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Abstract
With the rapid development of information society, rumor plays an increasingly
crucial part in social communication, and its spreading has a significant impact on
human life. In this paper, a stochastic rumor-spreading model with Holling II
functional response function considering the existence of time delay and the
disturbance of white noise is proposed. Firstly, the existence of a unique global
positive solution of the model is studied. Then the asymptotic behavior of the global
solution around the rumor-free and rumor-local equilibrium nodes of the
deterministic system is discussed. Finally, through some numerical results, the validity
and availability of theoretical analysis is verified powerfully, and it shows that some
factors such as the transmission rate, the intensity of white noise, and the time delay
have significant relationship with the dynamical behavior of rumor spreading.
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1 Introduction
Rumor spreading has had a significant impact on human life, especially in the modern era
of Internet, there is no geographical limit to rumor spreading, which brings much wider
and faster spreading. To some extent, these rumors may cause individual panic, even lead
to tremendous social unrest. Recently, during the outbreak of COVID-19, various negative
rumors spread widely, which undoubtedly destroyed the psychosocial environment and
threatened the national security [1–6]. Therefore, there is great significance of studying
the mechanism of rumor spreading to grasp its dynamical properties.

There is no doubt that the problems of rumor spreading have been paid widely attention
to by researchers. A classical DK model of rumor spreading, was proposed by Daley and
Kendall [7] in the 1960s. Subsequently, the MT model proposed by Maki and Thompson
made relevant corrections on the basis of the DK model [8]. However, both the DK and MK
models didn’t take the topological characteristics of social networks into account, which
can’t apply to the complex social network. In terms of this, Zanette first established a ru-
mor spreading model on a small-world network based on the theory of complex networks
[9]. In addition, Moreno et al. built a rumor-spreading model on a scale-free network and
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compared the numerical simulation results with random analysis results, which revealed
that the rumor spreading has a great relationship with the topology structure and param-
eter setting of the network [10]. Besides, some microscopic mechanisms also are involved
in rumor-spreading models, such as forgetting or memory mechanisms. In this respect,
the others made enormous contribution, which revealed the influence of these mecha-
nisms on rumor spreading [11, 12]. The above studies place emphasis on the final size
of the rumor, while less concerning the dynamical process of rumor spreading [13–15].
Recently, Huo and Song established a 4D dynamic model of rumor spreading and con-
cluded that the dynamic behavior is related to the rumor-spreading rate [16]. Then, they
studied the dynamics of a novel spreading model considering the nonlinear incidence rate
and the influence of the propagation environment [17]. Zhu investigated how the time
delay factor affects the dynamics around the equilibrium points [18]. Jia et al. considered
a rumor-spreading model with stochastic noise [19]. In general, existing studies mostly
investigate the dynamics of rumor spreading from a certain respect [20–22].

In regard of the previous rumor-spreading models, they are mostly established with a
bilinear incidence rate. However, in fact, compared with the bilinear incidence rate, a non-
linear incidence rate is more logical when considering individual psychological factors
[23, 24]. Specially, Holling proposed the Holling II functional response function which is
used to demonstrate the interaction between two communities in later models [25]. Be-
sides, time delay exists in numerous dynamical systems [26–29], and especially there is
no exception in a rumor-spreading system which covers people’s subjective initiative. It
is not immediate that the rumor will spread in the crowd, requiring time for a person to
think or recognize and commit to spread, that is to say, time delay indeed exists in the pro-
cess of rumor spreading. And it is well known that the occurrence of time delay not only
influences the dynamics of the model, but also changes the stability of the system. Further-
more, rumor is largely disturbed by the external environmental factors [30–32], especially
in public emergencies. Take COVID-19 for example, when a rumor such as ‘Dual yellow
Oral Liquid can effectively inhibit novel coronavirus’ spread widely, Dual yellow Oral Liq-
uid was quickly sold out. When the government and media started refuting rumors and
explaining the truth, the rumor spreading was suppressed, and at the same time people’s
cognition changed accordingly and people were guided to behave correctly. Thus, with
the changes in the environment, the spreading of rumor may vary accordingly. To inves-
tigate the dynamical properties of rumor spreading more precisely, it is essential to take
stochastic disturbance into account [19, 22].

Above all, a rumor-spreading model only considering unilateral factor is far from ade-
quate, both the time delay of thinking and the external disturbance from media or govern-
ment, etc., may exert great influence on the dynamic behavior of this model. In this paper,
we establish a rumor spreading model which takes Holling II functional response func-
tion, time delay, and stochastic disturbance into consideration simultaneously, it could
be further accord with practical situation and grasp the dynamic characteristic of rumor
spreading more precisely. Then we principally discuss the dynamic properties of the mod-
ified rumor-spreading model around the rumor-free and rumor-local equilibrium. The
framework of the paper is summarized as follows. In Sect. 2, we propose a stochastic SIR
rumor-spreading model with Holling II functional response function and time delay. In
Sect. 3, we demonstrate the existence and uniqueness of the global positive solution. In
Sect. 4, we investigate the asymptotic behavior around the rumor-free equilibrium. Simi-
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larly, the asymptotic behavior around the rumor-local equilibrium is studied in Sect. 5. In
Sect. 6, we carry out some numerical simulations to verify the validity and availability of
the above theorems. Finally, we summarize the main results and come to some conclusions
in Sect. 7.

2 A stochastic rumor-spreading model with Holling II functional response
function and time delay

In this section, we first present a deterministic SIR rumor-spreading model with Holling
II functional response function considering the existence of time delay. Primarily on the
basis of the classical rumor-spreading model, the total population N(t) is divided into
three categories: susceptible S(t), infected I(t), and stifler R(t), where S(t) represents the
members who haven’t heard the rumor at time t, I(t) denotes the infected individuals who
believe in and spread the rumor actively at time t, and R(t) represents the individuals who
have been removed from the infected population and stop spreading at time t. The rumor
is propagated through the population by pairwise contacts between spreaders and others
in the population, following the law of mass action [8]. Any spreader involved in a pairwise
meeting attempts to “infect” the other individual with the rumor. In the case this other in-
dividual is ignorant, he/she becomes a spreader. In the other two cases, either one or both
of those involved in the meeting learn that the rumor is “known” and decide not to tell the
rumor anymore, thereby turning into stiflers. Besides, in the process of rumor spreading,
the law of spreading between the susceptible and infected individuals matches the Holling
II functional response function. On the one hand, individuals may believe in and spread
the rumor in the essence of identification ability to rumors; on the other hand, the gov-
ernment may strengthen refuting rumors as the intensity of rumor spreading gradually
increases. In general, the nonlinear incidence rate is much more realistic than the bilin-
ear incidence rate. Thus, in order to consider the individual psychological factors and in
accordance with reality, we introduced Holling II functional response function βI(t)

1+αI(t) into
this rumor-spreading model, where β means the transmission rate, α is used to measure
the extent to which the infected individuals I(t) inhibit the transmission. Furthermore, it
takes time for individuals to react and identify when contacting with a rumor, that is to
say, the existence of thinking or identifying time further conforms to the rumor in a real
world. Thus, for the sake of predicting the dynamic behavior of rumor spreading more
accurately, we consider a time delay in our model, where τ is defined as the time delay
which denotes an identification period after receiving the rumor, e–μτ is the removal rate
during the identification or thinking period, 1

