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Abstract
In the present research manuscript, we formulate a new generalized structure of the
nonlinear Caputo fractional quantummulti-integro-differential equation in which
such a multi-order structure of quantum integrals is considered for the first time. In
fact, in the light of this type of boundary value problem equipped with the
multi-integro-differential setting, one can simply study different cases of the existing
usual integro-differential problems in the literature. In this direction, we utilize
well-known analytical techniques to derive desired criteria which guarantee the
existence of solutions for the proposed multi-order quantum
multi-integro-differential problem. Further, some numerical examples are considered
to examine our theoretical and analytical findings using the proposed methods.
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1 Introduction
As years and even decades go by, the human beings need to be acquainted with different
natural phenomena more and more. One possible way to achieve this purpose is to apply
the logical techniques and tools available in mathematics, and particularly the mathemat-
ical operators, in the modeling of different processes. Various fractional operators have
been formulated by different researchers, and their applicability is becoming increasingly
apparent to researchers every day. In consequence, it is necessary that we derive and in-
vestigate various models of processes from all aspects by utilizing the fractional operators
in boundary value problems. Some instances of the application of these operators can be
found in applied sciences such as electrical circuits, medicine, biomathematics, etc. [1–6].
Moreover, the importance of this field implies that the researchers are interested in find-
ing different aspects of the structure of the general fractional BVPs and some dynamical
properties of their solutions. In this context, a lot of researchers have been studying many
modern and general fractional models and relevant dynamical behaviors of this type of
fractional BVPs (see, for example, [7–18]).

In 1910, Jackson [19] formulated a new field of the fractional calculus entitled the quan-
tum fractional calculus or simply q-calculus. Shortly afterwards, Adams worked on the
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newly-defined quantum calculus and published some papers about q-difference equations
[20–22]. At the same time, Carman and Starcher also continued this novel branch of the
fractional calculus [23, 24]. In the subsequent step, Trjitzinsky investigated analytic theory
of linear quantum differential equations and also nonlinear quantum differential systems
[25, 26]. After the World War II, Abdi [27] studied certain quantum differential equations
in 1962. Finally, Miller [28] combined quantum differential equations with Lie theory and
investigated new theoretical results in this regard. By continuing this trend in the sub-
sequent years, numerous researchers extended this field and obtained many interesting
findings on the fractional quantum differential equations and inclusions (for more details,
see [29–48]).

In 2013, Zhou and Liu [49], with the aid of Mönch’s fixed point theorem along with
an analytical technique based on the measure of weak noncompactness, turned to the
following fractional quantum boundary problem:

⎧
⎨

⎩

CDσ
q � (z) + ĥ∗(z,� (z)) = 0, z ∈ [0, 1],

� (0) = 0, CD2
q� (0) = 0, η∗CDq� (1) + λ∗CD2

q� (1) = 0,

such that 0 < q < 1, 2 < σ < 3, η∗,λ∗ ≥ 0, and ĥ∗ : [0, 1] ×R → R is supposed to be contin-
uous.

In the usual fractional calculus setting, Niyom et al. [50] designed the following multi-
order boundary problem in a new framework including Riemann–Liouville derivatives:

⎧
⎨

⎩

(η∗RLDσ1 + (1 – η∗)RLDσ2 )� (z) = ĥ∗(z,� (z)), z ∈ [0, T],

� (0) = 0, μ∗RLDσ3� (T) + (1 – μ∗)RLDσ4� (T) = s̃,

where σ1,σ2 ∈ (1, 2), 0 < σ3, σ4 < σ1 – σ2, and RLDγ stands for the standard Riemann–
Liouville derivative of order γ ∈ {σ1,σ2,σ3,σ4}, and also η∗,μ∗ ∈ (0, 1], s̃ ∈ R, and ĥ∗ ∈
CR([0, T] × R) for T > 0. Recently in 2019, Etemad, Ntouyas, and Ahmad [51] formu-
lated a novel framework of the nonlinear fractional quantum integro-differential equation
equipped with quantum integral conditions as follows;

⎧
⎨

⎩

(η∗RLDσ1
q + (1 – η∗)RLDσ2

q )� (z) = aĥ∗(z,� (z)) + bRLIδ
q f̂∗(z,� (z)),

� (0) = 0, μ∗ ∫ 1
0

(1–qr)(θ∗
1 –1)

	q(θ∗
1 ) � (r) dqr + (1 – μ∗)

∫ 1
0

(1–qr)(θ∗
2 –1)

	q(θ∗
2 ) � (r) dqr = 0,

where z ∈ [0, 1], q ∈ (0, 1), σ1,σ2 ∈ (1, 2) with σ1 –σ2 > 1, η∗,μ∗ ∈ (0, 1), θ∗
1 , θ∗

2 > 0, δ ∈ (0, 1),
a, b ∈ R

+, and RLDσ
q stands for the Riemann–Liouville quantum derivative of order σ

while ĥ∗, f̂∗ : [0, 1] ×R →R are supposed to be continuous functions.
Inspired by the aforementioned ideas given in the above-cited papers, we formulate

a new generalized structure of the nonlinear Caputo fractional quantum multi-integro-
differential equation furnished with fractional multi-order quantum integrals conditions:

⎧
⎪⎪⎨

⎪⎪⎩

(η∗CDσ
q – (η∗ + 1)RLIδ∗

1
q – (η∗ + 2)RLIδ∗

2
q )� (z)

= λ∗
1
RLIγ ∗

1
q ĥ∗(z,� (z)) + λ∗

2
RLIγ ∗

2
q f̂∗(z,� (z)),

� (0) = 0, μ∗RLIθ∗
1

q � (1) + (μ∗ + 1)RLIθ∗
2

q � (1) + (μ∗ + 2)RLIθ∗
3

q � (1) = 0,

(1)
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such that z ∈ [0, 1], σ ∈ (1, 2), q ∈ (0, 1), δ∗
1 , δ∗

2 ,γ ∗
1 ,γ ∗

2 ∈ (0, 1), θ∗
1 , θ∗

2 , θ∗
3 > 0, and η∗, μ∗

are nonzero real positive constants and λ∗
1,λ∗

2 ∈ R
≥0. Moreover, two operators, CD(·)

q

and RLI (·)
q , stand for the Caputo quantum derivative and the Riemann–Liouville quan-

tum integral of given fractional orders, respectively. Also, both real-valued functions
ĥ∗, f̂∗ : [0, 1] × R → R are supposed to be continuous. It is necessary that all researchers
pay attention to that the proposed multi-order Caputo quantum multi-integro-differential
equation has a novel and unique structure. In other words, the formulated structure for
given fractional multi-integro-differential problem (1) includes one quantum derivative
in the Caputo sense and also seven quantum integrals of the Riemann–Liouville type.
This combined boundary problem covers many different special cases of various nonlin-
ear integro-differential equations. Therefore, we emphasize that this kind of the Caputo
quantum multi-integro-differential problem has not been investigated in the literature so
far. In this direction, we apply well-known analytical techniques to derive desired crite-
ria which guarantee the existence of solutions for the proposed Caputo quantum multi-
integro-differential boundary problem (1).

The organization of the contents of the current manuscript is as follows. In the next sec-
tion, some required notions in the context of the quantum calculus are assembled. Sec-
tion 3 is devoted to establishing the main theorems in which the existence criteria can be
obtained under some necessary conditions. In Sect. 4, numerical examples are considered
to examine our theoretical and analytical findings by using the proposed methods.

2 Preliminaries
In this part of the present research manuscript, some required notions in the context of
the quantum calculus are assembled. Let us assume that q ∈ (0, 1). For the given power
function (m1 – m2)n with n ∈ N0, its q-analogue is defined by (m1 – m2)(0) = 1 and

(m1 – m2)(n) =
n–1∏

k=0

(
m1 – m2qk),

such that m1, m2 ∈R and N0 := {0, 1, 2, . . .} [52]. Here, the constant n = σ is supposed to be
an arbitrary real number. In this case, one can define the q-analogue of mentioned power
function (m1 – m2)n in the q-fractional setting as follows:

(m1 – m2)(σ ) = mσ
1

∞∏

n=0

1 – ( m2
m1

)qn

1 – ( m2
m1

)qσ+n (2)

for m1 �= 0. Notice that if we take m2 = 0, then we reach an equality m(σ )
1 = mσ

1 immediately
[52]. For the given real number m1 ∈ R, a q-number [m1]q is considered as

[m1]q =
1 – qm1

1 – q
= qm1–1 + · · · + q + 1.

