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1 Introduction
Convex function [1-20] is an important concept that has come to the fore among many
other function classes with its many features and areas of use. Giving the definition as an
inequality containing linear combinations has helped in using convex functions for classi-
cal inequalities. Jensen inequality [21, 22] is one of these inequalities for convex functions,
which can be stated as follows.

Let (i1, L2, -..» iy) € [0,1]" with Y77, j1; = 1 and 7 be a convex function on the interval
[0, 7]. Then the inequality

n n
T Zﬂixi =< Zﬂif(xi) (1.1)
i-1 i-1

holds for all x; € [0,9] (i=1,2,...,n).

Another important inequality for convex functions is the Hermite—Hadamard inequal-
ity [23, 24], which has been proved by numerous ways and has many generalizations and
extensions [25—29]. This inequality can generate bounds on the average value of convex
functions to reveal its functionality with applications to numerical analysis and error cal-
culation formulas such as trapezoidal and midpoint quadrature formulas. Now, we recall
the Hermite—Hadamard inequality as follows.

Let 7:J € R — R be a convex function. Then the Hermite—Hadamard inequality

T<9+19)§ 1 ﬁr(k)dkir(9)+t(z9)
2 9-6J, 2
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holds for all 8,9 € J with 6 # ¢. If T is a concave function on /, then the above inequality
is reversed.

There are many interesting studies in the literature for the Jensen inequality, for example,
the Jensen—Mercer inequality is a new variant of the Jensen inequality given by Mercer in
[30]. Later, Matkovi¢ et al. [31] generalized the Jensen—Mercer inequality to operators and
gave its many applications. Recently, the Jensen—Mercer inequality has been the subject
of intensive research.

The following Theorem 1.1 for convex functions can be found in [32].

Theorem 1.1 ([32]) Let t be a convex function defined on (0,9 ]. Then the inequality

r(em—mei) <tO)+T(®) =) mir(x) (12)
i=1

i1
holds for all x; € [0,9] and p; € [0,1] with Y\ x; = 1.

Next, we recall the definitions of the Euler Gamma I'(-) and Beta B(-, -) functions, which

will be used in the article:
o0 1
re) = f e’2Ndr, Blrs) = / AN - A .
0 0

The concept of fractional order derivative and integral [33—40] that will shed light on
some unknown points about differential equations and solutions of some fractional or-
der differential equations, which proved to be useful for their solution, is a novelty in
applied sciences as well as in mathematics. New derivatives and integrals contribute to
the solution of differential equations that are expressed and solved in classical analysis,
as well as using fractional order derivatives and integrals. In addition, it has increased
its contribution to the literature with applications in areas such as engineering, biostatis-
tics, and mathematical biology. Fractional derivative and integral operators not only dif-
fer from each other in terms of singularity, locality, and kernels, but also brought in-
novations to fractional analysis in terms of their usage areas and spaces. The new in-
tegral operators put forward by the researchers working in the field of fractional anal-
ysis led to new approaches, results, and methods in applied mathematics, engineering,
and many other fields, and they have found the expected response in inequality the-
ory. Many new integral inequalities and bounds to known inequalities have been found
by using new integral operators. The new trends, improvements, and advances on frac-
tional calculus and real world applications can be found in the literature [41-60]. Now
let us remember some integral operators that are well known to be useful in fractional

analysis.

Definition 1.2 ([61]) Let « >0, 0 <6 < ¢, and t € [#,?]. Then the Riemann-Liouville

integrals /i, 7 and J§_t of order o are defined by

o ) = 1 ’ At (r)da 0) (1.3)
(]9+)T(y —mﬁ ()/— T ()/> .
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and

1

g
o _ _ a1
(Jﬂ_)r(y)_—r(a)fy -9t dr (y< D), (1.4)

respectively, where (J3,)t(y) = (/9_)t(») = (y).

In [62], Jarad et al. defined the new fractional integral operators as follows:

fa L [7(=0-0-0)"\"" ()
o/ T@)‘F(ﬂ)/Q( « ) G-y ()
and
1 [P(@ -y =@-0"\" )
Bra _
/ﬁr(y)—r(ﬂ)/y< > ) (ﬁ_k)l_adx. (1.6)

Remark 1.3 From (1.5) and (1.6) we clearly see that
(i) If0 =0 and o = 1, then (1.5) reduces to the Riemann-Liouville operator given in

(1.3).