1+αI(t–τ ) is used to measure the psychological
influence of the progressive increase of the infected individuals I(t) among the susceptible
individuals S(t). The model is given by

⎧
⎪⎪⎨

⎪⎪⎩

dS(t)
dt = (1 – p)b – βS(t)I(t)

1+αI(t) – μS(t),
dI(t)

dt = e–μτ βS(t–τ )I(t–τ )
1+αI(t–τ ) – ηI(t)(I(t) + R(t)) – μI(t),

dR(t)
dt = pb + ηI(t)(I(t) + R(t)) – μR(t),

(1)

where the parameter p denotes immunization rate of the new members, b denotes a con-
stant input of new individuals into a given community, μ denotes the natural removal
rate, η denotes immunization rate transforming from the infected into immune individu-
als, where we suppose that the transformation has two approaches: on the one hand, when
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the infected individuals I(t) contact with the immune individuals R(t), I(t) turn into R(t)
with a certain probability because R(t) have lost interest in the matter; on the other hand,
when an infected individual I(t) meets another infected individual I(t), they both lose in-
terest in spreading the rumor with a certain probability. All parameter values are set as
positive constants.

In model (1), the basic reproduction number is

R0 = e–μτ β(1 – p)b
ηpb + μ2 . (2)

It is a threshold value that tells whether the rumor vanishes or not. If R0 < 1, the model
(1) only has a rumor-free equilibrium P0 = (S0, 0, R0) and it has global asymptotic stability
in the invariant set �, where S0 = (1–p)b

μ
, R0 = pb

μ
, � = {(S, I, R) ∈ R

3
+ : S + eμτ I + R ≤ b

μ
}.

It means that the rumor will vanish. Conversely, if R0 > 1, the model (1) has a unique
rumor-local equilibrium P∗ = (S∗, I∗, R∗), where I∗ = e–μτ (1–p)bβμ–pbημ–μ3

e–μτ (1–p)bβη+(pbη+μ2)(β+μα) and it has
global asymptotic stability in the invariant set � under certain conditions, which means
the rumor will propagate and be popular.

However, to some extent, rumor spreading is inevitably subject to the influence by var-
ious inside variation and outside environment disturbance. Especially in emergencies, as
the event itself develops and varies, the government may establish a mechanism to refute
rumors or the media may make a strategy adjustment to report, which is different from
the classical rumor-spreading model. Obviously, stochastic models may forecast the future
dynamic behavior more precisely. On the basis of the deterministic model considering the
Holling II functional response function and time delay, we take the stochastic disturbance
into consideration so that we can better grasp the dynamic properties. Here, we add the
white noise based on the model (1), which makes the system more realistic and precise
than the deterministic model. The stochastic SIR rumor-spreading model with time delay
is given by

⎧
⎪⎪⎨

⎪⎪⎩

dS(t) = [(1 – p)b – βS(t)I(t)
1+αI(t) – μS(t)] dt + σ1S(t) dB1(t),

dI(t) = [e–μτ βS(t–τ )I(t–τ )
1+αI(t–τ ) – ηI(t)(I(t) + R(t)) – μI(t)] dt + σ2I(t) dB2(t),

dR(t) = [pb + ηI(t)(I(t) + R(t)) – μR(t)] dt + σ3R(t) dB3(t),

(3)

where B1(t), B2(t), and B3(t) are real-valued Brownian motions which are defined on the
complete probability space (�, F , {Ft}t≥0, P)with a filtration {Ft}t≥0 satisfying the usual con-
ditions (i.e., it is right continuous and increasing while F0 contains all P-null sets), and σi

(i = 1, 2, 3) are the intensities of white noise.

3 Existence and uniqueness of the global positive solution
To study the dynamical properties of the stochastic system, the first concern is whether
there’s a positive and global solution. As we all know, when the coefficients of the equation
satisfy either the local Lipschitz condition or the linear growth condition (mentioned in
[33]), we can ensure that the solution of a stochastic differential equation is positive and
global. Nevertheless, the model (3) doesn’t meet the later condition, that is to say, the
solution of the model (3) might explode in a finite time.

In the following part, we will demonstrate that the model (3) has global positive solutions
in accordance with the Lyapunov analysis method (mentioned in [34]).
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Theorem 3.1 For any given initial value (S(θ ), I(θ ), R(θ )) ∈ R
+
3 , θ ∈ [–τ , 0], the model (3)

has a unique global solution (S(t), I(t), R(t)) for t ≥ –τ and the solution will remain in R
3
+

with probability one, in other words, (S(t), I(t), R(t)) ∈R
3
+ for all t ≥ –τ almost surely (a.s.).

Proof Since the coefficients of model (3) satisfy the local Lipschitz condition, for any
given initial value (S(θ ), I(θ ), R(θ )) ∈ R

3
+, θ ∈ [–τ , 0], there exists a unique local solution

(S(t), I(t), R(t)) on t ∈ [–τ , τe), where τe denotes the explosion time [35]. In order to prove
that this solution is global, we need to demonstrate that τe = ∞ almost surely (briefly a.s.).
To that end, let k0 ≥ 1 be sufficiently large so that S(θ ), I(θ ) and R(θ ) (θ ∈ [–τ , 0]) lie within
the interval [ 1

k0
, k0]. In this case, we define the stopping time as follows for each integer

k ≥ k0:

τk = inf

{

t ∈ [–τ , τe) : min
{

S(t), I(t), R(t)
} ≤ 1

k
or max

{
S(t), I(t), R(t)

} ≥ k
}

, (4)

where we set inf∅ = ∞ (obviously ∅ means the empty set). And notably, τk is increasing as
k → ∞. Set τ∞ = limk→∞ τk , whence τ∞ ≤ τe a.s. If it is true that τ∞ = ∞ a.s. then τe = ∞
a.s. and (S(t), I(t), R(t)) ∈R

3
+ a.s. for all t ≥ –τ . That is to say, we only need to demonstrate

τ∞ = ∞ a.s. to complete the proof. Instead, suppose that τ∞ < ∞ a.s., then there exists a
pair of constants T > 0 and 0 < ε < 1 such that P{τ∞ ≤ T} > ε. Therefore, there exists an
integer k1 ≥ k0 such that P{τk ≤ T} ≥ ε for all k ≥ k1.

Define a C2-function V1 : R2
+ →R+ by

V1
(
S(t), I(t), R(t)

)
= e–μτ

(

S(t) – m – m ln
S(t)
m

)

+
(

I(t) – n – n ln
I(t)
n

)

+
(
R(t) – 1 – ln R(t)

)
+ e–μτ

∫ t

t–τ

βS(s)I(s)
1 + αI(s)

ds,
(5)

where m and n are two positive constants to be confirmed later. And the nonnegativity of
the function (5) can be shown from u – 1 – ln u ≥ 0 for ∀u > 0.