The quantum Gamma function, or simply the q-Gamma function, is provided by the fol-
lowing rule:

	q(z) =
(1 – q)(z–1)

(1 – q)z–1 , (3)
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Algorithm 1 The pseudo-code to compute different values of 	q(σ )
Require: n, q ∈ (0, 1), σ ∈R\{0, –1, –2, –3, . . .}

1: a ← 1
2: for k = 0 to n do
3: a ← a((1 – qk+1)/(1 – qσ+k))
4: end for
5: 	q(σ ) ← a/(1 – q)σ–1

Ensure: 	q(σ )

Algorithm 2 The pseudo-code to compute different values of (Dq� )(z)
Require: q ∈ (0, 1), � (z), z

1: syms s
2: if z = 0 then
3: h ← lim((� (s) – � (q ∗ s))/((1 – q)s), s, 0)
4: else
5: h ← (� (z) – � (q ∗ z))/((1 – q) ∗ z)
6: end if

Ensure: (Dq� )(z)

such that z ∈ R\{0, –1, –2, . . .} [19, 52]. It is notable that 	q(z +1) = [z]q	q(z) is true [19]. In
Algorithm 1, we provide a pseudo-code based on relations (2) and (3) to compute different
values of the Gamma function in the quantum setting.

In the following, the quantum derivative of a real-valued continuous function � is de-
fined by

(Dq� )(z) =
� (z) – � (qz)

(1 – q)z
(4)

and also (Dq� )(0) = limz→0(Dq� )(z) [22]. One can simply extend the quantum deriva-
tive of a function � to arbitrary higher order by (Dn

q� )(z) = Dq(Dn–1
q � )(z) for any n ∈N

[22]. It is obvious that (D0
q� )(z) = � (z). Similar to above, a pseudo-code based on (4) is

provided to compute the quantum derivative of a function � in Algorithm 2.
The quantum integral of a real-valued continuous function � defined on [0, m2] is for-

mulated by

(Iq� )(z) =
∫ z

0
� (r) dqr = z(1 – q)

∞∑

k=0

�
(
zqk)qk , z ∈ [0, m2], (5)

provided that the series is absolutely convergent [22]. Similar to a quantum derivative, we
can extend the quantum integral of a function � to arbitrary higher order by iterative rule
(In

q � )(z) = Iq(In–1
q � )(z) for all n ≥ 1 [22]. In addition, it is evident that (I0

q� )(z) = � (z).
Note that a pseudo-code based on (5) is provided to compute the quantum integral of a
function � in Algorithm 3. At this moment, let us assume that m1 ∈ [0, m2]. In this case,
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Algorithm 3 The pseudo-code to compute different values of (Iσ
q � )(z)

Require: q ∈ (0, 1), σ , n, � (z), z
1: sum ← 0
2: for k = 0 to n do
3: pf ← (1 – qk+1)σ–1

4: sum ← sum + pf ∗ qk ∗ � (z ∗ qk)
5: end for
6: h ← (zσ ∗ (1 – q) ∗ sum)/(	q(z))

Ensure: (Iσ
q � )(z)

Algorithm 4 The pseudo-code to compute different values of
∫ m2

m1
� (r) dqr

Require: q ∈ (0, 1), σ , n, � (z), m1, m2
1: sum ← 0
2: for k = 0 : n do
3: sum ← sum + qk ∗ (m2 ∗ � (m2 ∗ qk) – m1 ∗ � (m1 ∗ qk))
4: end for
5: h ← (1 – q) ∗ sum

Ensure:
∫ m2

m1
� (r) dqr

the quantum integral of the function � from m1 to m2 is defined as

∫ m2

m1

� (r) dqr = Iq� (m2) – Iq� (m1)

=
∫ m2

0
� (r) dqr –

∫ m1

0
� (r) dqr

= (1 – q)
∞∑

k=0

[
m2�

(
m2qk) – m1�

(
m1qk)]qk (6)

if the right-hand side series has a finite value [22]. A pseudo-code based on (6) is provided
to compute the quantum integral of a function � from m1 to m2 in Algorithm 4.

Notice that if the function � is supposed to be continuous at the point z = 0, then we
have (IqDq� )(z) = � (z) – � (0) [22]. Moreover, the equality (DqIq� )(z) = � (z) holds
for each z. At this point, consider the real number σ ≥ 0 so that n – 1 < σ < n, i.e., n =
[σ ] + 1. The Riemann–Liouville quantum integral for the given function � ∈ CR([0, +∞))
is introduced by

RLIσ
q � (z) =

1
	q(σ )

∫ z

0
(z – qr)(σ–1)� (r) dqr, σ > 0,

whenever the existing integral has finite value and RLI0
q� (z) = � (z) [53, 54]. Further,

the semigroup property for this q-operator is valid, and so we have RLIσ1
q (RLIσ2

q � )(z) =
RLIσ1+σ2

q � (z) for σ1,σ2 ≥ 0 [55]. For θ ∈ (–1,∞), the following property is valid:

RLIσ
q zθ =

	q(θ + 1)
	q(θ + σ + 1)

zθ+σ , z > 0.
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Figure 1 The Riemann–Liouville quantum integral of � (z) = z2, z3 for q = 0.5, 0.7

It is evident that if we take θ = 0, then RLIσ
q 1(z) = 1

	q(σ+1) zσ for any z > 0. In the sequel,

the Caputo quantum derivative for the given function � ∈ C(n)
R

([0, +∞)) is provided by

C
D

σ
q � (z) =

1
	q(n – σ )

∫ z

0
(z – qr)(n–σ–1)

D
n
q� (r) dqr

whenever the integral is finite-valued [53, 54]. Notice that the following property is valid:

C
D

σ
q zθ =

	q(θ + 1)
	q(θ – σ + 1)

zθ–σ , z > 0.

It is evident that CDσ
q 1(z) = 0 for any z > 0. In Figs. 1 and 2, the dynamical behavior of

the Riemann–Liouville fractional quantum integral and the Caputo fractional quantum
derivative can be observed on two given functions � (z) = z2 and � (z) = z3 for q = 0.5 and
q = 0.7, respectively.
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Figure 2 The Caputo quantum derivative of � (z) = z2, z3 for q = 0.5, 0.7

Lemma 2.1 ([56]) Let n – 1 < σ < n. Then,

(RLIσ
q
C
D

σ
q �

)
(z) = � (z) –

n–1∑

k=0

zk

	q(k + 1)
(
D

k
q�

)
(0).

Due to the latter lemma, the general solution for the given fractional quantum differ-
ential equation CDσ

q � (z) = 0 is obtained by � (z) = α̃0 + α̃1z + α̃2z2 + · · · + α̃n–1zn–1 where
α̃0, . . . , α̃n–1 are arbitrary real numbers and n = [σ ] + 1 [56]. Note that for every continuous
function � , by Lemma 2.1, we have

(RLIσ
q
C
D

σ
q �

)
(z) = � (z) + α̃0 + α̃1z + α̃2z2 + · · · + α̃n–1zn–1,

where α̃0, . . . , α̃n–1 are constants which belong to R and n = [σ ] + 1 [56]. In what follows,
some required fixed point theorems related to the proposed boundary problem are re-
called.
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Theorem 2.2 (Krasnoselskii’s fixed point theorem, [57]) Let E be a closed, convex,
bounded, and nonempty subset of a Banach space W. Let A1 and A2 be two operators
mapping E into W so that the following statements are valid:

(i1) A1�1 + A2�2 ∈ E, where �1,�2 ∈ E;
(i2) A1 is a contraction;
(i3) A2 is a continuous and compact operator.

Then there is an element � ∗ ∈ E such that � ∗ = A1�
∗ + A2�

∗.

Theorem 2.3 (Nonlinear alternative for single-valued maps, [58]) Let W be a Banach
space, M a convex and closed subset of W, and O an open subset of M and 0 ∈O. Moreover,
let A : O →M be a continuous and compact operator (that is, A(O) is a relatively compact
subset of M). Then either

(ii1) A has a fixed point in O; or
(ii2) there exists an element � ∗ ∈ ∂O (as the boundary of the set O in M) and ĉ ∈ (0, 1)

with � ∗ = ĉA(� ∗).

Theorem 2.4 (Banach fixed point theorem, [59]) Let W be a Banach space. Assume that
E ⊂W is closed and A : E → E is a contraction. Then A is an operator having a fixed point
in E.

3 Main results
Let W = CR([0, 1]) be the space of all real-valued continuous functions on [0, 1]. One can
simply verify that the set W will be a Banach space if we define the sup norm ‖�‖W =
supz∈[0,1] |� (z)| for all members � ∈W. At this point, we first provide the following struc-
tural lemma which characterizes the construction of solutions for the equivalent quantum
integral equation related to the proposed quantum multi-integro-differential problem (1).