(i) If6 =0 and & — 0, then the new conformable fractional integral coincides with the
generalized fractional integral (see [63]).

(iii) Furthermore, (1.6) becomes the Riemann-Liouville operator if we set = 0 and
a = 1. It also corresponds the Hadamard fractional integral [63] once we take ¢ = 0
and o — 0 in the generalized fractional integral.

The generalized k-fractional conformable integrals [64] are defined by

f =Y

ba v 1 [T(=0)=(-0"\F" T(n)
e | () e (7
and
g4
Bra 1 YW -y =@ -2\ T(h)
"L"r(y)‘krk(ﬂ)/y ( @ ) 0 e 8

If k > 0, then the k-Gamma function I'y is defined as

1m -1
@) = lim "R 0mR) (1.9)

m=o0(a)mk

If Re(«) > 0, then the k-Gamma function in integral form is defined as

o) &
Tp() = / e T ldu (1.10)
0

with oy (a) = Ti(a + k).
The main purpose of the article is to reveal new and more general Hermite—Jensen—
Mercer-type inequalities for convex functions with the help of k-fractional integral op-
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erator. For this purpose, Holder inequality and its variants have been used in addition to
various analysis processes. With the special versions of the main findings, many inequali-

ties in the literature were obtained and the importance of the results was emphasized.

2 New Hermite-Jensen-Mercer type inequalities
Theorem 2.1 Let«, B >0and t:[6,9] — R be a convex mapping. Then the inequality

WE B
tlg %
T<0+ﬁ_x;y)§2 a kT (B + k)

-2k
X {mw_%ﬂ(e +0 —x) +£]%+§_%)7f(9 +9-y)}
<7(0)+7(9) - (M) (2.1)

holds for all x,y € [0, V].

Proof Since t is convex, to prove the first inequality, we write

T(0+ﬁ_x1;y1):T(9+19—x1;9+1?—y1)

- @+ —x)+T(0+ 0 —y1)
- 2

for all x1,y, € [0, 9].
Letx; = %x+ 2’7*3/ and y; = %x + %y‘ Then for x,y € [#, 9] and A € [0, 1], we have

A 2—-A
2T 6‘+19—m <710+ - =x+ y
2 2 2
+t(0+0 2= +A (2:2)
|0+ 5 x 2y . .

Multiplying both sides of (2.2) by (%)%_1(1 - 2)%7! and integrating the obtained

inequality with respect to A over [0, 1], and then combining the resulting inequality with

the definition of the integral operator gives

21<0+ﬁ_x;y>/1(1—(1a—k)“)
0
V-@oae\E
5/0< : ) (1-2)
A 2-A 2-A A
x(r(0+l9—<§x+ 5 y))+r(0+l9—<Tx+§y)))d)»

1- ((9“?—’%:)_1

X+ ]
o492 ) INEL (040 - B2 g\ %! 2
:/ ( : > ( y_xz ) T()\'l) d)\l
6+9—y o 3 y—x

F =N

-1
(1-2)%"1tdx
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", ro—(0+0 -2y,
04— 1—(2;T2) = Ay — (0 +0 = Z2)\*! 2
+/ e = T(M)Td)\z
0+0—x 2 e
2\
. B B B ra _
) (J’—x) (LR (BTG g5y 7O + 0 =) + TUBY vy 70 +9 — )}
Note that
B
Li1—(1-2)\ 5! 1
f <()> (1-1)*tdh=— (2.3)
0 o fat
Therefore,
1
2T (8 +9 - m) B
2 %a?

<

y—x

2 \“F
(—) (TR(B)T 51y 7O + 0 =) + TuBY TGy, ) TO 40 —2)}.

This completes the proof of the first inequality of (2.1).

