ R

d , σ : [0, T] × R
d −→ R

d×k are
Borel measurable functions and {Bt}0≤t≤T is a k-dimensional standard Brownian motion
defined on a given stochastic basis (�,F , {Ft}0≤t≤T ,P).

The fundamental theory for (1.1) is developed mainly by Itô and furnishes a very im-
portant tool to construct diffusion process. Under the Lipschitz and linear growing con-
ditions, Itô showed the existence and uniqueness of strong solutions.

Later, the result was sharped by a series of authors on the case of bounded measurable
coefficients. In [1], Skorokhod proved that (1.1) had a solution under the condition that
b and σ are only continuous (also see [2]), and then the problem of the uniqueness of
solutions becomes important. When b is bounded measurable, σ is bounded continuous
and σσ� is strictly elliptic, Strook–Varadhan [3, 4] showed the uniqueness in the prob-
ability laws. This uniqueness result is then strengthened by Veretennikov [5] for strong
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uniqueness if b is only bounded measurable but σ (t, ·) is Lipschitz continuous uniformly
in t ∈ [0, T].

When the coefficients are not bounded but only integrable, the existence and uniqueness
for solutions is more difficult. A breathtaking work in this direction has been established
by Krylov–Röckner [6] for σ = Id×d and

b ∈ Lq(0, T ; Lp(
R

d;Rd)) with p, q ∈ [2,∞) and
2
q

+
d
p

< 1. (1.2)

This result was then extended by Fedrizzi–Flandoli [7, 8]. Later, Zhang [9] generalized
their results to the non-constant diffusion coefficients: σ (t, ·) is uniformly continuous uni-
formly in t ∈ [0, T], σσ� is uniformly elliptic and |∇xσ | ∈ Lq(0, T ; Lp(Rd)) with p, q ∈ (1,∞)
and 2/q + d/p < 1. For more details in this direction, we refer to [10–13]. For some exten-
sions and applications, we refer to [14–18] and the references cited therein.

Since b is only integrable in [6], the non-degenerate assumption on σσ T is needed.
When the diffusion coefficients are degenerate, we should assume b more regular. When
d = 1, b and σ are time independent, satisfying

∣∣b(x) – b(y)
∣∣ ≤ �

(|x – y|),
∫

0+

1
�(s)

ds = ∞ (1.3)

and

∣∣σ (x) – σ (y)
∣∣2 ≤ ρ

(|x – y|2),
∫

0+

1
ρ(s)

ds = ∞, (1.4)

where � is a positive increasing concave function, ρ is positive and increasing, Yamada–
Watanabe [19] proved the pathwise uniqueness. Recently, Fang–Zhang [20] generalized
this result to d ≥ 1. By assuming that there is a small enough constant c0 such that when
|x – y| ≤ c0, �(|x – y|) = |x – y|r(|x – y|) and ρ(|x – y|) = |x – y|r(|x – y|) (r ∈ C1(R+)), they
derived the pathwise uniqueness.

Set the space Lq(0, T ; Lp(Rd)), 2/q + d/p < 1 by L. Then all above results for (1.1) can be
summed by the scheme in Table 1. From the table, we will ask: if b is in class of L and σ is
non-degenerate, does there exist a unique weak/strong solution to (1.1) if σ is continuous
or satisfies (1.4)?

To solve the above question, let us consider (1.1) on the straight line,

dXt = b(t, Xt) dt + σ (t, Xt) dBt , 0 < t ≤ T , X0 = x ∈R, (1.5)

where T > 0 is a given real number, b : [0, T] × R −→ R, σ : [0, T] × R −→ R are Borel
measurable functions. We will give a positive answer for the above question, and initially

Table 1 Strong and weak solutions for SDEs

b σ strong solution weak solution

continuous continuous ∃
bounded non-degenerate, continuous ∃, unique
bounded non-degenerate, Lipschitz ∃, unique
b ∈ L non-degenerate, |∇σ | ∈ L ∃, unique
(1.3) (1.4) ∃, unique
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we use Cb(R) to denote the space consisted of functions which is bounded and continuous
on R, and use Cu(R) to denote the space consisted of functions which is bounded and
uniformly continuous on R. Our first main result is presented now.

Theorem 1.1 Assume that q ∈ (1,∞] and p ∈ (1,∞). Let b = b1 + b2 such that b1 ∈
Lq(0, T ; Lp(R)) with 1/p + 2/q < 1 and b2 is bounded measurable. Suppose σ ∈ L∞(0, T ;
Cu(R)) and there is a real number δ > 0 such that σ 2 ≥ δ.