For any case where T > 0, k ≥ k0 and 0 ≤ t ≤ τk ∧ T = min{τk , T}, where ∧ denotes the
infimum, if (S(t), I(t), R(t)) ∈R

3
+, by Itô’s formula, we have

dV1
(
S(t), I(t), R(t)

)
= LV1

(
S(t), I(t), R(t)

)
dt + e–μτσ1

(
S(t) – m

)
dB1(t)

+ σ2
(
I(t) – n

)
dB2(t) + σ3

(
R(t) – 1

)
dB3(t),

(6)

where LV1 : R3
+ →R+ is defined by

LV1
(
S(t), I(t), R(t)

)

= e–μτ

(

1 –
m

S(t)

)[

(1 – p)b –
βS(t)I(t)
1 + αI(t)

– μS(t)
]

+
1
2

me–μτσ 2
1

+
(

1 –
n

I(t)

)[

e–μτ βS(t – τ )I(t – τ )
1 + αI(t – τ )

– ηI(t)
(
I(t) + R(t)

)
– μI(t)

]

+
n
2
σ 2

2

+
(

1 –
1

R(t)

)
[
pb + ηI(t)

(
I(t) + R(t)

)
– μR(t)

]
+

1
2
σ 2

3

+ e–μτ βS(t)I(t)
1 + αI(t)

– e–μτ βS(t – τ )I(t – τ )
1 + αI(t – τ )
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= e–μτ (1 – p)b – e–μτμS(t) – e–μτ m(1 – p)b
S(t)

+ e–μτ mβI(t)
1 + αI(t)

+ mμe–μτ

+
m
2

σ 2
1 e–μτ – μI(t) – e–μτ nβS(t – τ )I(t – τ )

I(t)(1 + αI(t – τ ))
+ nηI(t) + nηR(t)

+ nμ +
n
2
σ 2

2 + pb – μR(t) –
pb

R(t)
–

ηI2(t)
R(t)

– ηI(t) + μ +
1
2
σ 2

3

≤ e–μτ (1 – p)b + pb + mμe–μτ + nμ + μ +
m
2

σ 2
1 e–μτ +

n
2
σ 2

2 +
1
2
σ 2

3

+ e–μτ mβI(t)
1 + αI(t)

+ (nη – η – μ)I(t) + (nη – μ)R(t)

≤ e–μτ (1 – p)b + pb + mμe–μτ + nμ + μ +
m
2

σ 2
1 e–μτ +

n
2
σ 2

2 +
1
2
σ 2

3

+
(
e–μτ mβ + nη – η – μ

)
I(t) + (nη – μ)R(t).

Choose m = η

β
eμτ and n = μ

η
such that e–μτ mβ + nη – η – μ = 0 and nη – μ = 0, we get

LV1(S, I, R) ≤ e–μτ (1 – p)b + pb +
(

η

β
+

μ

η
+ 1

)

μ +
η

2β
σ 2

1 e–μτ +
μ

2η
σ 2

2 +
1
2
σ 2

3 := K̃,

where K̃ is a positive constant. Hence, we get

∫ τk∧T

0
dV1

(
S(t), I(t), R(t)

)

≤
∫ τk∧T

0
K̃ dt + σ1

∫ τk∧T

0

(

S –
η

β
eμτ

)

dB1(t)

+ σ2

∫ τk∧T

0

(

I –
μ

η

)

dB2(t) + σ3

∫ τk∧T

0
(R – 1) dB3(t).

Then taking the expectation we obtain

0 ≤ E
[
V1

(
S(τk ∧ T), I(τk ∧ T), R(τk ∧ T)

)] ≤ V1
(
S(0), I(0), R(0)

)
+ K̃E[τk ∧ T]

≤ V1
(
S(0), I(0), R(0)

)
+ K̃T .

We define �k = {τk ≤ T} for any k ≥ k1, then by (4) we get P(�k) ≥ ε. Note that some
component of S(τk ,ω), I(τk ,ω) or R(τk ,ω) equals either 1

k or k for each ω ∈ �k . That is to
say, we have

V1
(
S(τk ,ω), I(τk ,ω), R(τk ,ω)

) ≥ (k – 1 – ln k) ∧
(

1
k

– 1 + ln k
)

.

Combining it with (6), we get

V1
(
S(0), I(0), R(0)

)
+ K̃T ≥ E

[
I�k (ω)V

(
S(τk ,ω), I(τk ,ω), R(τk ,ω)

)]

≥ ε

[

(k – 1 – ln k) ∧
(

1
k

– 1 + ln k
)]

,
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where I�k means the indicator function of �k . As k tends to infinity, we find the contra-
diction in the expression

∞ > V1
(
S(0), I(0), R(0)

)
+ K̃T = ∞,

therefore, we must have τ∞ = +∞ a.s., which means that S(t), I(t) and R(t) will not explode
in a finite time with probability one. This completes the proof. �

4 The dynamic properties around the rumor-free equilibrium
If R0 < 1, that is, e–μτβ(1 – p)b ≤ ηpb + μ2, the rumor-free equilibrium P0 of the model
(1) has global asymptotic stability in the invariant set �. Nevertheless, P0 is not the equi-
librium of the model (3). In this section, we study the asymptotic behavior of the global
solution (S(t), I(t), R(t))around the rumor-free equilibrium P0 = ( (1–p)b

μ
, 0, pb

μ
).

Theorem 4.1 Let (S(t), I(t), R(t)) is an arbitrary solution of model (3), for any (S(θ ), I(θ ),
R(θ )) ∈R

+
3 , θ ∈ [–τ , 0]. If R0 < 1 and the following conditions are satisfied:

σ 2
1 <

μ2

ηb + μ2 , σ 2
2 < 2μ,

(
2μ2

ηb
+ 1

)

σ 2
3 <

μ3

ηb
,

then the solution of the model (3) has the asymptotic behavior

lim
t→∞ sup

1
t

E
{∫ t

0

[(

S(u) –
(1 – p)b

μ

)2

+ I2(u) +
(

R(u) –
pb
μ

)2]

dt
}

≤ M1

k1
, (7)

where k1 = min{2μ( μ2

ηb+μ2 – σ 2
1 )e–2μτ , (2μ – σ 2

2 ), 2( μ3

ηb – 2μ2+ηb
ηb σ 2

3 )}, and

M1 =
2σ 2

1 (1 – p)2b2e–2μτ

μ2 +
2σ 2

3 p2b2

μ2 +
4(1 – p)2b2e–2μτ

μ
+

4pb2

μ
+

2σ 2
3 p2b
η

.