Lemma 3.1 Let �∗ ∈ W, σ ∈ (1, 2), δ∗
j ∈ (0, 1), θ∗

i > 0 for j = 1, 2 and i = 1, 2, 3. Also, let η∗,
μ∗ be nonzero real positive constants and consider the following nonzero positive constant:

̃∗ :=
μ∗

	q(θ∗
1 + 2)

+
μ∗ + 1

	q(θ∗
2 + 2)

+
μ∗ + 2

	q(θ∗
3 + 2)

�= 0. (7)

Then the function � ∗ is a solution to the nonlinear Caputo quantum fractional problem

⎧
⎪⎪⎨

⎪⎪⎩

(η∗CDσ
q – (η∗ + 1)RLIδ∗

1
q – (η∗ + 2)RLIδ∗

2
q )� (z) = �∗(z),

� (0) = 0,

μ∗RLIθ∗
1

q � (1) + (μ∗ + 1)RLIθ∗
2

q � (1) + (μ∗ + 2)RLIθ∗
3

q � (1) = 0

(8)

if and only if � ∗ is a solution to the fractional quantum integral equation

� (z) =
η∗ + 1

η∗
RLIδ∗

1 +σ
q � (z) +

η∗ + 2
η∗

RLIδ∗
2 +σ

q � (z) +
1
η∗

RLIσ
q �∗(z)

+
z

̃∗

[

–
μ∗(η∗ + 1)

η∗
RLIδ∗

1 +σ+θ∗
1

q � (1) –
μ∗(η∗ + 2)

η∗
RLIδ∗

2 +σ+θ∗
1

q � (1)

–
μ∗

η∗
RLIσ+θ∗

1
q �∗(1) –

(μ∗ + 1)(η∗ + 1)
η∗

RLIδ∗
1 +σ+θ∗

2
q � (1)
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–
(μ∗ + 1)(η∗ + 2)

η∗
RLIδ∗

2 +σ+θ∗
2

q � (1)

–
μ∗ + 1

η∗
RLIσ+θ∗

2
q �∗(1) –

(μ∗ + 2)(η∗ + 1)
η∗

RLIδ∗
1 +σ+θ∗

3
q � (1)

–
(μ∗ + 2)(η∗ + 2)

η∗
RLIδ∗

2 +σ+θ∗
3

q � (1) –
μ∗ + 2

η∗
RLIσ+θ∗

3
q �∗(1)

]

. (9)

Proof At first, we regard the given function � ∗ as a solution for the Caputo quantum
fractional problem (8). Then we get

C
D

σ
q � ∗(z) =

η∗ + 1
η∗

RLIδ∗
1

q � ∗(z) +
η∗ + 2

η∗
RLIδ∗

2
q � ∗(z) +

1
η∗ �∗(z).

Taking fractional quantum integral in the Riemann–Liouville sense of order σ on both
sides of the latter equation, we reach

� ∗(z) =
η∗ + 1

η∗
RLIδ∗

1 +σ
q � ∗(z) +

η∗ + 2
η∗

RLIδ∗
2 +σ

q � ∗(z) +
1
η∗

RLIσ
q �∗(z)

+ α̃0 + α̃1z, (10)

where α̃0, α̃1 ∈ R are some constants that we need to find. It is immediately deduced that
α̃0 = 0 by the first boundary condition and (10). On the other hand, by considering the
properties of the Riemann–Liouville quantum integral, we have

RLIυ
q � ∗(z) =

η∗ + 1
η∗

RLIδ∗
1 +σ+υ

q � ∗(z) +
η∗ + 2

η∗
RLIδ∗

2 +σ+υ
q � ∗(z)

+
1
η∗

RLIσ+υ
q �∗(z) + α̃0

zυ

	q(υ + 1)
+ α̃1

zυ+1

	q(υ + 2)

for υ ∈ {θ∗
1 , θ∗

2 , θ∗
3 }. Then the second boundary condition (8) implies

α̃1 =
1

̃∗

[

–
μ∗(η∗ + 1)

η∗
RLIδ∗

1 +σ+θ∗
1

q � ∗(1)

–
μ∗(η∗ + 2)

η∗
RLIδ∗

2 +σ+θ∗
1

q � ∗(1) –
μ∗

η∗
RLIσ+θ∗

1
q �∗(1)

–
(μ∗ + 1)(η∗ + 1)

η∗
RLIδ∗

1 +σ+θ∗
2

q � ∗(1) –
(μ∗ + 1)(η∗ + 2)

η∗
RLIδ∗

2 +σ+θ∗
2

q � ∗(1)

–
μ∗ + 1

η∗
RLIσ+θ∗

2
q �∗(1) –

(μ∗ + 2)(η∗ + 1)
η∗

RLIδ∗
1 +σ+θ∗

3
q � ∗(1)

–
(μ∗ + 2)(η∗ + 2)

η∗
RLIδ∗

2 +σ+θ∗
3

q � ∗(1) –
μ∗ + 2

η∗
RLIσ+θ∗

3
q �∗(1)

]

,

where ̃∗ �= 0 is provided by (7). Eventually, we substitute both obtained values of α̃0 and
α̃1 into (10). In this case, we observe that the function � ∗ satisfies the quantum integral
equation (9), and so � ∗ is a solution for the mentioned integral equation. In the opposite
direction, it is simple to confirm that � ∗ is a solution for the given nonlinear Caputo
quantum fractional boundary problem (8) whenever � ∗ is regarded as a solution for the
quantum integral equation (9). This completes the proof. �
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Notation 3.2 From here onwards, for the sake of convenience in writing and computa-
tion, we consider the compact notations ĥ∗(z,� (z)) = ĥ∗(z) and f̂∗(z,� (z)) = f̂∗(z).

In the light of Lemma 3.1 and in relation to the proposed nonlinear Caputo fractional
quantum multi-integro-differential equation (1), we construct an operator A : W →W as
follows:

(A� )(z) =
η∗ + 1

η∗
RLIδ∗

1 +σ
q � (z) +

η∗ + 2
η∗

RLIδ∗
2 +σ

q � (z)

+
λ∗

1
η∗

RLIγ ∗
1 +σ

q ĥ∗(z) +
λ∗

2
η∗

RLIγ ∗
2 +σ

q f̂∗(z)

+
z

̃∗

[

–
μ∗(η∗ + 1)

η∗
RLIδ∗

1 +σ+θ∗
1

q � (1) –
μ∗(η∗ + 2)

η∗
RLIδ∗

2 +σ+θ∗
1

q � (1)

–
λ∗

1μ
∗

η∗
RLIγ ∗

1 +σ+θ∗
1

q ĥ∗(1) –
λ∗

2μ
∗

η∗
RLIγ ∗

2 +σ+θ∗
1

q f̂∗(1)

–
(μ∗ + 1)(η∗ + 1)

η∗
RLIδ∗

1 +σ+θ∗
2

q � (1)

–
(μ∗ + 1)(η∗ + 2)

η∗
RLIδ∗

2 +σ+θ∗
2

q � (1) –
λ∗

1(μ∗ + 1)
η∗

RLIγ ∗
1 +σ+θ∗

2
q ĥ∗(1)

–
λ∗

2(μ∗ + 1)
η∗

RLIγ ∗
2 +σ+θ∗

2
q f̂∗(1) –

(μ∗ + 2)(η∗ + 1)
η∗

RLIδ∗
1 +σ+θ∗

3
q � (1)

–
(μ∗ + 2)(η∗ + 2)

η∗
RLIδ∗

2 +σ+θ∗
3

q � (1) –
λ∗

1(μ∗ + 2)
η∗

RLIγ ∗
1 +σ+θ∗

3
q ĥ∗(1)

–
λ∗

2(μ∗ + 2)
η∗

RLIγ ∗
2 +σ+θ∗

3
q f̂∗(1)

]

(11)

for each � ∈ W and z ∈ [0, 1]. Consider the following constants which we will utilize these
nonzero constants later:

�̃(1)
∗ :=

η∗ + 1
η∗	q(δ∗

1 + σ + 1)
+

η∗ + 2
η∗	q(δ∗

2 + σ + 1)
+

μ∗(η∗ + 1)
η∗̃∗	q(δ∗

1 + σ + θ∗
1 + 1)

+
μ∗(η∗ + 2)

η∗̃∗	q(δ∗
2 + σ + θ∗

1 + 1)
+

(μ∗ + 1)(η∗ + 1)
η∗̃∗	q(δ∗

1 + σ + θ∗
2 + 1)

+
(μ∗ + 1)(η∗ + 2)