To prove the second inequality, by a similar discussion, making use of the convexity of

7, for A € [0,1], we have

A 2
r<0+ﬁ—<—x+
2

and

A

r(@ + 0 — <2%x+ %y)) <t@)+71(®¥) - <2

Adding (2.4) and (2.5) leads to

A 2-A 2
r<9+ﬁ—<—x+—y>>+t<9+ﬁ—<
2 2

<2[t(®) +T(®)] - [r() + ()]

37)) =1 o)~ (Gre+

= r(y)) (2.9

; * T(x) + %r(y)). (2.5)
-\ A

(2.6)

Multiplying (2.6) by (M)%’l(l —2)*"! and integrating the obtained inequality with

o

respect to A over [0, 1] gives
1—(1=2)"

1 £
(=)
0 o
r(oeo-(3
x3tlO0+0 - =x+
2

5)) e

1 (1 _ )\
= Pl <] -[xt s el ['(4)

- A A
5 X+ Ey))}d)\

L]
(1-1)%*"1tdxr
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X
>

=)

(TR(BUT 210y 7O + 0 =9) + TulB)L Ty, sy 70 49 —20)}
L {2[1’(9) + t(l?)] - [t(x) + r()/)]},

=

o
o

o

which completes the proof of the desired inequality. d
Remark 2.2 From Theorem 2.1, we clearly see that:

(i) Ifwetake k=1,x=6,and y =19 in Theorem 2.1, then we get Theorem 2.1 of [65].
(i) Ifwetakew =k =1,x=0,and y = ¥ in Theorem 2.1, then we get Theorem 2 of [66].

Theorem 2.3 Let «, B >0and t:[6,9] — R be a convex function. Then the inequalities
X+ a%l" (B+k)
r(@ + 1 - —y) <t0)+t(¥) - kiﬂ{f T(y) +,€];‘_r(x)}
2 2()/—96)‘1?
<t(@)+t(¥) - r<m>

. 2.7)
and
f(e ro -2 ) < “f(;k_(i ):,zk) (T 7O + 0 =) 4 Ty T (0 + 9 — )
; T(9+19—x);—1'(9+19—y) ) 0) - f(x);f(y) 09
hold for all x,y € [0, ).

Proof It follows from the Jensen—Mercer inequality that

I(M_’%)wm(m_w

for all xl,yl € [9, 7}].

By changing the variables x; = Ax + (1 — 1)y and y; = (1 — A)x + Ay for x,y € [0, ] and
A €[0,1] in (2.9), we get

r<6+ﬁ—x¥> <7(0)+ ()

B T(Ax+ (1 =21)y) + (1 - A)x + Ay)

5 (2.10)

Multiplying (2.10) by (%) (= (1-2)*"! and integrating the obtained inequality with
respect to A over [0, 1] leads to the conclusion that

1 o 4
r<9+ﬁ—x;y>f (1_(2_” )k(l—)\)ald)\
0
Lrl—(1-n)® £ w1
5/0 <7a ) (1-2)

X {1(9) + () - T(x + (1=21)y) + T((1 = A)x + Ay)

o
2
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that is,
r(9+0—m)§1’(9)+1’() M{“ () + T T (), (2.11)
2 201 x)ct

which completes the proof of the first inequality of (2.7).
To prove the second inequality of (2.7), from the convexity of 7, for A € [0, 1] we obtain

)

2

- T(Ax+ (1 =2)y) + (1 - A)x + Ay)
< ) .

r()\x+(1—)L)y+(1—)n)x+)ny>

(2.12)

Multiplying (2.12) by (%)%_1(1 —2)*7! and then by using integration with respect
to A over [0, 1], we have

x+y Lr1—(1-a)® %(1 e d
() [ () o

5 Nﬂ)%_ml{ (A e,
0

- 2
that is,
T(x;y)fakrk(ﬂ‘*k){ f(y)+ﬂ]af(x)}
2y - )k

_r(x-vz-y> - of (B +ﬁk) {f () + ]a (%)) (2.13)
2y —x)x

Adding 7(0) + (%) to both sides of (2.13), we obtain

7(0) + T(9) - r(’%) > 7(0) + T(9) - %{f};’ir(y) ) (214

x)* K

Combining (2.11) and (2.14), we get (2.7). To prove inequality (2.8), we use the convexity
of T to get

X1+ O+ —x1+0+0 —
r(9+19— 12)/1):1_( 12 yl)