(i) There is a filtered probability space (�̃, F̃ , {F̃t}0≤t≤T , P̃), two processes X̃t and B̃t

defined for t ∈ [0, T] such that {B̃t}0≤t≤T is a 1-dimensional {F̃t}-Brownian motion and
{X̃t}0≤t≤T is an {F̃t}-adapted, continuous, 1-dimensional process for which

P̃

(∫ T

0

∣∣b(t, X̃t)
∣∣dt < ∞

)
= 1, (1.6)

and almost surely, for all t ∈ [0, T],

X̃t = x +
∫ t

0
b(s, X̃s) ds +

∫ t

0
σ (s, X̃s) dB̃s. (1.7)

(ii) If we suppose further that b2 = 0, p ∈ [2,∞) and σ ∈ L2(0, T ;Cα
b (R)) with α ≥ 1/2,

then the pathwise uniqueness holds.

Remark 1.1 (i) If σ is time independent, then σ ∈ Cα
b (R) with α ≥ 1/2 implies (1.4). But

if b is time independent, then b ∈ Lp(R) with p ≥ 2 does not imply (1.3). Therefore, we
develop a new and different existence and uniqueness result to (1.5).

(ii) By using the Sobolev embedding theorem, if σ is bounded and ∂xσ ∈ Lq(0, T ; Lp(R)),
then σ ∈ Lq(0, T ;C1–1/p

b (R), thus if p ≥ 2, it suggests that σ ∈ L2(0, T ;C1/2
b (R). In this sense,

we extend Zhang’s result ([9]) for d = 1.

If σ is not Hölder continuous in spatial variable but only uniformly continuous, the
uniqueness for weak solutions holds true as well if we suppose further that it is contin-
uous in t. It is our second main result.

Theorem 1.2 Let p, q and b1 be described in Theorem 1.1. Suppose b2 is bounded mea-
surable and b = b1 + b2. Suppose furthermore that σ ∈ C([0, T];Cu(R)) and there is a real
number δ > 0 such that σ 2 ≥ δ. Then all weak solutions of (1.5) possess the same probabil-
ity law on 1-dimensional classical Wiener space (W ([0, T]),B(W ([0, T]))). If one uses Px to
denote the unique probability law on (W ([0, T]),B(W ([0, T]))) corresponding to the initial
value x ∈R. For every f ∈ L∞(R), we define

Ptf (x) := E
Px f

(
w(t)

)
, 0 < t ≤ T , (1.8)

where w(t) is the canonical realization of a weak solution {Xt}0≤t≤T on Wiener space
(W ([0, T]),B(W ([0, T]))). Then {Pt}0≤t≤T has the strong Feller property, i.e. each Pt maps
a bounded measurable function to a bounded continuous function for every t > 0. More-
over, Pt admits a density p(t, x, y) for almost all t ∈ [0, T]. Besides, for every s > 0 and every
r ∈ [1,∞),

∫ T

s

∫
R

∣∣p(t, x, y)
∣∣r dy dt < ∞. (1.9)
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Remark 1.2 (i) For d ≥ 1, Strook–Varadhan [3, 4] have established a general theory for
weak solutions to (1.1) by assuming that σσ T is uniformly positive definite, bounded and
continuous and b is bounded and Borel measurable. However, Strook–Varadhan’s result
does not cover Theorem 1.2, since we only suppose b ∈ Lq(0, T ; Lp(R)) + L∞([0, T] ×R).

(ii) Thanks to [21, Lemma p. 75], the uniqueness in probability law implies the path-
wise uniqueness for d = 1, therefore we obtain the existence and uniqueness for strong
solutions.

2 Proof of Theorem 1.1
Initially, we state two useful lemmas.

Lemma 2.1 ([6, Theorems 10.2, 10.3] and [8, Lemma 3.4]) Suppose that p, q ∈ (1,∞) with
1/p + 2/q < 1, b ∈ Lq(0, T ; Lp(R)), a ∈ L∞(0, T ;Cu(R)) and there is a real number δ > 0 such
that a ≥ δ. Let λ > 0 and consider the following Cauchy problem:

⎧⎪⎪⎨
⎪⎪⎩

∂tu(t, x) + 1
2 a(t, x)∂2

x u(t, x) + b(t, x)∂xu(t, x)

= λu(t, x) – b(t, x), (t, x) ∈ (0, T) ×R,

u(T , x) = 0, x ∈R.