Proof Define a C2-function V2 : R3
+ →R+ by

V2(S, I, R) = ν1 + xν2 + yν3 + ν4, (8)

with

ν1 =
[

e–μτ

(

S(t) –
(1 – p)b

μ

)

+ I(t + τ ) +
(

R(t + τ ) –
pb
μ

)]2

,

ν2 = e–μτ S(t) + I(t + τ ),

ν3 =
(

R(t + τ ) –
pb
μ

)2

,

ν4 =
(
2μ – σ 2

2
)
∫ t+τ

t
I2(u) du + 2

(
μ3

ηb
–

2μ2 + ηb
ηb

σ 2
3

)∫ t+τ

t

(

R(u) –
pb
μ

)2

du,

where x, y are two positive real constants to be chosen as follows.
According to Itô’s formula, we obtain:
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For ν1 = [e–μτ (S(t) – (1–p)b
μ

) + I(t + τ ) + (R(t + τ ) – pb
μ

)]2,

dν1 = Lν1 dt + 2
[

e–μτ

(

S(t) –
(1 – p)b

μ

)

+ I(t + τ ) +
(

R(t + τ ) –
pb
μ

)]

× [
e–μτσ1S(t) dB1(t) + σ2I(t + τ ) dB2(t) + σ3R(t + τ ) dB3(t)

]
,

(9)

where

Lν1 = 2
[

e–μτ

(

S(t) –
(1 – p)b

μ

)

+ I(t + τ ) +
(

R(t + τ ) –
pb
μ

)]

×
{

e–μτ

[

(1 – p)b

–
βS(t)I(t)
1 + αI(t)

– μS(t)
]

+
[

e–μτ βS(t)I(t)
1 + αI(t)

– ηI(t + τ )
(
I(t + τ ) + R(t + τ )

)

– μI(t + τ )
]

+
[
pb + ηI(t + τ )

(
I(t + τ ) + R(t + τ )

)
– μR(t + τ )

]
}

+ e–2μτσ 2
1 S2(t) + σ 2

2 I2(t + τ ) + σ 2
3 R2(t + τ )

= 2
[

e–μτ

(

S(t) –
(1 – p)b

μ

)

+ I(t + τ ) +
(

R(t + τ ) –
pb
μ

)]

× [
e–μτ (1 – p)b + pb – μe–μτ S(t) – μI(t + τ ) – μR(t + τ )

]

+ e–2μτσ 2
1 S2(t) + σ 2

2 I2(t + τ ) + σ 2
3 R2(t + τ )

= 2
[

e–μτ

(

S(t) –
(1 – p)b

μ

)

+ I(t + τ ) +
(

R(t + τ ) –
pb
μ

)]

× [
e–μτ (1 – p)b + pb – μe–μτ S(t) – μI(t + τ ) – μR(t + τ )

]
(10)

+ e–2μτσ 2
1 S2(t) + σ 2

2 I2(t + τ ) + σ 2
3 R2(t + τ )

= 2
[

e–μτ

(

S(t) –
(1 – p)b

μ

)

+ I(t + τ ) +
(

R(t + τ ) –
pb
μ

)]

×
[

–μe–μτ

(

S(t) –
(1 – p)b

μ

)

– μI(t + τ ) – μ

(

R(t + τ ) –
pb
μ

)]

+ e–2μτσ 2
1 S2(t) + σ 2

2 I2(t + τ ) + σ 2
3 R2(t + τ )

= – 2μe–2μτ

(

S(t) –
(1 – p)b

μ

)2

– 2μI2(t + τ ) – 2μ

(

R(t + τ ) –
pb
μ

)2

– 4μe–μτ

(

S(t) –
(1 – p)b

μ

)

I(t + τ )

– 4μe–μτ

(

S(t) –
(1 – p)b

μ

)(

R(t + τ ) –
pb
μ

)

– 4μI(t + τ )
(

R(t + τ ) –
pb
μ

)

+ e–2μτσ 2
1 S2(t) + σ 2

2 I2(t + τ ) + σ 2
3 R2(t + τ ).

Using the inequality (a + b)2 ≤ 2a2 + 2b2 for all a, b ∈ R, we have

Lν1 ≤ –2
(
μ – σ 2

1
)
e–2μτ

(

S(t) –
(1 – p)b

μ

)2

–
(
2μ – σ 2

2
)
I2(t + τ )

– 2
(
μ – σ 2

3
)
(

R(t + τ ) –
pb
μ

)2

+ 4(1 – p)be–μτ I(t + τ ) (11)
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– 4μe–μτ

(

S(t) –
(1 – p)b

μ

)(

R(t + τ ) –
pb
μ

)

– 4μI(t + τ )
(

R(t + τ ) –
pb
μ

)

+ e–2μτ 2σ 2
1 (1 – p)2b2

μ2 +
2σ 2

3 p2b2

μ2 .

For ν2 = e–μτ S(t) + I(t + τ ),

dν2 = Lν2 dt + e–μτσ1S(t) dB1(t) + σ2I(t + τ ) dB2(t), (12)

where

Lν2 = e–μτ (1 – p)b – e–μτ βS(t)I(t)
1 + αI(t)

– μe–μτ S(t)

+ e–μτ βS(t)I(t)
1 + αI(t)

– ηI(t + τ )
(
I(t + τ ) + R(t + τ )

)
– μI(t + τ )

= e–μτ (1 – p)b – μe–μτ S(t) – μI(t + τ ) – ηI(t + τ )
(
I(t + τ ) + R(t + τ )

)

≤ e–μτ (1 – p)b – μI(t + τ ).

(13)

For ν3 = (R(t + τ ) – pb
μ

)2,

dν3 = Lν3 dt + 2σ3R(t + τ )
(

R(t + τ ) –
pb
μ

)

dB3(t), (14)

where

Lν3 = 2
(

R(t + τ ) –
pb
μ

)
[
pb + ηI(t + τ )

(
I(t + τ ) + R(t + τ )

)
– μR(t + τ )

]

+ σ 2
3 R2(t + τ )

= 2
(

R(t + τ ) –
pb
μ

)[

–μ

(

R(t + τ ) –
pb
μ

)

+ ηI(t + τ )
(
I(t + τ ) + R(t + τ )

)
]

+ σ 2
3 R2(t + τ )

= –2μ

(

R(t + τ ) –
pb
μ

)2

+ 2ηI(t + τ )
(

R(t + τ ) –
pb
μ

)
(
I(t + τ ) + R(t + τ )

)

+ σ 2
3 R2(t + τ )

≤ –2
(
μ – σ 2

3
)
(

R(t + τ ) –
pb
μ

)2

+
2ηb
μ

I(t + τ )
(

R(t + τ ) –
pb
μ

)

+
2ηpb3

μ3 +
σ 2

3 p2b2

μ2 .

(15)

For ν4 = (2μ – σ 2
2 )

∫ t+τ

t I2(u) du + 2( μ3

ηb – 2μ2+ηb
ηb σ 2

3 )
∫ t+τ

t (R(u) – pb
μ

)2 du,

dν4 =
[(

2μ – σ 2
2
)(

I2(t + τ ) – I2(t)
)]

dt

+
[

2
(

μ3

ηb
–

2μ2 + ηb
ηb

σ 2
3

)((

R(t + τ ) –
pb
μ

)2

–
(

R(t) –
pb
μ

)2)]

dt.
(16)
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Since V2(S, I, R) = ν1 + xν2 + yν3 + ν4, substituting Eq. (9)–(16) into V2, we have

dV2 = LV2 dt + e–μτσ1S(t)
[

2e–μτ

(

S(t) –
(1 – p)b

μ

)

+ 2I(t + τ )

+ 2
(

R(t + τ ) –
pb
μ

)

+ x
]

dB1(t) + σ2I(t + τ )
[

2e–μτ

(

S(t) –
(1 – p)b

μ

)

+ 2I(t + τ ) + 2
(

R(t + τ ) –
pb
μ

)

+ x
]

dB2(t)