η∗̃∗	q(δ∗
2 + σ + θ∗

2 + 1)

+
(μ∗ + 2)(η∗ + 1)

η∗̃∗	q(δ∗
1 + σ + θ∗

3 + 1)
+

(μ∗ + 2)(η∗ + 2)
η∗̃∗	q(δ∗

2 + σ + θ∗
3 + 1)

,

�̃(2)
∗ :=

λ∗
1

η∗	q(γ ∗
1 + σ + 1)

+
λ∗

1μ
∗

η∗̃∗	q(γ ∗
1 + σ + θ∗

1 + 1)

+
λ∗

1(μ∗ + 1)
η∗̃∗	q(γ ∗

1 + σ + θ∗
2 + 1)

+
λ∗

1(μ∗ + 2)
η∗̃∗	q(γ ∗

1 + σ + θ∗
3 + 1)

,

�̃(3)
∗ :=

λ∗
2

η∗	q(γ ∗
2 + σ + 1)

+
λ∗

2μ
∗

η∗̃∗	q(γ ∗
2 + σ + θ∗

1 + 1)

+
λ∗

2(μ∗ + 1)
η∗̃∗	q(γ ∗

2 + σ + θ∗
2 + 1)

+
λ∗

2(μ∗ + 2)
η∗̃∗	q(γ ∗

2 + σ + θ∗
3 + 1)

.

(12)
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Now we are in the position to derive required existence criteria for the given nonlinear
Caputo fractional quantum multi-integro-differential problem (1). To begin this process,
we first invoke the well-known Krasnoselskii’s fixed point theorem.

Theorem 3.3 Assume that two single-valued operators ĥ∗ : [0, 1] × W → W and f̂∗ :
[0, 1] ×W →W are continuous and also satisfy the following hypotheses:

(HK1) there exists a constant b̂∗ > 0 such that for each �1,�2 ∈ W and for any z ∈ [0, 1],
the inequality |ĥ∗(z,�1) – ĥ∗(z,�2)| ≤ b̂∗|�1 – �2| holds;

(HK2) there is a continuous function ϒ on [0, 1] such that the inequality
|f̂∗(z,� )| ≤ ϒ(z) is valid for any z ∈ [0, 1] and for every � ∈ W.

Then the given nonlinear Caputo fractional quantum multi-integro-differential problem
(1) has at least one solution on [0, 1] whenever �̃

(1)∗ + b̂∗�̃(2)∗ < 1, where �̃
(1)∗ and �̃

(2)∗ are
introduced by (12).

Proof We take ‖ϒ‖ = supz∈[0,1] |ϒ(z)| and construct Br̃ := {� ∈W : ‖�‖ ≤ r̃} with

r̃ ≥ ‖ϒ‖�̃(3)∗ + Ĥ∗�̃(2)∗
1 – (�̃(1)∗ + b̂∗�̃(2)∗ )

,

where Ĥ∗ := supz∈[0,1] |ĥ∗(z, 0)| and �̃
(1)∗ , �̃(2)∗ , and �̃

(3)∗ are introduced by (12). As we know,
the so-defined ball Br̃ is a bounded, convex, closed, and nonempty subset of the Banach
space W. In addition, we consider an operator A : W → W as in (11). In the light of
Lemma 3.1, it is natural that the fixed point of A is considered as a solution for the nonlin-
ear Caputo fractional quantum multi-integro-differential problem (1). To begin the proof,
for any z ∈ [0, 1], we construct two operators A1 and A2 from Br̃ to W as follows:

A1� (z) =
η∗ + 1

η∗
RLIδ∗

1 +σ
q � (z) +

η∗ + 2
η∗

RLIδ∗
2 +σ

q � (z) +
λ∗

1
η∗

RLIγ ∗
1 +σ

q ĥ∗(z)

+
z

̃∗

[

–
μ∗(η∗ + 1)

η∗
RLIδ∗

1 +σ+θ∗
1

q � (1) –
μ∗(η∗ + 2)

η∗
RLIδ∗

2 +σ+θ∗
1

q � (1)

–
λ∗

1μ
∗

η∗
RLIγ ∗

1 +σ+θ∗
1

q ĥ∗(1) –
(μ∗ + 1)(η∗ + 1)

η∗
RLIδ∗

1 +σ+θ∗
2

q � (1)

–
(μ∗ + 1)(η∗ + 2)

η∗
RLIδ∗

2 +σ+θ∗
2

q � (1) –
λ∗

1(μ∗ + 1)
η∗

RLIγ ∗
1 +σ+θ∗

2
q ĥ∗(1)

–
(μ∗ + 2)(η∗ + 1)

η∗
RLIδ∗

1 +σ+θ∗
3

q � (1) –
(μ∗ + 2)(η∗ + 2)

η∗
RLIδ∗

2 +σ+θ∗
3

q � (1)

–
λ∗

1(μ∗ + 2)
η∗

RLIγ ∗
1 +σ+θ∗

3
q ĥ∗(1)

]

and

A2� (z) =
λ∗

2
η∗

RLIγ ∗
2 +σ

q f̂∗(z) +
z

̃∗

[

–
λ∗

2μ
∗

η∗
RLIγ ∗

2 +σ+θ∗
1

q f̂∗(1)

–
λ∗

2(μ∗ + 1)
η∗

RLIγ ∗
2 +σ+θ∗

2
q f̂∗(1) –

λ∗
2(μ∗ + 2)

η∗
RLIγ ∗

2 +σ+θ∗
3

q f̂∗(1)
]

.
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At first, due to hypothesis (HK1), we know that for any z ∈ [0, 1],

∣
∣ĥ∗(z)

∣
∣ =

∣
∣ĥ∗

(
z,� (z)

)∣
∣ ≤ (∣

∣ĥ∗
(
z,� (z)

)
– ĥ∗(z, 0)

∣
∣ +

∣
∣ĥ∗(z, 0)

∣
∣
) ≤ b̂∗∣∣� (z)

∣
∣ + Ĥ∗.

Also, hypothesis (HK2) implies that |f̂∗(z)| = |f̂∗(z,� )| ≤ ϒ(z) for z ∈ [0, 1]. Then for any
elements �1,�2 ∈ Br̃ , one can write

∣
∣A1�1(z) + A2�2(z)

∣
∣

≤ η∗ + 1
η∗

RLIδ∗
1 +σ

q ‖�1‖ +
η∗ + 2

η∗
RLIδ∗

2 +σ
q ‖�1‖ +

λ∗
1

η∗
RLIγ ∗

1 +σ
q

(
b̂∗‖�1‖ + Ĥ∗

)

+
1

̃∗

[
μ∗(η∗ + 1)

η∗
RLIδ∗

1 +σ+θ∗
1

q ‖�1‖ +
μ∗(η∗ + 2)

η∗
RLIδ∗

2 +σ+θ∗
1

q ‖�1‖

+
λ∗

1μ
∗

η∗
RLIγ ∗

1 +σ+θ∗
1

q
(
b̂∗‖�1‖ + Ĥ∗

)

+
(μ∗ + 1)(η∗ + 1)

η∗
RLIδ∗

1 +σ+θ∗
2

q ‖�1‖

+
(μ∗ + 1)(η∗ + 2)

η∗
RLIδ∗

2 +σ+θ∗
2

q ‖�1‖

+
λ∗

1(μ∗ + 1)
η∗

RLIγ ∗
1 +σ+θ∗

2
q

(
b̂∗‖�1‖ + Ĥ∗

)

+
(μ∗ + 2)(η∗ + 1)

η∗
RLIδ∗

1 +σ+θ∗
3

q ‖�1‖ +
(μ∗ + 2)(η∗ + 2)

η∗
RLIδ∗

2 +σ+θ∗
3

q ‖�1‖

+
λ∗

1(μ∗ + 2)
η∗

RLIγ ∗
1 +σ+θ∗

3
q

(
b̂∗‖�1‖ + Ĥ∗

)
]

+
λ∗

2
η∗

RLIγ ∗
2 +σ

q ‖ϒ‖ +
1

̃∗

[
λ∗

2μ
∗

η∗
RLIγ ∗

2 +σ+θ∗
1

q ‖ϒ‖

+
λ∗

2(μ∗ + 1)
η∗

RLIγ ∗
2 +σ+θ∗

2
q ‖ϒ‖ +

λ∗
2(μ∗ + 2)

η∗
RLIγ ∗

2 +σ+θ∗
3

q ‖ϒ‖
]

=
(
�̃(1)

∗ + b̂∗�̃(2)
∗

)‖�1‖ + �̃(3)
∗ ‖ϒ‖ + �̃(2)

∗ Ĥ∗

≤ (
�̃(1)

∗ + b̂∗�̃(2)
∗

)
r̃ + �̃(3)

∗ ‖ϒ‖ + �̃(2)
∗ Ĥ∗ ≤ r̃.