(2.1)

(i) There is a unique solution in Lq(0, T ; W 2,p(R)) ∩ W 1,q(0, T ; Lp(R)).
(ii) For this solution, we also have u ∈ C([0, T];C1

b (R)) and as λ → ∞,

sup
(t,x)∈[0,T]×R

∣∣∂xu(t, x)
∣∣ → 0. (2.2)

Remark 2.1 We call u(t, x) a solution to the Cauchy problem (2.1) if it lies in Lq(0, T ;
W 2,1

loc (R)) ∩ W 1,q(0, T ; L1
loc(R)) such that for every test function ϕ ∈ C∞

0 ((0, T] × R), the
identity

∫ T

0

∫
R

u(t, x)∂tϕ(t, x) dx dt –
1
2

∫ T

0

∫
R

a(t, x)∂2
x u(t, x)ϕ(t, x) dx dt

=
∫ T

0

∫
R

b(t, x)∂xu(t, x)ϕ(t, x) dx dt +
∫ T

0

∫
R

[
b(t, x) – λu(t, x)

]
ϕ(t, x) dx dt

holds.

Let B̃t be a 1-dimensional standard Brownian motion, σ ∈ L∞(0, T ;Cu(R)) and σ 2(t, x) >
δ > 0, b ∈ L1(0, T ; L1

loc(R)), we define Sb,σ a class of Ft-adapted continuous stochastic pro-
cess X̃t on [0, T] satisfying (1.6) and (1.7).

Lemma 2.2 ([9, Theorem 2.2]) Suppose X̃· ∈ Sb,σ . Let p, q ∈ (1,∞) such that 1/p + 2/q < 1
and b, f ∈ Lq(0, T ; Lp(R)). Then there is a constant C > 0, which depends on p, q, T , b and
σ , such that

E

∫ T

0
f (t, X̃t) dt ≤ C‖f ‖Lq(0,T ;Lp(R)). (2.3)
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We are now in a position to give the proof details of Theorem 1.1.
(i) When b is bounded measurable, the existence of weak solutions can be found in [22,

Theorem 1, p. 87]. According to (2.3), when b = b1 + b2, b1 ∈ Lq(0, T ; Lp(R)) such that
1/p + 2/q < 1 and b2 is bounded measurable, we can follow the proof calculations of [22,
Theorem 1, p. 87] (or see [23, Theorem 4.1]) step by step, so we completed the proof.

(ii) We show the pathwise uniqueness by using Itô-Tanaka’s trick (see [24]). Let σ (t, x)
be given in (1.5) and set a(t, x) = σ 2(t, x). Consider the Cauchy problem (2.1), by using
Lemma 2.1, there is a unique u ∈ Lq(0, T ; W 2,p(R)) ∩ W 1,q(0, T ; Lp(R)) solving the Cauchy
problem (2.1). Moreover, with the help of 1/p+2/q < 1, u ∈ C([0, T];C1

b (R)) and (2.2) is true.
Therefore, if λ is sufficiently large, then ‖∂xu‖C([0,T];C0

b (R)) < 1/2. For this fixed λ, we define
�(t, x) = x + u(t, x), then � forms a non-singular diffeomorphism of class C1 uniformly in
t ∈ [0, T] and

1
2

< ‖∂x�‖C([0,T];Cb(Rd)) <
3
2

,
2
3

< ‖∂x�‖C([0,T];Cb(Rd)) < 2, (2.4)

where �(t, x) = �–1(t, x).
Let (Xt , Bt)0≤t≤T be a weak solution of (1.5). By using Itô’s formula (see [6, Theorem 3.7]),

we have

d�(t, Xt) = ∂tu(t, Xt) dt + b(t, Xt)∂xu(t, Xt) dt +
1
2

a(t, x)∂2
x u(t, Xt) dt

+ ∂xu(t, Xt)σ (t, Xt) dBt + b(t, Xt) dt + σ (t, Xt) dBt

=
(
∂xu(t, Xt) + 1

)
σ (t, Xt) dBt + λu(t, Xt) dt.

Denote Yt = �(t, Xt) = Xt + u(t, Xt), then

dYt = λu
(
t,�(t, Yt)

)
dt + (1 + ∂xu

(
t,�(t, Yt)

)
σ
(
t,�(t, Yt)

)
dBt

=: b̃(t, Yt) + σ̃ (t, Yt) dBt , (2.5)

with Y0 = y = �(0, x). To prove the pathwise uniqueness for (1.5), it is sufficient to show
the pathwise uniqueness for (2.5) and vice versa. Now, we show this fact and by a scaling
transformation, we only need to concentrate our attention on T = 1.