+ σ3R(t + τ )
[

2e–μτ

(

S(t) –
(1 – p)b

μ

)

+ 2I(t + τ ) + 2(y + 1)
(

R(t + τ ) –
pb
μ

)]

dB3(t),

(17)

where

LV2 ≤ –2
(
μ – σ 2

1
)
e–2μτ

(

S(t) –
(1 – p)b

μ

)2

–
(
2μ – σ 2

2
)
I2(t + τ )

– 2(y + 1)
(
μ – σ 2

3
)
(

R(t + τ ) –
pb
μ

)2

+
[
4(1 – p)be–μτ – xμ

]
I(t + τ )

– 4μe–μτ

(

S(t) –
(1 – p)b

μ

)(

R(t + τ ) –
pb
μ

)

+
(

2ηby
μ

– 4μ

)

I(t + τ )
(

R(t + τ ) –
pb
μ

)

+ e–2μτ 2σ 2
1 (1 – p)2b2

μ2

+
2σ 2

3 p2b2

μ2 + e–μτ (1 – p)bx +
(

2ηpb3

μ3 +
σ 2

3 p2b2

μ2

)

y

+
(
2μ – σ 2

2
)(

I2(t + τ ) – I2(t)
)

+ [2
[
(y + 1)

(
μ – σ 2

3
)

– με
]

×
((

R(t + τ ) –
pb
μ

)2

–
(

R(t) –
pb
μ

)2)

.

(18)

By choosing x = 4(1–p)be–μτ

μ
and y = 2μ2

ηb , we find that 4(1–p)be–μτ –xμ = 0 and 2ηby
μ

–4μ = 0,
then we obtain

LV2 ≤ –2
(
μ – σ 2

1
)
e–2μτ

(

S(t) –
(1 – p)b

μ

)2

–
(
2μ – σ 2

2
)
I2(t)

– 2
(

μ3

ηb
–

2μ2 + ηb
ηb

σ 2
3

)(

R(t) –
pb
μ

)2

–
2μ(μ2 + ηb)

ηb

(

R(t + τ ) –
pb
μ

)2

– 4μe–μτ

(

S(t) –
(1 – p)b

μ

)(

R(t + τ ) –
pb
μ

)

+
2σ 2

1 (1 – p)2b2e–2μτ

μ2

+
2σ 2

3 p2b2

μ2 +
4(1 – p)2b2e–2μτ

μ
+

4pb2

μ
+

2σ 2
3 p2b
η

≤ –2μ

(
μ2

ηb + μ2 – σ 2
1

)

e–2μτ

(

S(t) –
(1 – p)b

μ

)2

–
(
2μ – σ 2

2
)
I2(t)

– 2
(

μ3

ηb
–

2μ2 + ηb
ηb

σ 2
3

)(

R(t) –
pb
μ

)2

+ M1,

(19)
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where in the above inequality we used the Young inequality [36]

–4μe–μτ

(

S(t) –
(1 – p)b

μ

)(

R(t + τ ) –
pb
μ

)

≤ 2μe–2μτ

ε

(

S(t) –
(1 – p)b

μ

)2

+ 2με

(

R(t + τ ) –
pb
μ

)2

,

where ε = ηb+μ2

ηb .
Integrating both sides of (19) between 0 and t and meanwhile taking expectation, we

obtain

0 ≤ EV2(t) – EV2(0)

≤ –2μ

(
μ2

ηb + μ2 – σ 2
1

)

e–2μτ E
∫ t

0

(

S(t) –
(1 – p)b

μ

)2

du –
(
2μ – σ 2

2
)
E

∫ t

0
I2(t) du

– 2
(

μ3

ηb
–

2μ2 + ηb
ηb

σ 2
3

)

E
∫ t

0

(

R(t) –
pb
μ

)2

du + M1t.

Let k1 = min{2μ( μ2

ηb+μ2 – σ 2
1 )e–2μτ , (2μ – σ 2

2 ), 2( μ3

ηb – 2μ2+ηb
ηb σ 2

3 )}, then

E
{∫ t

0

[(

S(u) –
(1 – p)b

μ

)2

+ I2(u) +
(

R(u) –
pb
μ

)2]

dt
}

≤ M1

k1
t.

Consequently,

lim
t→∞ sup

1
t

E
{∫ t

0

[(

S(u) –
(1 – p)b

μ

)2

+ I2(u) +
(

R(u) –
pb
μ

)2]

dt
}

≤ M1

k1
. �

Remark 4.2 If R0 ≤ 1 and under the conditions of Theorem 4.1, we conclude that the
solution fluctuates around the rumor-free equilibrium.

5 The dynamic properties around the rumor-local equilibrium
If R0 > 1, there exists a rumor-local equilibrium P∗ = (S∗, I∗, R∗) of model (1), however, it
does not denote the equilibrium of model (3). Therefore, we study the asymptotic behavior
of the global solution (S(t), I(t), R(t)) of model (3) around the rumor-local equilibrium P∗

in this part.

Theorem 5.1 Let (S(t), I(t), R(t)) be an arbitrary solution of model (3), for any (S(θ ), I(θ ),
R(θ )) ∈R

+
3 , θ ∈ [–τ , 0]. If R0 > 1, consider the following conditions:

y(μ2 – ηb)μ
y(μ2 – ηb) + 2μ2 > σ 2

1 , μ + xη > σ 2
2 ,

(
y
2

+ 2
)

μ > (y + 1)σ 2
3 ,

μ2 > ηb, x =
2μ(1 + αI∗)

β
, y =

2μ(β + 1 + αI∗)
ηβ(I∗ + R∗)

.

Then the solution satisfies

lim
t→∞ sup

1
t

E
{∫ t

0

[(
S(u) – S∗)2 +

(
I(u) – I∗)2 +

(
R(u) – R∗)2]dt

}

≤ M2

k2
, (20)
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where k2 = min{( y(μ2–ηb)μ
y(μ2–ηb)+2μ2 – σ 2

1 ), (μ + xη – σ 2
2 ), (( y

2 + 2)μ – (y + 1)σ 2
3 )},

M2 = e–2μτσ 2
1 S∗2

+ σ 2
2 I∗2

+
μI∗(1 + αI∗)

β
+

2μσ 2
3 (β + 1 + αI∗)R∗

ηβ(I∗ + R∗)

+
(1 – p)be–μτ

μ

[

2μ
(
1 + αI∗)

(
b
μ

+ I∗
)

+ η

(
b2

μ2 + I∗R∗
)]

.

Proof Since P∗ = (S∗, I∗, R∗) is the rumor-local equilibrium of model (1), we get

⎧
⎪⎪⎨

⎪⎪⎩

(1 – p)b – βS∗I∗
1+αI∗ – μS∗ = 0,

e–μτ βS∗I∗
1+αI∗ – λI∗(I∗ + R∗) – μI∗ = 0,

pb + λI∗(I∗ + R∗) – μR∗ = 0.