- T@+0 —x1)+T(0 +0 —y1)

2.15
< 5 (2.15)
for all x1,y, € [0, 9].
Letx; = Ax + (1 —A)y and y; = (1 — A)x + Ay. Then (2.15) leads to
(oe0-57)
2
- { @+ - (x+(1-21)y) 42r 70+ — ((1 - A)x + Ay)) } (2.16)
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Multiplying (2.16) by (#)%"1(1 — )1 and then by integrating the resulting in-

equality with respect to A over [0, 1], we have

B
x+y Lil—(1-a)2\* w1
r<9+19— 5 )/0< - ) @A-=-x)*"da

B
k

! 1—(1—A)“) el
5/0 (701 (1-1)

8 {t(9+19—(Ax+(l—k)y))+r(9+0—((1—k)x+ky))}d)h

2
which can be rewritten as

r<9+ﬁ—m>
2

8
akTr(B+K) g4 .
= kiﬂ{ff(emfx)ﬂ(@ +0—y)+ f](gﬂ,,y)_t(e +9 —x)}.
2y —x)"F

(2.17)

It follows from the convexity of t that
‘L’()»(@ +1—x)+(1-1)(0 +19—y)) <At@+9 -x)+(1-A)TtO@+9 -y)
and
r((l—k)(@ + 1 —x)+ A0 +z?—y)) <A-Mt@+0—x)+At(0 + 9 —y).
Adding the above two inequalities and using the Jensen—Mercer inequality gives

TAO+0-2)+ A -+ -p) + (A -1)(O +V —x) + (0 + ¥ —))

<tO+9-2)+7(0 +9 —-y) <2(c(0) + T(¥)) - (r(®) + T(»)). (2.18)

Multiplying (2.18) by (%)%’1(1 —2)*"! and then by using integration with respect

to A over [0, 1], we have

Lrl—(1-a)® £ w1
) e

x{t(M@+0 -x)+ (1-1)O +9 ) + (1 -1)O + 9 —x) + (6 + ¥ —y)) } dA
£
<2(r(0) + T(9)) - (T(x)+t(y))/01($>k(l_k)a_ld}h

that is,

B
akTR(B+K) (5, )
ﬁ{fj(GJrz?—x)*T(e + 0 _y) + jfj](gﬂg_y)ff(@ + 0 —x)}

2(y —x)*
T(x) +7()

<(z(®) +t(®) - <ﬁ) (2.19)
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Combining (2.17) and (2.19) leads to (2.8). O

Remark 2.4 Let a = 8 =k =1. Then Theorem 2.3 leads to the conclusion that

(i) r(9+ﬁ—m> 5r(9)+r(ﬂ)—flr(kx+(1—k)y)dk
2 0

x+y

<1(0)+71(¥) - T(T>

and

1 y
(ii) r(6+ﬁ—x¥><—/ (6 + 0 — 1) dA

t(x) +7(y)
- 5 ,

which was also proved in Theorem 2.1 of [67].

Lemma 2.5 Let o, >0,0 < and 7 :[6,9] — R be a differentiable mapping such that
v’ € L[0,V]. Then the inequality

B, B
2k kTh(B +K) 5, .
B {fj(gﬂy,m)ﬂ(@H?—x)+f](9+l,7ﬂ),r(9 +9 -y}
-2 ; ;

Lrir—@a=-n)® f
)
/ 2-A A ’ A 2—-A
X{l’ (9+19—< 5 x+5y>)—t<9+19—(§x+ 5 y))}dk (2.20)

holds for all x,y € [0, V].

Proof Let

1=y%xa§{11—12}, 2.21)

where

Ll (1-2)\F 2-1 A
11:/0 (%) r/<0+19—( 3 x+§y)>dk

and
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Then integrating by parts, we get

2
= —r(9+ﬂ—m)

_ag(y—x) 2
+%/1(1—(1—A)“)§_1(1—)\)“1r(9+19—(2_)hx+& ))dx
ak(y—x) Jo 2 T

2
2 fem)
ak(y—x) 2
ol
;

B
2 6+ —x a . ay -1
+ﬁ/ ((L) —()»1—(9+17—i)>)
ak Ly %) 5L Joro-xp 2 2

y T(A1)
(=0 +9 -2

>

dr

xX+Yy

2
=—ﬂ—1’(9+19——>
ak(y—x) 2

( 2 )“éﬂ Te(B + k)
.