For any given 0 < ε < 1, let us introduce for s ≥ 0 an approximating function

ϕε(s) =

⎧⎪⎪⎨
⎪⎪⎩

s log s
4ε

+ 3ε
2 , s ∈ [2ε,∞),

s2

2ε
– s log s

ε
– ε

2 s ∈ [ε, 2ε),

0, s ∈ [0, ε).

It follows that ϕε(s) is nonnegative and twice continuously differentiable, with

ϕ′
ε(s) =

⎧⎪⎪⎨
⎪⎪⎩

log s
4ε

+ 1, s ∈ [2ε,∞),
s
ε

– log s
ε

– 1 s ∈ [ε, 2ε),

0, s ∈ [0, ε),
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and

ϕ′′
ε (s) =

⎧⎪⎪⎨
⎪⎪⎩

1
s , s ∈ [2ε,∞),
1
ε

– 1
s s ∈ [ε, 2ε),

0, s ∈ [0, ε).

Moreover, ϕ′
ε , ϕ′′

ε are nonnegative, and

ϕ′
ε(s)s ≤ 2ϕε(s) + s, ϕ′′

ε (s)s ≤ 1. (2.6)

Then we extend ϕε(s) on (–∞,∞) symmetrically, so ϕε(s) = ϕε(|s|).
Let (Yt , Bt)0≤t≤T and (Ỹt , B̃t)0≤t≤T be two weak solutions of (2.5) on the same probability

space (�,F , {Ft}0≤t≤1,P) with the common initial data such that Bt ≡ B̃t . For any positive
real number ζ > 0, denoting by the stopping time

τζ =

⎧⎨
⎩

inf{0 < t < 1; |Yt – Ỹt| > ζ },
1, if |Yt – Ỹt| ≤ ζ for all t ∈ (0, 1).

(2.7)

Using Itô’s rule to ϕε , for every t ∈ (0, 1), it yields

Eϕε(Yt∧τζ – Ỹt∧τζ )

= E

∫ t∧τζ

0
ϕ′

ε(Ys – Ỹs)
[
b̃(s, Ys) – b̃(s, Ỹs)

]
ds

+
1
2
E

∫ t∧τζ

0
ϕ′′

ε (Ys – Ỹs)
[
σ̃ (s, Ys) – σ̃ (s, Ỹs)

]2 ds.

By Lemma 2.1, u ∈ C([0, 1];C1
b (R)) and ∂xu ∈ Lq(0, 1; W 1,p(R)) ⊂ Lq(0, 1;C1/2

b (R)) (since
p ≥ 2). Combining the fact (2.4) and σ ∈ L2(0, 1;C1/2

b (R)) ∩ L∞(0, 1;Cu(R)), we conclude
that b̃ ∈ C([0, 1];C1

b (R)), σ̃ ∈ L2(0, T ;C1/2
b (R)). Therefore,

Eϕε(Yt∧τζ – Ỹt∧τζ )

≤ CE

∫ t∧τζ

0

∣∣ϕ′
ε(Ys – Ỹs)

∣∣|Ys – Ỹs|ds

+ CE

∫ t∧τζ

0
κ(s)ϕ′′

ε (Ys – Ỹs)|Ys – Ỹs|ds, (2.8)

where κ ∈ L1(0, 1).
In view of (2.6) and (2.7), from (2.8)

Eϕε(Yt∧τζ – Ỹt∧τζ )

≤ CE

∫ t∧τζ

0
ϕε(Ys – Ỹs) ds + CE

∫ t∧τζ

0
|Ys – Ỹs|ds + CE

∫ t∧τζ

0
κ(s) ds

≤ CE

∫ t∧τζ

0
ϕε(Ys – Ỹs) ds + C

[
E

∫ t

0
|Ys – Ỹs|ds + 1

]
. (2.9)



Tian et al. Advances in Difference Equations        (2020) 2020:637 Page 7 of 9

On the other hand, Ys and Ỹs are weak solutions of (2.5), and b̃ ∈ C([0, 1];C1
b (R)), σ̃ ∈

L2(0, 1;C1/2
b (R)), it can be checked that the last integral in the right hand side of (2.9) is

finite uniformly in t on [0, 1]. Combining Doob’s optimal stopping time theorem and a
Grönwall type argument, one ends with

Eϕε(Yt∧τζ – Ỹt∧τζ ) ≤ C. (2.10)

Thanks to Chebyshev’s inequality, then

P(τζ ≤ t)ϕε(ζ ) ≤ Eϕε(Yt∧τζ – Ỹt∧τζ ) ≤ C.