We consider the following function:

V3(S, I, R) = υ1 + xυ2 + yυ3 + zυ4 + υ5, (21)

with

υ1 =
1
2
[
e–μτ

(
S(t) – S∗) +

(
I(t + τ ) – I∗) +

(
R(t + τ ) – R∗)]2,

υ2 = I(t + τ ) – I∗ – I∗ ln
I(t + τ )

I∗ ,

υ3 =
1
2
(
R(t + τ ) – R∗)2,

υ4 = e–μτ S(t) + I(t + τ ),

υ5 =
(
xη + μ – σ 2

2
)
∫ t+τ

t

(
I(u) – I∗)2 du

+
[(

y
2

+ 2
)

μ – (y + 1)σ 2
3

]∫ t+τ

t

(
R(u) – R∗)2 du,

where x, y and z are three positive constants to be chosen as follows and z = 1
μ

[βx( b
μ

+
I∗) + ηy( b2

μ2 + I∗R∗)] which is determined by x, y. According to Ito’s formula, we get for
υ1 = 1

2 [e–μτ (S(t) – S∗) + (I(t + τ ) – I∗) + (R(t + τ ) – R∗)]2,

dυ1 = Lυ1 dt +
[
e–μτ

(
S(t) – S∗) +

(
I(t + τ ) – I∗) +

(
R(t + τ ) – R∗)]

× [
e–μτσ1S(t) dB1(t) + σ2I(t + τ ) dB2(t) + σ3R(t + τ ) dB3(t)

]
,

(22)

where

Lυ1 =
[
e–μτ

(
S(t) – S∗) +

(
I(t + τ ) – I∗) +

(
R(t + τ ) – R∗)]

× [
e–μτ (1 – p)b + pb – μe–μτ S(t) – μI(t + τ ) – μR(t + τ )

]

+
1
2

e–2μτσ 2
1 S2(t) +

1
2
σ 2

2 I2(t + τ ) +
1
2
σ 2

3 R2(t + τ )

= –
[
e–μτ

(
S(t) – S∗) +

(
I(t + τ ) – I∗) +

(
R(t + τ ) – R∗)]
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× [
μe–μτ

(
S(t) – S∗) + μ

(
I(t + τ ) – I∗) + μ

(
R(t + τ ) – R∗)] (23)

+
1
2

e–2μτσ 2
1 S2(t) +

1
2
σ 2

2 I2(t + τ ) +
1
2
σ 2

3 R2(t + τ )

= –μe–2μτ
(
S(t) – S∗)2 – μ

(
I(t + τ ) – I∗)2 – μ

(
R(t + τ ) – R∗)2

– 2μe–μτ
(
S(t) – S∗)(I(t + τ ) – I∗) – 2μe–μτ

(
S(t) – S∗)(R(t + τ ) – R∗)

– 2μ
(
I(t + τ ) – I∗)(R(t + τ ) – R∗) +

1
2

e–2μτσ 2
1 S2(t)

+
1
2
σ 2

2 I2(t + τ ) +
1
2
σ 2

3 R2(t + τ ).

Using the inequality (a + b)2 ≤ 2a2 + 2b2 for all a, b ∈ R, we get

Lυ1 ≤ –
(
μ – σ 2

1
)
e–2μτ

(
S(t) – S∗)2 –

(
μ – σ 2

2
)(

I(t + τ ) – I∗)2

–
(
μ – σ 2

3
)(

R(t + τ ) – R∗)2 – 2μe–μτ
(
S(t) – S∗)(I(t + τ ) – I∗)

– 2μe–μτ
(
S(t) – S∗)(R(t + τ ) – R∗) – 2μ

(
I(t + τ ) – I∗)(R(t + τ ) – R∗)

+ e–2μτσ 2
1 S∗2

+ σ 2
2 I∗2

+ σ 2
3 R∗2

.

(24)

For υ2 = I(t + τ ) – I∗ – I∗ ln I(t+τ )
I∗ ,

dυ2 = Lυ2 dt + σ2
(
I(t + τ ) – I∗)dB2(t), (25)

where

Lυ2 =
(

1 –
I∗

I(t + τ )

)[

e–μτ βS(t)I(t)
1 + αI(t)

– ηI(t + τ )
(
I(t + τ ) + R(t + τ )

)
– μI(t + τ )

]

+
1
2
σ 2

2 I∗

=
(
I(t + τ ) – I∗)

[

e–μτ βS(t)I(t)
I(t + τ )(1 + αI(t))

– η
(
I(t + τ ) + R(t + τ )

)
– μ

]

+
1
2
σ 2

2 I∗

=
(
I(t + τ ) – I∗)

[

e–μτ βS(t)I(t)
I(t + τ )(1 + αI(t))

– e–μτ βS∗

1 + αI∗

– η
(
I(t + τ ) + R(t + τ )

)
+ η

(
I∗ + R∗)

]

+
1
2
σ 2

2 I∗

=
(
I(t + τ ) – I∗)

[

e–μτ βS(t)I(t)
I(t + τ )(1 + αI(t))

– e–μτ βS(t)
1 + αI∗

+ e–μτ β

1 + αI∗
(
S(t) – S∗) – η

(
I(t + τ ) – I∗) – η

(
R(t + τ ) – R∗)

]

+
1
2
σ 2

2 I∗

= e–μτβS(t)
(

I(t)
I(t + τ )(1 + αI(t))

–
1

1 + αI∗

)
(
I(t + τ ) – I∗) (26)

+ e–μτ β

1 + αI∗
(
S(t) – S∗)(I(t + τ ) – I∗) – η

(
I(t + τ ) – I∗)2

– η
(
I(t + τ ) – I∗)(R(t + τ ) – R∗) +

1
2
σ 2

2 I∗
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≤ e–μτβS(t)
(

I(t)
1 + αI(t)

+
I∗

1 + αI∗

)

+ e–μτ β

1 + αI∗
(
S(t) – S∗)(I(t + τ ) – I∗)

– η
(
I(t + τ ) – I∗)2 – η

(
I(t + τ ) – I∗)(R(t + τ ) – R∗) +

1
2
σ 2

2 I∗

≤ e–μτβS(t)
(
I(t) + I∗) + e–μτ β

1 + αI∗
(
S(t) – S∗)(I(t + τ ) – I∗)

– η
(
I(t + τ ) – I∗)2 – η

(
I(t + τ ) – I∗)(R(t + τ ) – R∗) +

1
2
σ 2

2 I∗

≤ e–μτβS(t)
(

b
μ

+ I∗
)

+ e–μτ β

1 + αI∗
(
S(t) – S∗)(I(t + τ ) – I∗)

– η
(
I(t + τ ) – I∗)2 – η

(
I(t + τ ) – I∗)(R(t + τ ) – R∗) +

1
2
σ 2

2 I∗.

For υ3 = 1
2 (R(t + τ ) – R∗)2,

dυ3 = Lυ3 dt + σ3
(
R(t + τ ) – R∗)dB3(t), (27)

where

Lυ3 =
(
R(t + τ ) – R∗)[pb + ηI(t + τ )

(
I(t + τ ) + R(t + τ )

)
– μR(t + τ )

]

+
1
2
σ 2

3 R2(t + τ )

=
(
R(t + τ ) – R∗)[–μ

(
R(t + τ ) – R∗) + η

(
I∗ + R∗)(I(t + τ ) – I∗)

+ ηI(t + τ )
(
I(t + τ ) – I∗) + ηI(t + τ )