B
y—x og?_l

f](@';mf%;(e + 0 —%). (2.22)

Similarly, we have

B
Lrap—(@=-n)2\* A 2-A
Izzf <¥) r/<0+19—<—x+ y))dk
0 o 2 2
2

ab i1
k
_ (—2 ) 71—‘,((’3 * k) ﬂ]é 9 x+y),f(9 + 0 —J’) (223)
-

y—x o %—1 g
Therefore, inequality (2.20) follows from (2.21)—(2.23). O

Remark 2.6 Lemma 2.5 leads to the conclusion that:
(i) Ifwetake k=1,x =0, and y =1, then we can get Lemma 3.1 of [65].
(i) Ifwetake o =k=1,x=06,and y = ¢, then Lemma 2.5 reduces to Lemma 1.1 of [68].

Lemma 2.7 Let o, >0, 0 <0 and v : [0,9] — R be a differentiable mapping such that
t' € L[0,9). Then the identity

TO+9—x)+7(0+0 —7y) _a%Fk(,3+k)
2 Z(y—x)“%

X {f]('}‘;+0_y)+r(0 +0 —x)+ f]('g+0_x)_r(9 +1 —y)}

el (et (1o

xt'(0+9 - (Ax+(1-21)y))dAr (2.24)

holds for all x,y € [0, V].
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Proof Let
B N N f
- [0 () e
0
8
Jbmxat (2.25)

2

Then we clearly see that

1 o 14
L =/ (M)kr/(e +9 — (hx+ (1= 1)) dr
0

o

C1re+o-x) & /1(1—(1—A)“>
a% y—-x y—%Jo o

x (1=2)*"r(0+9 - (Ax+ (1 -21)y))dAr

1 z0+9-x) Ti(B+k) 4
- - T o e TO+D =) (2.26)
of Yo (y—xr'%“{k e 7

-1

Fa =

and

o

__ 160y £ /l(l—k"‘>
a% y—x y=xJo o
1 t0+0- r k
=_—T( + y) + k(lg+ ) {f]g;+ﬁ,y)—t(9+ﬁ_x)}' (2.27)

a% y—x (y_x)a%*l

1 o 4
12=/ <l_k )kt/(9+ﬁ—(kx+(1—k)y))dk
0

Y

1
A0+ 0 - (A + (1= A)y)) da

Therefore, identity (2.24) follows from (2.25)—(2.27). (|

Corollary 2.8 Ifwe take a = B =k =1, then Lemma 2.7 leads to the equality

t@+9-x)+1(@+0-y) 1 /Ow_xr(?»)d?»
2 V=% Jo+o-y
1
=y;xf @r-1)7'(0 + 9 — (Ax + (1 - 1)y)) dA. 229)
2 Jo

Remark 2.9 1f we take x = 6 and y = ¥ in Corollary 2.8, then equality (2.28) becomes the
equality

7(0) + (V) 1 0 9—6 f1 ,
2 _19_9[; T()‘)d)‘zT/(; 2r -1 ((1—A)O+Aﬁ)dk,

which was proved in Lemma 2.1 of [69].
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Theorem 2.10 Letw, 8 >0,0 < and T :[0,9] — R be a differentiable mapping such that
v/ € L[0,9] and |T| is a convex mapping on [0,]. Then the inequality

B_, B
Za;—larrk(lg.,_k) . )
o )01% {flwﬂ9 x+y)+f(9+'l9—x)+]é](0+§_¥)_f(9+l9—y)}
—x

<2 %[(|z(9)| |t'(0)|)(ﬁ3<§+1,§>>
(G (e 2) a5 2))]

(eol( s (5 r2) -5(322)))

(|7 @]+ |r’(0)|)<ﬁ8<§ +1, é))

e (o og) 22 02))]

AR W) R

holds for all x,y € [0, V].

