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Abstract
Existence of positive solutions for the nonlinear algebraic system x = λGF(x) has been
extensively studied when the n× n coefficient matrix G is positive or nonnegative.
However, to the best of our knowledge, few results have been obtained when the
coefficient matrix changes sign. In this case, some commonly applied analysis
methods such as the cone theory, the Krein–Rutman theorem, the monotone
iterative techniques, and so on cannot be directly applied. In this note, we prove the
existence of positive solutions for the above nonlinear algebraic system with
sign-changing coefficient matrix taking the advantages of the classical Brouwer fixed
point theorem combined with a decomposition condition on the coefficient matrix.
We provide an example in solving a second-order difference equation with periodic
boundary conditions to illustrate the applications of the results.
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1 Introduction
The nonlinear algebraic system

x = λGF(x) (1)

has interesting applications in boundary value problems, complex systems, networks,
optimization, and many other areas [7–9, 12, 14, 25, 27], where λ ∈ R is a parameter,
x = col(x1, x2, . . . , xn),

F(x) = col
(
f (x1), f (x2), . . . , f (xn)

)
,

f : R → R is continuous, and G = (gij)n×n is an n × n square matrix. The existence
of positive solutions for system (1) has been extensively studied in the literature; see
[2, 3, 5, 6, 10, 11, 13, 15, 17, 20, 21, 24, 27–29] and the references therein. However, to
the best of our knowledge, almost all obtained results require that the coefficient matrix
G ≥ 0 or G > 0, where G ≥ 0 if gij ≥ 0 and G > 0 if gij > 0 for (i, j) ∈ [1, n] × [1, n], and
[1, n] = {1, 2, . . . , n}.
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An n × n square matrix G is called a sign-changing coefficient matrix if its elements
change the sign. When the coefficient matrix G changes the sign, it is difficult to construct
a suitable positive order cone to apply the topological degree theory for fixed points or
monotone approximation sequences. Therefore some commonly applied analysis meth-
ods such as the cone theory, the Krein–Rutman theorem, the monotone iterative tech-
niques, and so on cannot be applied. Thus we need to seek new approaches. In this note,
we take the advantages of the classical Brouwer fixed point theorem [4, 26] combined with
a decomposition condition for the coefficient matrix. We prove the existence of a positive
solution for system (1) when the parameter λ is in an interval (0,λ0) with λ0 > 0. We give
a particular example to show an easy calculation of λ0. We apply the results to prove the
solvability of a second-order periodic boundary value problem. It is also possible to further
extend the idea to operator equations in general Banach spaces.

The present work is motivated by Ma [19]. In fact, there are many publications consid-
ering the existence of solutions for differential equations with sign-changing coefficients;
for example, see [16, 18, 19, 22, 23] and the references therein. It is well known that the
Green functions are structured when these problems are considered. The corresponding
discrete case for this type of problems can be formed as system (1) with coefficient matrix
G containing columns with all negative values. However, this method cannot be applied to
system (1) since the negative elements of G are not required to be in specified positions.
In other words, system (1) does not represent a discrete analogue of the corresponding
differential equation in most cases; see [1]. Moreover, the simplicity of the discrete set-
ting enables us to successfully apply some computational tools that do not seem to have
continuous counterparts.

2 Main results
For convenience, we first give the Brouwer fixed point theorem, which is the foundation
of many fixed point theorems [4, 26].

Lemma 1 (Brouwer Fixed Point Theorem (1912)) Let M be a nonempty convex compact
subset of Rn, and let F : M → M be a continuous mapping. Then F has a fixed point.

From Lemma 1 we can obtain the following result that will be valuable for the proof of
Theorem 1.

Lemma 2 Suppose that f : R → R is continuous and |f (u)| ≤ N for some constant N > 0.
Then for every λ ∈R, the problem

x = λGF(x) (2)

has a solution xλ, where F(x) = col(f (x1), f (x2), . . . , f (xn)).