(
R(t + τ ) – R∗)] +

1
2
σ 2

3 R2(t + τ )

= –μ
(
R(t + τ ) – R∗)2 + η

(
I∗ + R∗)(I(t + τ ) – I∗)(R(t + τ ) – R∗) + ηI(t + τ )

× (
I(t + τ ) – I∗)(R(t + τ ) – R∗) + ηI(t + τ )

(
R(t + τ ) – R∗)2 +

1
2
σ 2

3 R2(t + τ )

≤ –
(

μ –
ηb
μ

– σ 2
3

)
(
R(t + τ ) – R∗)2 + η

(
b2

μ2 + I∗R∗
)

I(t + τ )

+ η
(
I∗ + R∗)(I(t + τ ) – I∗)(R(t + τ ) – R∗) + σ 2

3 R∗2
.

(28)

For υ4 = e–μτ S(t) + I(t + τ ),

dυ4 = Lυ4 dt + e–μτσ1S(t) dB1(t) + σ2I(t + τ ) dB2(t), (29)

where

Lυ4 = e–μτ

[

(1 – p)b –
βS(t)I(t)
1 + αI(t)

– μS(t)
]

+ e–μτ βS(t)I(t)
1 + αI(t)

– ηI(t + τ )
(
I(t + τ ) + R(t + τ )

)
– μI(t + τ )

= e–μτ (1 – p)b – μe–μτ S(t) – μI(t + τ ) – ηI(t + τ )
(
I(t + τ ) + R(t + τ )

)

≤ e–μτ (1 – p)b – μe–μτ S(t) – μI(t + τ ).

(30)
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For υ5 = (xη + μ – σ 2
2 )

∫ t+τ

t (I(u) – I∗)2 du + [( y
2 + 2)μ – (y + 1)σ 2

3 ]
∫ t+τ

t (R(u) – R∗)2 du,

dυ5 =
(
xη + μ – σ 2

2
)[(

I(t + τ ) – I∗)2 –
(
I(t) – I∗)2]dt

+
[(

y
2

+ 2
)

μ – (y + 1)σ 2
3

]
[(

R(t + τ ) – R∗)2 –
(
R(t) – R∗)2]dt.

(31)

Since V3(S, I, R) = υ1 + xυ2 + yυ3 + zυ4 + υ5, substituting Eqs. (22)–(31) into V3, we
have

dV3(S, I, R)

≤
{

–
(
μ – σ 2

1
)
e–2μτ

(
S(t) – S∗)2 –

(
μ + xη – σ 2

2
)(

I(t) – I∗)2

–
y(μ2 – ηb) + 2μ2

2μ

(
R(t + τ ) – R∗)2 –

[(
y
2

+ 2
)

μ – (y + 1)σ 2
3

]

× (
R(t) – R∗)2 +

(
xβ

1 + αI∗ – 2μ

)

e–μτ
(
S(t) – S∗)(I(t + τ ) – I∗)

– 2μe–μτ
(
S(t) – S∗)(R(t + τ ) – R∗) +

[
yη

(
I∗ + R∗) – 2μ

]

× (
I(t + τ ) – I∗)(R(t + τ ) – R∗) – e–μτηy

(
b2

μ2 + I∗R∗
)

S(t)

– βx
(

b
μ

+ I∗
)

I(t + τ ) + e–2μτσ 2
1 S∗2

+ σ 2
2 I∗2

+
x
2
σ 2

2 I∗ +
xηb
μ

(
I∗ + R∗)

+ σ 2
3 R∗2

+ yσ 2
3 R∗2

+
1
μ

[

βx
(

b
μ

+ I∗
)

+ ηy
(

b2

μ2 + I∗R∗
)]

e–μτ (1 – p)b
}

dt

+ e–μτσ1S(t)
[
e–μτ

(
S(t) – S∗) +

(
I(t + τ ) – I∗) +

(
R(t + τ ) – R∗) + z

]
dB1(t)

+
{
σ2I(t + τ )

[
e–μτ

(
S(t) – S∗) +

(
I(t + τ ) – I∗)

+
(
R(t + τ ) – R∗) + z

]
+ xσ2

(
I(t + τ ) – I∗)}dB2(t) +

{
σ3R(t + τ )

× [
e–μτ

(
S(t) – S∗) +

(
I(t + τ ) – I∗) + (1 + y)

(
R(t + τ ) – R∗)]}dB3(t).

(32)

Choosing x = 2μ(1+αI∗)
β

and y = 2μ

η(I∗+R∗) such that xβ

1+αI∗ –2μ = 0 and yη(I∗ +R∗)–xη–2μ = 0.
Hence, we get

LV3(S, I, R) ≤ –
(
μ – σ 2

1
)
e–2μτ

(
S(t) – S∗)2 –

(
μ + xη – σ 2

2
)(

I(t) – I∗)2

–
y(μ2 – ηb)μ

y(μ2 – ηb) + 2μ2

(
R(t + τ ) – R∗)2 –

[(
y
2

+ 2
)

μ – (y + 1)σ 2
3

]

× (
R(t) – R∗)2 – 2μe–μτ

(
S(t) – S∗)(R(t + τ ) – R∗) + M2

≤ –
(

y(μ2 – ηb)μ
y(μ2 – ηb) + 2μ2 – σ 2

1

)

e–2μτ
(
S(t) – S∗)2 –

(
μ + xη – σ 2

2
)

× (
I(t) – I∗)2 –

[(
y
2

+ 2
)

μ – (y + 1)σ 2
3

]
(
R(t) – R∗)2 + M2,

(33)
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where in the above inequality we used the Young inequality [36]

–2μe–μτ
(
S(t) – S∗)(R(t + τ ) – R∗) ≤ μ

ε
e–2μτ

(
S(t) – S∗)2 + εμ

(
R(t + τ ) – R∗)2,

where ε = y(μ–ηb)+2μ2

2μ2 .
Integrating both sides of (33) between 0 and t and meanwhile taking expectation, we

obtain

0 ≤ EV3(t) – EV3(0)

≤ –
(

y(μ2 – ηb)μ
y(μ2 – ηb) + 2μ2 – σ 2

1

)

E
∫ t

0

(
S(t) – S∗)2 du

–
(
μ + xη – σ 2

2
)
E

∫ t

0

(
I(t) – I∗)2 du

–
[(

y
2

+ 2
)

μ – (y + 1)σ 2
3

]

E
∫ t

0

(
R(t) – R∗)2 du + M2t.

Let k2 = min{( y(μ2–ηb)μ
y(μ2–ηb)+2μ2 – σ 2

1 ), (μ + xη – σ 2
2 ), (( y

2 + 2)μ – (y + 1)σ 2
3 )}.

Then

E
{∫ t

0

[(
S(u) – S∗)2 +

(
I(u) – I∗)2 +

(
R(u) – R∗)2]dt

}

≤ M2

k2
t.

Consequently,

lim
t→∞ sup

1
t

E
{∫ t

0

[(
S(u) – S∗)2 +

(
I(u) – I∗)2 +

(
R(u) – R∗)2]dt

}

≤ M2

k2
. �

Remark 5.2 If R0 > 1, according to Theorem 5.1, we can conclude that the solution of
model (3) will fluctuate around the rumor-local equilibrium.