+

Proof It follows from Lemma 2.5 and Jensen—Mercer inequality using the convexity of | /|
that

2*E k(B + k)
(- )%

—r<9+ﬁ—m>‘
2
B
- ;xaf{/ol(il-%‘” ) f/<9+ls~_(2jx+&y)>‘dx
Lri—@1-a)e £ (oo A 2-2 "
T oo (5 5)) )
ST E AN , , 2-
[ (=522 o5
1 o 4
(ﬂ) ’ {|r’(9)| + |r’(ﬁ)‘ - <&|r’(x)| +
o 2
-x B , , Lri1—(1-a)® £
< 4xa€x{(‘r(9)‘+‘r(0)’)/o (T) di

—(Ir'<x)|/01(1'(1a‘”a) relro] (A2

{fjféarﬁ_%yt(e +0 _x) +]€Ié+ﬁ_$)_f(0 + 9 —_’y)}

<

\&}

<
x®
>

< o

S

)\ |r/(x)| + %|r/(y)|)}dk

o) o]

+
S~

<

B
k

)]
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1 _ 3\ %
. {(|f/(e>| +|f/(za)|)/0 (I“T”) i
_<|r/(x)|/l(7l_“‘”a) —d/\+|r(y)|/( - ”a)%z‘%u)}
0 o 2 ’

Therefore, inequality (2.29) can be derived after some simple calculations. d

Remark 2.11 From Theorem 2.10 we clearly see that:
(i) Ifwetake k=1,x=6,and y =9 in Theorem 2.10, then we get Theorem 3.1 of [65].
(i) Ifwetake o =k=1,x=6,and y = ¢ in Theorem 2.10, then we obtain Theorem 5 of
[68] in the case of g = 1.

Theorem 2.12 Let g > 1, a,8 >0,0 < and v : [0,9] — R be a differentiable mapping
such that v/ € L[0,9] and |t'|? is a convex mapping on [0, ]. Then the inequality

B, B
2tk B+ k) 4, )
B {fj«;m_%)ﬂ(@+79—x)+,'f](0+ﬁ_%)_r(0+z9—y)}

-k

cr ()
ivorercom((a(Ees )
ror(r(Gas) -5z 2))
ol () (e 2)
oo (2 en2)))
fror( (e 1) -2(512))
(s () (DI a0

holds for all x,y € [0, V].

Proof 1t follows from Lemma 2.5, Jensen—Mercer inequality, power-mean inequality, and

the convexity of function |z’|? that

2 E 1R T (B + k)
-2t

o)
2

Bra B ra
{k](gﬁj_#ﬁf(e + 0 —x) +k](9m_%>,‘r(9 + U —y)}
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»m.—
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L)

<
o))
LY oo (e b))

([ () ) o)

_L,/

N\
dx)

1

6+ - (

+
/\/\/‘\

O
/\/\/\

4
1

<((ror o - (Gleor 25 or) o)’

(
([ (o) S (2

‘ ((ya<e)|q+|f/w)|q)_<2 ) +%’t’(y)’q)>dk>q}. (231)

T

Making simple simplifications, we get (2.30) from (2.31).

Remark 2.13 Theorem 2.12 leads to the conclusion that:
(i) Ifwetake k=1,x=0,and y =9 in Theorem 2.12, then we get Theorem 3.2 of [65]

i
(i) Leta =k=1,x=6, and y = ¢, then Theorem 2.12 reduces to Theorem 5 of [68]

Theorem 2.14 Let o, >0, p,g>1 with1/p+1/qg=1,0 <V and v :[0,9] > R be a
differentiable mapping such that v’ € L[0, 9] and |T'|? is a convex mapping on [0,8]. Then

one has

2“75 aFFk(ﬂ+k) " N
(g 2y 1O 40 =)+ [T v T(6 4+ —)]

x {(|T/(9)|q + 7| - <3lr/(x)|‘f4+ |r’(y)|q>)6

+ <|T/(9)|q + |T/(19)|q _ <|T/(x)|q ‘;3|T/(y)|q>>‘_’] (2'32)

forall x,y € [0,0].
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Proof By using Lemma 2.5, and the Jensen—Mercer and Hoélder integral inequalities, we