The latter inequality demonstrates that ‖A1�1 + A2�2‖ ≤ r̃ and thus A1�1 + A2�2 ∈ Br̃

for each �1,�2 ∈ Br̃ . This also means that condition (i1) of Theorem 2.2 holds for both
operators A1 and A2. At this point, we proceed to verify that A1 is a contraction. For
arbitrary elements �1,�2 ∈ Br̃ and z ∈ [0, 1], and in view of hypothesis (HK1), we have

∣
∣A1�1(z) – A1�2(z)

∣
∣

≤ η∗ + 1
η∗

RLIδ∗
1 +σ

q
∣
∣�1(z) – �2(z)

∣
∣

+
η∗ + 2

η∗
RLIδ∗

2 +σ
q

∣
∣�1(z) – �2(z)

∣
∣ +

λ∗
1

η∗
RLIγ ∗

1 +σ
q b̂∗∣∣�1(z) – �2(z)

∣
∣

+
1

̃∗

[
μ∗(η∗ + 1)

η∗
RLIδ∗

1 +σ+θ∗
1

q
∣
∣�1(z) – �2(z)

∣
∣ +

μ∗(η∗ + 2)
η∗

RLIδ∗
2 +σ+θ∗

1
q
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×∣
∣�1(z) – �2(z)

∣
∣

+
λ∗

1μ
∗

η∗
RLIγ ∗

1 +σ+θ∗
1

q b̂∗∣∣�1(z) – �2(z)
∣
∣ +

(μ∗ + 1)(η∗ + 1)
η∗

RLIδ∗
1 +σ+θ∗

2
q

×∣
∣�1(z) – �2(z)

∣
∣

+
(μ∗ + 1)(η∗ + 2)

η∗
RLIδ∗

2 +σ+θ∗
2

q
∣
∣�1(z) – �2(z)

∣
∣

+
λ∗

1(μ∗ + 1)
η∗

RLIγ ∗
1 +σ+θ∗

2
q b̂∗∣∣�1(z) – �2(z)

∣
∣

+
(μ∗ + 2)(η∗ + 1)

η∗
RLIδ∗

1 +σ+θ∗
3

q
∣
∣�1(z) – �2(z)

∣
∣

+
(μ∗ + 2)(η∗ + 2)

η∗
RLIδ∗

2 +σ+θ∗
3

q
∣
∣�1(z) – �2(z)

∣
∣

+
λ∗

1(μ∗ + 2)
η∗

RLIγ ∗
1 +σ+θ∗

3
q b̂∗∣∣�1(z) – �2(z)

∣
∣

]

=
(
�̃(1)

∗ + b̂∗�̃(2)
∗

)‖�1 – �2‖.

In the light of the given hypothesis, we know that �̃
(1)∗ + b̂∗�̃(2)∗ < 1. Thus we conclude that

A1 is a contraction and so condition (i2) of Theorem 2.2 is valid for the operator A1.
In the sequel, we intend to verify the continuity of A2. To reach this goal, let us assume

that {�n}n≥1 is a convergent sequence belonging to the given ball Br̃ such that �n ap-
proaches � . Then for any z ∈ [0, 1], we obtain

∣
∣A2�n(z) – A2� (z)

∣
∣ ≤ λ∗

2
η∗	q(γ ∗

2 + σ + 1)
∣
∣f̂∗

(
z,�n(z)

)
– f̂∗

(
z,� (z)

)∣
∣

+
λ∗

2μ
∗

η∗̃∗	q(γ ∗
2 + σ + θ∗

1 + 1)

∣
∣f̂∗

(
z,�n(z)

)
– f̂∗

(
z,� (z)

)∣
∣

+
λ∗

2(μ∗ + 1)
η∗̃∗	q(γ ∗

2 + σ + θ∗
2 + 1)

∣
∣f̂∗

(
z,�n(z)

)
– f̂∗

(
z,� (z)

)∣
∣

+
λ∗

2(μ∗ + 2)
η∗̃∗	q(γ ∗

2 + σ + θ∗
3 + 1)

∣
∣f̂∗

(
z,�n(z)

)
– f̂∗

(
z,� (z)

)∣
∣.

But by the hypothesis, we know that the function f̂∗ is continuous on [0, 1] ×W, thus we
find that ‖A2�n – A2�‖ approaches zero whenever �n → � . Therefore, we conclude
that A2 is a continuous operator defined on Br̃ . In the subsequent stage, we claim that the
operator A2 is compact. To confirm this claim, we first check the uniform boundedness
of A2. For given member � ∈ Br̃ and z ∈ [0, 1], we may write

∣
∣A2� (z)

∣
∣ ≤ λ∗

2
η∗

RLIγ ∗
2 +σ

q
∣
∣f̂∗(z)

∣
∣ +

z
̃∗

[
λ∗

2μ
∗

η∗
RLIγ ∗

2 +σ+θ∗
1

q
∣
∣f̂∗(1)

∣
∣

+
λ∗

2(μ∗ + 1)
η∗

RLIγ ∗
2 +σ+θ∗

2
q

∣
∣f̂∗(1)

∣
∣ +

λ∗
2(μ∗ + 2)

η∗
RLIγ ∗

2 +σ+θ∗
3

q
∣
∣f̂∗(1)

∣
∣

]

≤ ‖ϒ‖
[

λ∗
2

η∗	q(γ ∗
2 + σ + 1)

+
λ∗

2μ
∗

η∗̃∗	q(γ ∗
2 + σ + θ∗

1 + 1)
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+
λ∗

2(μ∗ + 1)
η∗̃∗	q(γ ∗

2 + σ + θ∗
2 + 1)

+
λ∗

2(μ∗ + 2)
η∗̃∗	q(γ ∗

2 + σ + θ∗
3 + 1)

]

= �̃(3)
∗ ‖ϒ‖,

which illustrates that ‖A2�‖ ≤ �̃
(3)∗ ‖ϒ‖ and A2 is uniformly bounded. Besides, we es-

tablish that A2 is an equicontinuous operator. To establish this result, we consider two
elements z, x ∈ [0, 1] such that z < x. In fact, we shall verify that bounded sets are mapped
to equicontinuous sets by the operator A2. Hence for every � ∈ Br̃ , we get

∣
∣A2� (x) – A2� (z)

∣
∣

≤ λ∗
2

η∗	q(γ ∗
2 + σ )

∫ z

0

[
(x – qr)(γ ∗

2 +σ–1) – (z – qr)(γ ∗
2 +σ–1)]∣∣f̂∗

(
r,� (r)

)∣
∣dqr

+
λ∗

2
η∗	q(γ ∗

2 + σ )

∫ x

z
(x – qr)(γ ∗

2 +σ–1)∣∣f̂∗
(
r,� (r)

)∣
∣dqr

+
(x – z)

̃∗

[
λ∗

2μ
∗

η∗	q(γ ∗
2 + σ + θ∗

1 )

∫ 1

0
(1 – qr)(γ ∗

2 +σ+θ∗
1 –1)∣∣f̂∗

(
r,� (r)

)∣
∣dqr

+
λ∗

2(μ∗ + 1)
η∗	q(γ ∗

2 + σ + θ∗
2 )

∫ 1

0
(1 – qr)(γ ∗

2 +σ+θ∗
2 –1)∣∣f̂∗

(
r,� (r)

)∣
∣dqr

+
λ∗

2(μ∗ + 2)
η∗	q(γ ∗

2 + σ + θ∗
3 )

∫ 1

0
(1 – qr)(γ ∗

2 +σ+θ∗
3 –1)∣∣f̂∗

(
r,� (r)

)∣
∣dqr

]

.

We find that the right-hand side of the obtained inequality is not dependent on � ∈ Br̃ and
also approaches 0 when z tends to x. In consequence, we realize that A2 is equicontinuous.
Hence, it is concluded that A2 is a relatively compact operator on � ∈ Br̃ and thus the
Arzelá–Ascoli theorem implies that A2 is completely continuous, and eventually A2 is a
compact operator on the given ball � ∈ Br̃ . Therefore condition (i3) of Theorem 2.2 is
valid for the operator A2. In consequence, all three hypotheses of Theorem 2.2 are valid
for both single-valued operators A1 and A2. Therefore Theorem 2.2 implies that the given
nonlinear Caputo fractional quantum multi-integro-differential problem (1) has at least
one solution on the interval [0, 1], and so this completes the proof. �

Leray–Schauder nonlinear alternative theorem is another analytical tool by which we
will be able to derive our desired existence criteria for the mentioned nonlinear Caputo
fractional quantum multi-integro-differential problem (1).