6 Numerical simulations
There is no point in just modeling and theorizing to deal with real problems in the ab-
sence of effective numerical algorithms and computing equipment [37, 38]. In addition,
the model does not have exact solutions in closed form, so it is more appropriate to analyze
solutions by numerical simulations. In this section, we shall use Matlab to carry out some
numerical simulations to illustrate the availability of the above analytical results. In terms
of the above Theorems 4.1 and 5.1, the following part covers some simulation results. We
set the time step �t = 10–3.

Firstly, we consider the initial value (S(0), I(0), R(0)) = (0.7, 0.3, 0.1) with related parame-
ter values: p = 0.32, b = 0.5, μ = 0.25, β = 0.45, α = 0.1, η = 0.1, τ = ln 32, σi = 0.1 (i = 1, 2, 3).
In this case, R0 = 0.819 < 1 and the conditions in Theorem 4.1 are satisfied:

σ 2
1 = 0.01 < 0.56 =

μ2

ηb + μ2 , σ 2
2 = 0.01 < 0.52 = μ,

2μ2 + ηb
ηb

σ 2
3 = 0.0225 < 0.3125 =

μ3

ηb
.
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Figure 1 Trajectories of stochastic and deterministic systems with R0 < 1

Figure 2 Trajectories of stochastic and deterministic systems with R0 > 1

Hence, by Theorem 4.1, all positive solutions of the model (3) may fluctuate around the
rumor-free equilibrium of the model (1). As clearly illustrated in Fig. 1, the curve of the
stochastic model goes up and down around the curve of the deterministic model, which
strongly supports Theorem 4.1. Meanwhile, we get that when R0 < 1, the number of in-
fected individuals diminishes gradually until disappearing, which indicates the rumor can
be effectively controlled.

Besides, we take the initial value (S(0), I(0), R(0)) = (0.7, 0.1, 0.1) with related parameters:
p = 0.2, b = 0.6, μ = 0.25, β = 0.6, α = 0.1, η = 0.1, τ = ln 8, σ1 = 0.1, σ2 = 0.1, σ3 = 0.1. In
this situation, R0 = 2.796 > 1 and the conditions in Theorem 5.1 are satisfied:

μ2 = 0.0625 > 0.06 = ηb,
y(μ2 – ηb)μ

y(μ2 – ηb) + 2μ2 = 0.023 > 0.01 = σ 2
1 ,

μ + xη = 0.337 > 0.01 = σ 2
2 ,

(
y
2

+ 2
)

μ = 1.12 > 0.01 = (y + 1)σ 2
3 ,

I∗ = 0.376, R∗ = 0.632, x = 0.865, y = 4.96.

According to Theorem 5.1, all positive solutions of the model (3) fluctuate around the
rumor-local equilibrium of the model (1). Similarly, the curve of the stochastic model goes
up and down around the curve of the deterministic model in Fig. 2, which clearly supports
this analytical result. Meanwhile, we find that when R0 > 1, the three types of group exist
in the system simultaneously and ultimately each tends to stabilize. However, once influ-
enced by external disturbance, the stable state will be broken and the rumor will keep on
spreading.

In addition, we are interested in what factors will influence the spread of a rumor. To
begin with, the transmission rate is regarded as an indispensable component to rumor



Huo and Chen Advances in Difference Equations        (2020) 2020:651 Page 18 of 21

Figure 3 Paths simulations of I(t) for stochastic
model and β = 0.2, 0.4, 0.8, respectively

Figure 4 Paths simulations of I(t) for stochastic
model and τ = 0, 1, 2, respectively

spreading. Here, under the condition that other factors are the same, we choose differ-
ent transmission rate β = 0.2, 0.4, 0.8 to explore their influence on rumor spreading. As
clearly shown in Fig. 3, reducing the transmission rate may decrease the number of in-
fected individuals accordingly. For example, during the outbreak of COVID-19, when a
rumor such as ‘Asymptomatic infected people are characteristic of novel coronavirus in
later stages’ came to some people who haven’t heard it, if they didn’t believe it or have
interest in spreading it, that the transmission rate would decrease and the spread of this
rumor would be suppressed.

Moreover, we consider that the time delay might exert a certain influence on rumor
spreading. Thus, we change the time delay while keeping all the other parameters un-
changed. As clearly shown in Fig. 4, we find that the time delay τ has a great influence on
whether the rumor exists or not, extending the thinking time may decrease the number
of the infected individuals, and it can even lead to the disappearance of a rumor. Conse-
quently, we conclude that rumor spreading often becomes increasing fierce through those
who spread automatically when hearing a rumor. As the saying goes, the rumor stops at
a wise person. In this regard, we urgently need to improve our national comprehensive
quality, increase our knowledge base, and improve the ability of self-prevention and con-
trol. In the face of a rumor, people should think calmly about the issue and judge truth
and falsehood rationally, in which case we can control the rumor spreading effectively.
Take COVID-19, for example, when groundless rumor like ‘Bee venom can inhibit a novel
coronavirus’ started to spread, if individuals chose to spend some time conducting a lit-
tle checking and thinking to identify instead of thoughtless spreading, the rumor would
disappear naturally.

Besides what’s mentioned above, we firmly believe the scale of infected individuals
must have a significant relationship with external stochastic disturbance. So under the
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Figure 5 Paths simulations of I(t) for stochastic
model and σi = 0.1, 0.3, 0.5, respectively

condition that other factors are the same, we choose different intensities of white noise
σi = 0.1, 0.3, 0.5. Figure 5 demonstrates strongly that stochastic disturbance exerts far-
reaching influence on the scale of infected individuals, and positive stochastic factors will
reduce the scale of rumor spreading. Consequently, confronted with a rumor, the govern-
ment should strengthen supervision, establish a mechanism to refute rumors, and step
up suggestions how to deal with rumors. In addition, media and related platforms should
pronounce the truthful, transparent, and open information to refute rumors timely. Dur-
ing the outbreak of COVID-19, some rumors such as ‘Hubei is short of food and people
need to grab rice and oil’ and ‘Schools at all levels in Hebei are scheduled to start on April
10’, and so on, occurred, the China Internet joint rumor refutation platform released the
true information to refute rumors timely, which greatly suppressed the spread of rumors.

7 Conclusions
This paper is mainly related to the dynamical properties of a stochastic SIR rumor-
spreading model with Holling II functional response function considering the existence
of time delay and the disturbance of white noise. Firstly, we explored the existence and
uniqueness of the global positive solution to the model. Besides, the asymptotic behav-
ior of the solutions around the rumor-free and rumor-local equilibria was analyzed in
detail. Furthermore, some numerical results illustrated that when reducing the transmis-
sion rate or increasing the time delay or positive external disturbance, it may suppress
rumor spreading to some extent, so that the rumor vanishes. Therefore, on the one hand,
we need to develop our national comprehensive literacy, expand our scope of knowledge,
and improve resolving ability, then we will not believe rumors easily while spending more
time thinking and identifying after contacting with spreaders, which will suppress the ru-
mor spreading as soon as possible; on the other hand, the government and media should
announce the truth in time to refute a rumor, which will avoid unnecessary panic in the
crowd and guide people to act correctly.
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