obtain

B, 8
2%k Olka(ﬁ‘f'k) @ o
. {ﬁ}e ) m)+t(9+z9—x)+f](6m_%>,1:(9+l9—y)}

(v —x)*%

—r(@ ﬁ—m>‘
2
y-% b 1-(1 -1\ *? b
STA([(5) )
1
X{(/o r/(9+19—(2;Ax+%y))
Ter(oro - (Res 2250 %dx
([l G 5m))) )
It follows from the convexity of |t’|? that
oo (2P,
f( ; _< . x+5y))
<O +|@)|" - (?{t/(x)‘q + %|r/(y)|q>
([ () )
- 4 0 o
1 i
{([ (o= (52 o))
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4 )

q

S

which completes the proof.
Corollary 2.15 Let a = k = 1. Then Theorem 2.14 leads to

xX+Yy

1 0+ —x
—v/; r(k)dk—r(@ 19—7)'

y—x +0 -y
317/ ()] + |r'(y)|q))%
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=

o
'm»—‘ =
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- <|r/(9)|q +|T' @) - (—'T/(x”q 4;3|r’(y)|q>> ’ }

Theorem 2.16 Let o, >0, p,q>1with1l/p+1/q=1,0 < and t:[0,9] - R be a
differentiable mapping such that v’ € L[0, V] and |t'|? is a convex mapping on [0,9]. Then
the inequality

2510 T (B + k)
(J’—x)"%

—r(9+ﬁ—m)‘
2

£ B 11
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20k

holds for all x,y € [0, V].

Proof It follows from Lemma 2.5, Jensen—Mercer inequality, convexity of | 7|7, and Holder

integral inequality that

B, B
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x [|f'(e)|q e - (%ww ; %|t’(y)|q>]>q

L - (-2 T, ) A 2-2, i
+(/O ((T> |:|‘L'(9)|q+|T(ﬁ)|q—<§|r(x)|q+T|T (y)|q)]> }

By making necessary changes, we get (2.33). O

Theorem 2.17 Let 0 < ¥ and 7 :[0,9] — R be a differentiable mapping such that v’ €
L[0,9] and |t'| is a convex mapping on [0,9]. Then one has
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forall x,y € [0,0].

Proof By using Lemma 2.7 and similar arguments as in the the proofs the previous theo-

rems, we get
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<@ + 1) - (1] 6] + (- ] )
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—_

This completes the proof. O

3 New inequalities via improved Holder inequality
Theorem 3.1 Leto,B>0,p,q>1withl/p+1/q=1,0 <V and 7 :[0,9] — R be a differ-
entiable mapping such that v’ € L[0,V] and |t'|1 is a convex mapping on [0,V]. Then one

has
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forall x,y € [0,0].

Proof It follows from Lemma 2.5, Jensen—Mercer inequality, the convexity of |7'|?, and

Holder—{scan integral inequality given in Theorem 1.4 of [70] that
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By making use of some computations, one can get the required result. O
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Theorem 3.2 Letw,B>0,p,q>1withl/p+1/q=1,0 <9 and v :[0,%] — R ba a differ-
entiable mapping such that t' € L[0,9] and |t'|1 is a convex mapping on [0,0]. Then the
inequality
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holds for all x,y € [0, V].

Proof It follows from Lemma 2.5, Jensen—Mercer inequality, the convexity of |t'|7, and

the improved power-mean integral inequality given in Theorem 1.5 of [70] that
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By computing the above integrals, one can obtain the required result. O

Y
Q

4 Conclusions

The Hermite—Kadamard inequality is one of the most important inequalities for convex
functions and in the theory of inequalities, while the Hermite—Jensen—Mercer inequality
is a variant of the Hermite—Kadamard inequality which has attracted the attention of many
researchers in recently years due to its many applications in pure and applied mathemat-
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ics, as well as in physics. Therefore, it is important to further generalize and improve the

Hermite—Jensen—Mercer inequality. In the article, we have found new methods to general-

ize the Hermite—Jensen—Mercer inequality to the fractional integrals, established several

novel Hermite—Jensen—Mercer-type inequalities for convex functions in the framework of

the k-fractional conformable integrals, generalized and improved many previously known

results in the literature. The ideas and techniques we put forward are likely to open new

research directions in this field and lead to a large number of follow-up studies.
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