Theorem 3.4 Let the functions ĥ∗ : [0, 1]×W→W and f̂∗ : [0, 1]×W→ W be continuous
and satisfy the following assumptions:

(HK3) there exist two functions �1,�2 ∈ CR+ ([0, 1]) along with two continuous
nondecreasing functions �1,�2 : [0,∞) → (0,∞) such that for any
(z,� ) ∈ [0, 1] ×W, we have

∣
∣ĥ∗(z,� )

∣
∣ ≤ �1(z)�1

(|� |) and
∣
∣f̂∗(z,� )

∣
∣ ≤ �2(z)�2

(|� |);
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(HK4) there exists a real constant N > 0 such that �̃
(1)∗ < 1 and

(1 – �̃
(1)∗ )N

�̃
(2)∗ ‖�1‖�1(N) + �̃

(3)∗ ‖�2‖�2(N)
> 1,

where �̃
(1)∗ , �̃(2)∗ , and �̃

(3)∗ are given by (12).
Then the nonlinear Caputo fractional quantum multi-integro-differential problem (1) has
at least one solution on [0, 1].

Proof To reach the desired conclusion, we check all the hypotheses of Leray–Schauder
nonlinear alternative (Theorem 2.3) in the subsequent steps. At first, we are going to show
that the operator A defined by (11) maps bounded sets (i.e., balls) into bounded sets in W.
For a positive real number R̃, construct a bounded ball BR̃ = {� ∈ W : ‖�‖ ≤ R̃} in W.
Then for any z ∈ [0, 1] and in view of hypothesis (HK3), we can write

∣
∣A� (z)

∣
∣

≤ η∗ + 1
η∗

RLIδ∗
1 +σ

q ‖�‖ +
η∗ + 2

η∗
RLIδ∗

2 +σ
q ‖�‖ +

λ∗
1

η∗
RLIγ ∗

1 +σ
q

(‖�1‖�1
(‖�‖))

+
1

̃∗

[
μ∗(η∗ + 1)

η∗
RLIδ∗

1 +σ+θ∗
1

q ‖�‖ +
μ∗(η∗ + 2)

η∗
RLIδ∗

2 +σ+θ∗
1

q ‖�‖

+
λ∗

1μ
∗

η∗
RLIγ ∗

1 +σ+θ∗
1

q
(‖�1‖�1

(‖�‖)) +
(μ∗ + 1)(η∗ + 1)

η∗
RLIδ∗

1 +σ+θ∗
2

q ‖�‖

+
(μ∗ + 1)(η∗ + 2)

η∗
RLIδ∗

2 +σ+θ∗
2

q ‖�‖

+
λ∗

1(μ∗ + 1)
η∗

RLIγ ∗
1 +σ+θ∗

2
q

(‖�1‖�1
(‖�‖))

+
(μ∗ + 2)(η∗ + 1)

η∗
RLIδ∗

1 +σ+θ∗
3

q ‖�‖ +
(μ∗ + 2)(η∗ + 2)

η∗
RLIδ∗

2 +σ+θ∗
3

q ‖�‖

+
λ∗

1(μ∗ + 2)
η∗

RLIγ ∗
1 +σ+θ∗

3
q

(‖�1‖�1
(‖�‖))

]

+
λ∗

2
η∗

RLIγ ∗
2 +σ

q
(‖�2‖�2

(‖�‖)) +
1

̃∗

[
λ∗

2μ
∗

η∗
RLIγ ∗

2 +σ+θ∗
1

q (‖�2‖�2
(‖�‖)

+
λ∗

2(μ∗ + 1)
η∗

RLIγ ∗
2 +σ+θ∗

2
q (‖�2‖�2

(‖�‖)

+
λ∗

2(μ∗ + 2)
η∗

RLIγ ∗
2 +σ+θ∗

3
q (‖�2‖�2

(‖�‖)
]

= �̃(1)
∗ ‖�‖ + �̃(2)

∗ ‖�1‖�1
(‖�‖) + �̃(3)

∗ ‖�2‖�2
(‖�‖).

Hence, the above inequality yields

‖A�‖ ≤ �̃(1)
∗ R̃ + �̃(2)

∗ ‖�1‖�1(R̃) + �̃(3)
∗ ‖�2‖�2(R̃).

This indicates that the operator A is uniformly bounded. In the second stage, we proceed
to verify that A maps bounded sets (i.e., balls) into equicontinuous subsets of W. To see
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this, take z, x ∈ [0, 1] with z < x and � ∈ BR̃. In this case, we get

∣
∣A� (x) – A� (z)

∣
∣

≤ (η∗ + 1)R̃
η∗	q(δ∗

1 + σ )

×
(∫ z

0

[
(x – qr)(δ∗

1 +σ–1) – (z – qr)(δ∗
1 +σ–1)]dqr +

∫ x

z
(x – qr)(δ∗

1 +σ–1) dqr
)

+
(η∗ + 2)R̃

η∗	q(δ∗
2 + σ )

×
(∫ z

0

[
(x – qr)(δ∗

2 +σ–1) – (z – qr)(δ∗
2 +σ–1)]dqr +

∫ x

z
(x – qr)(δ∗

2 +σ–1) dqr
)

+
λ∗

1‖�1‖�1(R̃)
η∗	q(γ ∗

1 + σ )

×
(∫ z

0

[
(x – qr)(γ ∗

1 +σ–1) – (z – qr)(γ ∗
1 +σ–1)]dqr +

∫ x

z
(x – qr)(γ ∗

1 +σ–1) dqr
)

+
(x – z)

̃∗

[
μ∗(η∗ + 1)

η∗
RLIδ∗

1 +σ+θ∗
1

q
∥
∥� (1)

∥
∥ +

μ∗(η∗ + 2)
η∗

RLIδ∗
2 +σ+θ∗

1
q

∥
∥� (1)

∥
∥

+
λ∗

1μ
∗

η∗
RLIγ ∗

1 +σ+θ∗
1

q
∥
∥ĥ∗(1)

∥
∥ +

(μ∗ + 1)(η∗ + 1)
η∗

RLIδ∗
1 +σ+θ∗

2
q

∥
∥� (1)

∥
∥

+
(μ∗ + 1)(η∗ + 2)

η∗
RLIδ∗

2 +σ+θ∗
2

q
∥
∥� (1)

∥
∥ +

λ∗
1(μ∗ + 1)

η∗
RLIγ ∗

1 +σ+θ∗
2

q
∥
∥ĥ∗(1)

∥
∥

+
(μ∗ + 2)(η∗ + 1)

η∗
RLIδ∗

1 +σ+θ∗
3

q
∥
∥� (1)

∥
∥ +

(μ∗ + 2)(η∗ + 2)
η∗

RLIδ∗
2 +σ+θ∗

3
q

∥
∥� (1)

∥
∥

+
λ∗

1(μ∗ + 2)
η∗

RLIγ ∗
1 +σ+θ∗

3
q

∥
∥ĥ∗(1)

∥
∥

]

+
λ∗

2‖�2‖�2(R̃)
η∗	q(γ ∗

2 + σ )

×
(∫ z

0

[
(x – qr)(γ ∗

2 +σ–1) – (z – qr)(γ ∗
2 +σ–1)]dqr +

∫ x

z
(x – qr)(γ ∗

2 +σ–1) dqr
)

+
(x – z)‖�2‖�2(r̃)

̃∗

[
λ∗

2μ
∗

η∗	q(γ ∗
2 + σ + θ∗

1 )

∫ 1

0
(1 – qr)(γ ∗

2 +σ+θ∗
1 –1) dqr

+
λ∗

2(μ∗ + 1)
η∗	q(γ ∗

2 + σ + θ∗
2 )

∫ 1

0
(1 – qr)(γ ∗

2 +σ+θ∗
2 –1) dqr

+
λ∗

2(μ∗ + 2)
η∗	q(γ ∗

2 + σ + θ∗
3 )

∫ 1

0
(1 – qr)(γ ∗

2 +σ+θ∗
3 –1) dqr

]

.

We find that the right-hand side of the obtained inequality is not dependent on � ∈ BR̃
and also approaches 0 when z tends to x. In consequence, A is equicontinuous, and hence
we have confirmed the complete continuity of A : W →W by the Arzelá–Ascoli theorem.
Consequently, A is a compact operator.