Now, we keep ζ > 0 and t > 0 fixed,

ϕε(ζ ) → +∞, if ε → 0,

so P(τζ ≤ t) = 0 for all t ∈ (0, 1), which implies P(τζ < 1) = 0. By letting ζ tend to zero, we
obtain P(τ0 < 1) = 0, i.e. the pathwise uniqueness holds true.

3 Proof of Theorem 1.2
Let (Xt , Bt)0≤t≤T be a weak solution of (1.5) on a probability space (�,F ,P) with a refer-
ence family {Ft}0≤t≤T , and let (X̃t , B̃t)0≤t≤T be another weak solution of (1.5) on a proba-
bility space (�̃, F̃ , P̃) with a reference family {F̃t}0≤t≤T . We denote the probability laws of
{Xt}0≤t≤T and {X̃t}0≤t≤T on 1-dimensional classical Wiener space (W ([0, T]),B(W ([0, T])))
by Px = P ◦ X–1 and P̃x = P ◦ X̃–1, respectively.

Lemma 3.1 ([2, Corollary, p. 206]) Px = P̃x is equivalent to

∫
W ([0,T])

f
(
w(t)

)
Px(dw) =

∫
W ([0,T])

f
(
w(t)

)
P̃x(dw), (3.1)

for every t ∈ [0, T] and every f ∈ Cb(R).

Let λ > 0, we consider the following Cauchy problem:

⎧⎪⎪⎨
⎪⎪⎩

∂tu(t, x) + 1
2 a(t, x)∂2

x u(t, x) + b1(t, x)∂xu(t, x)

= λu(t, x) – b1(t, x), (t, x) ∈ (0, T) ×R,

u(T , x) = 0, x ∈R,

(3.2)

where a(t, x) = σ 2(t, x). By virtue of Lemma 2.1, there is a unique solution u of (3.2). More-
over, if we define Yt = �(t, Xt) = Xt + u(t, Xt), � = �–1, then (2.4) is true. In view of Itô’s
rule and using the same notation as in (2.5), it yields

dYt = λu
(
t,�(t, Yt)

)
dt + b2

(
t,�(t, Yt)

)

+ (1 + ∂xu
(
t,�(t, Yt)

)
σ
(
t,�(t, Yt)

)
dBt

=: b̄(t, Yt) + σ̃ (t, Yt) dBt . (3.3)
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Therefore, if (Xt , Bt)0≤t≤T is a weak solution of (1.5), then (Yt , Bt)0≤t≤T is a weak solution
of (3.3), and vice versa.

Now let (Xt , Bt)0≤t≤T and (X̃t , B̃t)0≤t≤T be two weak solutions of (1.5) and the proba-
bility laws of X and X̃ on (W ([0, T]),B(W ([0, T]))) be given by Px and P̃x, respectively.
Correspondingly, we denote by Py and P̃y the probability laws of Y and Ỹ , respectively.
Since Yt = �(t, Xt) and � ∈ C([0, T];C1(R)) is a diffeomorphism on R uniformly for every
t ∈ [0, T], the relationships of Px and Py, P̃x and P̃y are given by Py = Px ◦� , P̃y = P̃x ◦� . In
(3.2), b̄ is a bounded measure in (t, x), σ̃ is bounded uniformly continuous in (t, x), from [3,
Theorem 5.6] (also see [2, Theorem 3.3, p185] for time independent σ ), the conclusions
for Theorem 1.2 are true for SDE (3.3). On the other hand, Xt = �(t, Yt) and (2.4) is true,
and we check that, for every f ∈ Cb(R) and every t ∈ [0, T],

∫
W ([0,T])

f
(
w(t)

)
Px(dw) =

∫
W ([0,T])

f
(
�

(
t, w(t)

))
Py(dw),

=
∫

W ([0,T])
f
(
�

(
t, w(t)

))
P̃y(dw)

=
∫

W ([0,T])
f
(
w(t)

)
P̃x(dw). (3.4)

With the help of Lemma 3.1 and by (3.4), the weak solution for SDE (1.5) is unique. More-
over, if we define Pt by (1.8), for every bounded measurable function f , then

Ptf (x) =
∫

W ([0,T])
f
(
w(t)

)
Px(dw) =

∫
W ([0,T])

f
(
�

(
t, w(t)

))
Py(dw).

with y = �(0, x). So, {Pt}0≤t≤T possesses the strong Feller property. Besides, Pt admits a
density p(t, x, y) for almost all t ∈ [0, T], and if one sets the density for SDE (3.3) by p̃(t, x, y),
then p(t, x, y) = p̃(t,�(0, x),�(t, y))|∇�(t, y)|. Hence (1.9) is true and we finish the proof.
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