Eventually, in order to finish checking all the assumptions of the Leray–Schauder non-
linear alternative (Theorem 2.3), it will be verified that the set of all obtained solutions
of an operator equation � = ĉ(A� ) is bounded for ĉ ∈ [0, 1]. For this purpose, assume



Phuong et al. Advances in Difference Equations        (2020) 2020:633 Page 17 of 23

that � ∗ is a solution of equation � ∗ = ĉA� ∗ for ĉ ∈ [0, 1]. Then by utilizing the strategy
applied in the first stage, for any z ∈ [0, 1], we have

∥
∥� ∗∥∥ ≤ �̃(1)

∗
∥
∥� ∗∥∥ + �̃(2)

∗ ‖�1‖�1
(∥
∥� ∗∥∥)

+ �̃(3)
∗ ‖�2‖�2

(∥
∥� ∗∥∥)

.

In this case, we get

(1 – �̃
(1)∗ )‖� ∗‖

�̃
(2)∗ ‖�1‖�1(‖� ∗‖) + �̃

(3)∗ ‖�2‖�2(‖� ∗‖)
≤ 1.

In the light of hypothesis (HK4), we can find a real number N > 0 so that ‖� ∗‖ �= N. Now,
we construct a set

O =
{
� ∗ ∈ W :

∥
∥� ∗∥∥ < N

}
.

We simply see that A : O → W is an operator which is continuous and completely con-
tinuous. In view of this choice of O, we cannot find � ∗ ∈ ∂O which satisfies an equation
� ∗ = ĉ(A� ∗) for some ĉ ∈ (0, 1). Finally, by the nonlinear alternative of Leray–Schauder
type, we realize that the operator A has a fixed point belonging to O. In consequence,
there is at least one solution on [0, 1] for the nonlinear Caputo fractional quantum multi-
integro-differential problem (1). �

In the following part of the present section, the uniqueness criterion for solutions of
the given nonlinear Caputo fractional quantum multi-integro-differential problem (1) is
checked with the aid of Banach contraction principle (Theorem 2.4).

Theorem 3.5 Suppose that ĥ∗ : [0, 1] × W → W is a function which satisfies hypothesis
(HK1). Moreover, let the following assumption be valid for the function f̂∗ : [0, 1]×W→ W:

(HK5) there is a real constant K > 0 so that for any �1,�2 ∈W, we have

∣
∣f̂∗(z,�1) – f̂∗(z,�2)

∣
∣ ≤ K|�1 – �2|, z ∈ [0, 1].

Then there exists a unique solution on [0, 1] for the nonlinear Caputo fractional quantum
multi-integro-differential problem (1) such that �̃

(1)∗ + b̂∗�̃(2)∗ + K�̃
(3)∗ < 1, where �̃

(1)∗ , �̃
(2)∗ ,

and �̃
(3)∗ are given by (12).

Proof By utilizing Theorem 2.4, we shall verify that A : W → W defined by (11) is an
operator having a unique fixed point which corresponds to a unique solution of the men-
tioned nonlinear Caputo fractional quantum multi-integro-differential problem (1). By
taking supz∈[0,1] |ĥ∗(z, 0)| = Ĥ∗ < ∞, supz∈[0,1] |f̂∗(z, 0)| = F̂∗ < ∞, choosing ε̃ > 0 so that

ε̃ ≥ F̂∗�̃(3)∗ + Ĥ∗�̃(2)∗
1 – (�̃(1)∗ + b̂∗�̃(2)∗ + K�̃

(3)∗ )
,

and by constructing a bounded ball Bε̃ = {� ∈W : ‖�‖ ≤ ε̃}, we claim that ABε̃ ⊂ Bε̃ . For
an arbitrary element � ∈ Bε̃ and due to hypotheses (HK1) and (HK5), we get

‖A�‖ ≤ η∗ + 1
η∗

RLIδ∗
1 +σ

q ‖�‖
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+
η∗ + 2

η∗
RLIδ∗

2 +σ
q ‖�‖ +

λ∗
1

η∗
RLIγ ∗

1 +σ
q

(
b̂∗‖�‖ + Ĥ∗

)

+
1

̃∗

[
μ∗(η∗ + 1)

η∗
RLIδ∗

1 +σ+θ∗
1

q ‖�‖ +
μ∗(η∗ + 2)

η∗
RLIδ∗

2 +σ+θ∗
1

q ‖�‖

+
λ∗

1μ
∗

η∗
RLIγ ∗

1 +σ+θ∗
1

q
(
b̂∗‖�‖ + Ĥ∗

)
+

(μ∗ + 1)(η∗ + 1)
η∗

RLIδ∗
1 +σ+θ∗

2
q ‖�‖

+
(μ∗ + 1)(η∗ + 2)

η∗
RLIδ∗

2 +σ+θ∗
2

q ‖�‖ +
λ∗

1(μ∗ + 1)
η∗

RLIγ ∗
1 +σ+θ∗

2
q

(
b̂∗‖�‖ + Ĥ∗

)

+
(μ∗ + 2)(η∗ + 1)

η∗
RLIδ∗

1 +σ+θ∗
3

q ‖�‖ +
(μ∗ + 2)(η∗ + 2)

η∗
RLIδ∗

2 +σ+θ∗
3

q ‖�‖

+
λ∗

1(μ∗ + 2)
η∗

RLIγ ∗
1 +σ+θ∗

3
q

(
b̂∗‖�‖ + Ĥ∗

)
]

+
λ∗

2
η∗

RLIγ ∗
2 +σ

q
(
K‖�‖ + F̂∗

)
+

1
̃∗

[
λ∗

2μ
∗

η∗
RLIγ ∗

2 +σ+θ∗
1

q
(
K‖�‖ + F̂∗

)

+
λ∗

2(μ∗ + 1)
η∗

RLIγ ∗
2 +σ+θ∗

2
q

(
K‖�‖ + F̂∗

)

+
λ∗

2(μ∗ + 2)
η∗

RLIγ ∗
2 +σ+θ∗

3
q

(
K‖�‖ + F̂∗

)
]

≤ (
�̃(1)

∗ + b̂∗�̃(2)
∗ + K�̃(3)

∗
)
ε̃ + �̃(3)

∗ F̂∗ + �̃(2)
∗ Ĥ∗ < ε̃.

In view of the above result, it is seen that the claim is valid, and so we have ABε̃ ⊂ Bε̃ . To
confirm that the operator A : W → W given by (11) is a contraction, let us assume that
z ∈ [0, 1] and �1,�2 ∈ W are arbitrary. Now, by some straightforward computations, we
can simply observe that

∥
∥(A�1) – (A�2)

∥
∥ ≤ (

�̃(1)
∗ + b̂∗�̃(2)

∗ + K�̃(3)
∗

)‖�1 – �2‖.

By invoking the hypothesis �̃
(1)∗ + b̂∗�̃(2)∗ + K�̃

(3)∗ < 1, we conclude that A is a contraction.
Therefore, as a conclusion of Theorem 2.4, A has a unique fixed point. In consequence,
there exists a unique solution for the nonlinear Caputo fractional quantum multi-integro-
differential problem (1), and this ends the argument. �

4 Examples
In the current section of this manuscript, three illustrative numerical examples are con-
sidered to examine our theoretical and analytical findings by using the proposed methods.

Example 4.1 (Illustration of Theorem 3.3) With due attention to the defined structure
for the proposed quantum multi-integro-differential problem (1), we here design the fol-
lowing multi-order Caputo fractional quantum multi-integro-differential boundary value
problem:

⎧
⎪⎪⎨

⎪⎪⎩

[0.1CD1.46
0.5 – 1.1RLI0.72

0.5 – 2.1RLI0.56
0.5 ]� (z) = 0.002RLI0.12

0.5
0.008| arctan� (z)|
| arctan� (z)|+1

+ 0.003RLI0.18
0.5

cos� (z)
(4+z)2 ,

� (0) = 0, 0.001RLI0.27
0.5 � (1) + 1.001RLI0.16

0.5 � (1) + 2.001RLI0.31
0.5 � (1) = 0.

(13)
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Here, we consider some constants as follows: z = [0, 1], η∗ = 0.1, μ∗ = 0.001, λ∗
1 = 0.002,

λ∗
2 = 0.003, σ = 1.46, q = 0.5, δ∗

1 = 0.72, δ∗
2 = 0.56, γ ∗

1 = 0.12, γ ∗
2 = 0.18, θ∗

1 = 0.27, θ∗
2 = 0.16,

and θ∗
3 = 0.31. Further, two continuous functions ĥ∗, f̂∗ : [0, 1] ×R →R are formulated by

follows:

ĥ∗
(
z,� (z)

)
=

0.008| arctan� (z)|
| arctan� (z)| + 1

, f̂∗
(
z,� (z)

)
=

cos� (z)
(4 + z)2 .

Notice that for each �1,�2 ∈R, we get

∣
∣ĥ∗(z,�1) – ĥ∗(z,�2)

∣
∣ ≤

∣
∣
∣
∣
0.008| arctan�1(z)|
| arctan�1(z)| + 1

–
0.008| arctan�2(z)|
| arctan�2(z)| + 1

∣
∣
∣
∣

≤ 8
1000

∣
∣arctan�1(z) – arctan�2(z)

∣
∣

≤ 8
1000

∣
∣�1(z) – �2(z)

∣
∣.

Thus we get |ĥ∗(z,�1) – ĥ∗(z,�2)| ≤ 0.008|�1(z) – �2(z)| so that b̂∗ = 0.008 > 0. Fur-
thermore, there is a continuous function ϒ(z) = 1

(4+z)2 on the interval [0, 1] so that an
inequality |f̂∗(z,� (z))| ≤ | cos� (z)

(4+z)2 | ≤ ϒ(z) holds for any � ∈ R. In this case, we have
‖ϒ‖ = supz∈[0,1] ϒ(z) = 0.0625. By utilizing the above-given values, it is immediately ob-
tained that ̃∗ = 0.0538, �̃

(1)∗ = 0.095734, �̃
(2)∗ = 0.000000292, and �̃

(3)∗ = 0.00000042.
Hence we reach required value �̃

(1)∗ + b̂∗�̃(2)∗ = 0.0957340023 < 1. It is observed that all
the hypotheses of Theorem 3.3 are valid for this problem. In consequence, the conclusion
of Theorem 3.3 yields that the nonlinear multi-order Caputo fractional quantum multi-
integro-differential boundary problem (13) has at least one solution on [0, 1].

Example 4.2 (Illustration of Theorem 3.4) With due attention to the defined structure
for the proposed quantum multi-integro-differential problem (1), we here consider the
following nonlinear multi-order Caputo fractional quantum multi-integro-differential
boundary value problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[0.1CD1.46
0.5 – 1.1RLI0.72

0.5 – 2.1RLI0.56
0.5 ]� (z)

= 0.002RLI0.12
0.5

1√
64+z3

× (cos� (z) + | sin� (z)|
1+| sin� (z)| ) + 0.003RLI0.18

0.5
1

z+5 ( 1
4 + | arcsin� (z)|

1+| arcsin� (z)| ),

� (0) = 0, 0.001RLI0.27
0.5 � (1) + 1.001RLI0.16

0.5 � (1) + 2.001RLI0.31
0.5 � (1) = 0,

(14)

such that z = [0, 1], η∗ = 0.1, μ∗ = 0.001, λ∗
1 = 0.002, λ∗

2 = 0.003, σ = 1.46, q = 0.5, δ∗
1 = 0.72,

δ∗
2 = 0.56, γ ∗

1 = 0.12, γ ∗
2 = 0.18, θ∗

1 = 0.27, θ∗
2 = 0.16, and θ∗

3 = 0.31. Moreover, the functions
ĥ∗, f̂∗ : [0, 1] ×R →R defined by

ĥ∗
(
z,� (z)

)
=

1√
64 + z3

(

cos� (z) +
| sin� (z)|

1 + | sin� (z)|
)

and

f̂∗
(
z,� (z)

)
=

1
z + 5

(
1
4

+
| arcsin� (z)|

1 + | arcsin� (z)|
)
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are continuous. Evidently, we have the following inequalities:

∣
∣ĥ∗

(
z,� (z)

)∣
∣ ≤ 1√

64 + z3

(
1 + ‖�‖),

∣
∣f̂∗

(
z,� (z)

)∣
∣ ≤ 1

z + 5
(
1 + ‖�‖).

Thus, we take �1(z) = 1√
64+z3 and �2(z) = 1

z+5 and �1(‖�‖) = �2(‖�‖) = 1 + ‖�‖. No-
tice that ‖�1‖ = 1

8 = 0.125, ‖�2‖ = 1
5 = 0.2, and �1(N) = �2(N) = 1 + N. In view of

the above data, we find that ̃∗ = 0.0538, �̃
(1)∗ = 0.095734 < 1, �̃

(2)∗ = 0.000000292, and
�̃

(3)∗ = 0.00000042. Therefore, by taking into account hypothesis (HK4), we find that
N > 0.00000013325 = 1.3325 × 10–7. At this point, we see that all the hypotheses of The-
orem 3.4 hold for this problem. Therefore, by Theorem 3.4, the nonlinear multi-order
Caputo fractional quantum multi-integro-differential boundary problem (14) has at least
one solution on [0, 1].

Example 4.3 (Illustration of Theorem 3.5) With due attention to the defined structure
for the proposed quantum multi-integro-differential problem (1), we here design the fol-
lowing multi-order Caputo fractional quantum multi-integro-differential boundary value
problem:

⎧
⎪⎪⎨

⎪⎪⎩

[0.1CD1.46
0.5 – 1.1RLI0.72

0.5 – 2.1RLI0.56
0.5 ]� (z)

= 0.002RLI0.12
0.5

0.005| cos(πz))||� (z)|
|� (z)|+1 + 0.003RLI0.18

0.5
2|� (z)|

125+125|� (z)|) ,

� (0) = 0, 0.001RLI0.27
0.5 � (1) + 1.001RLI0.16

0.5 � (1) + 2.001RLI0.31
0.5 � (1) = 0,

(15)

such that z = [0, 1], η∗ = 0.1, μ∗ = 0.001, λ∗
1 = 0.002, λ∗

2 = 0.003, σ = 1.46, q = 0.5, δ∗
1 = 0.72,

δ∗
2 = 0.56, γ ∗

1 = 0.12, γ ∗
2 = 0.18, θ∗

1 = 0.27, θ∗
2 = 0.16, and θ∗

3 = 0.31. Besides, two functions
ĥ∗, f̂∗ : [0, 1] ×R →R defined by

ĥ∗
(
z,� (z)

)
=

0.005| cos(πz))||� (z)|
|� (z)| + 1

, f̂∗
(
z,� (z)

)
=

2|� (z)|
125 + 125|� (z)|)

are supposed to be continuous on the relevant domain. Then we get b̂∗ = 0.005 and K =
0.016, since one can simply see that

∣
∣ĥ∗

(
z,�1(z)

)
– ĥ∗

(
z,�2(z)

)∣
∣ ≤ 0.005

(∣
∣�1(z) – �2(z)

∣
∣
)

and

∣
∣f̂∗

(
z,�1(z)

)
– f̂∗

(
z,�2(z)

)∣
∣ ≤ 0.016

(∣
∣�1(z) – �2(z)

∣
∣
)
.

Eventually, in the light of the above assumptions, we find that ̃∗ = 0.0538 and

�̃(1)
∗ + b̂∗�̃(2)

∗ + K�̃(3)
∗ = 0.095734009 < 1.

In consequence, we conclude that all the hypotheses of Theorem 3.5 hold for this problem.
Therefore, by Theorem 3.5, the nonlinear multi-order Caputo fractional quantum multi-
integro-differential boundary problem (15) has at least one solution on [0, 1].
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Table 1 Numerical values of �̃(1)∗ , �̃(2)∗ , and �̃(3)∗ for q = 0.3, 0.5, 0.7

q = 0.3 q = 0.5 q = 0.7

�̃(1)∗ 0.075999 0.095734 0.012214
�̃(2)∗ 0.0000011 0.000000292 0.00000016
�̃(3)∗ 0.0000017 0.00000042 0.00000023

Remark 4.4 Notice that one can find other values of three nonzero constants �̃
(1)∗ , �̃(2)∗ , and

�̃
(3)∗ for different values of q = 0.3, 0.5, 0.7 in Table 1. Indeed, we only calculated required

numerical data of above examples for q = 0.5.

5 Conclusion
As years and even decades go by, the human beings need to be acquainted with different
natural phenomena more and more. One possible way to achieve this purpose is to study
the mathematical structures of these processes by means of the logical techniques and
tools available in mathematics. In the present framework of this research manuscript, we
formulate a new generalized structure of the nonlinear Caputo fractional quantum multi-
integro-differential equation in which such multi-order structure of quantum integrals are
considered for the first time. In fact, in the light of this type of boundary value problem
equipped with the multi-integro-differential setting, one can simply study different cases
of the existing usual integro-differential problems in the literature. In this direction, we
utilize well-known analytical techniques to derive desired criteria which guarantee the
existence of solutions for the proposed multi-order quantum multi-integro-differential
problem. Further, some numerical examples are provided to examine our theoretical and
analytical findings based on the proposed methods.
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