Proof For any x ∈ R
n, we have

∥∥λGF(x)
∥∥∞ ≤ n|λ| max

i,j∈[1,n]
|gij|N � δ,

where ‖x‖∞ = maxi∈[1,n]{|xi|}. The Brouwer fixed point theorem ensures that system (2)
has a solution xλ ∈ M = [–δ, δ]n. The proof is complete. �
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Theorem 1 Let f : R →R be a continuous function with f (0) > 0, and let

n∑

j=1

gij > 0 for i ∈ [1, n]. (3)

Then there exists λ0 > 0 such that problem (1) has a positive solution for any λ ∈ (0,λ0).

Proof Since f is continuous, we can choose a fixed M > 0 such that f (u) > 0 for u ∈ [0, M].
Define f (u) as follows:

f (u) =

⎧
⎪⎪⎨

⎪⎪⎩

f (0), u ≤ 0,

f (u), 0 < u ≤ M,

f (M), u > M.

(4)

Lemma 2 implies that system (2) has a solution xλ.
Denote

g+
ij = max{gij, 0} and g–

ij = max{–gij, 0} for i, j ∈ [1, n].

Let

gij = g+
ij – g–

ij for i, j ∈ [1, n].

From (3) we have

n∑

j=1

g+
ij >

n∑

j=1

g–
ij for i ∈ [1, n]. (5)

There exists ε > 0 such that

n∑

j=1

g+
ij – (1 + ε)

n∑

j=1

g–
ij > 0 for i ∈ [1, n]. (6)

For fixed γ ∈ (0, ε/(2 + ε)), the continuity of f implies that there exists δ ∈ (0, M) such that

(1 – γ )f (0) < f (u) < (1 + γ )f (0) for |u| < δ. (7)

Since

xλ
i = λ

n∑

j=1

gijf
(
xλ

j
)

for i ∈ [1, n], (8)

it follows that there exists λ0 > 0 such that ‖xλ‖∞ < δ for λ ∈ (0,λ0) and that

xλ
i = λ

n∑

j=1

gijf
(
xλ

j
)
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= λ

{ n∑

j=1

g+
ij f

(
xλ

j
)

–
n∑

j=1

g–
ij f

(
xλ

j
)
}

> λ

{

(1 – γ )f (0)
n∑

j=1

g+
ij – (1 + γ )f (0)

n∑

j=1

g–
ij

}

= λ(1 – γ )f (0)

{ n∑

j=1

g+
ij –

1 + γ

1 – γ

n∑

j=1

g–
ij

}

= λ(1 – γ )f (0)

{ n∑

j=1

g+
ij – (1 + ε)

n∑

j=1

g–
ij

}

+ λ(1 – γ )f (0)
{

1 + ε –
1 + γ

1 – γ

} n∑

j=1

g–
ij

> 0.

The proof is complete. �

Remark 1 The proof of Theorem 1 is motivated by Ma [19]. However, condition (3) is new
and weaker than Theorem 2.2 in [19].

Remark 2 Theorem 1 is convenient in applications. Indeed, we may only require that the
function f is continuous near the zero point. In this case, there exists M > 0 such that
f ∈ C[0, M] with f (u) > 0 for u ∈ [0, M]. Then the function f can be defined by (4). On the
other hand, the monotonicity of f is not required. For example, let f (u) = eu and

G =

(
4 –1

–1 4

)

.

Clearly, condition (6) holds for ε = 2. Similar arguments hold for γ = 1/4. In view of (7),
we get that δ = 5/4. Finally, by (8) we obtain

λ0 =
4

25
ln

5
4

.

Similar arguments hold for f (u) = e–u and are omitted.

The condition f ∈ C[a, b] with f (a) ≥ a and f (b) ≤ b implies that the function f has a
fixed point in [a, b]. We now will give a more general extension.

Theorem 2 Assume that there exist a, b > 0 with a < b such that f is positive and continu-
ous on [a, b],

m
n∑

j=1

g+
ij > M

n∑

j=1

g–
ij (9)

for i ∈ [1, n], and that a
A < b

B , where m = minu∈[a,b] f (u), M = maxu∈[a,b] f (u),

A = max
i∈[1,n]

{

m
n∑

j=1

g+
ij – M

n∑

j=1

g–
ij

}

, and B = min
i∈[1,n]

{

M
n∑

j=1

g+
ij – m

n∑

j=1

g–
ij

}

.

Then, for any λ ∈ [ a
A , b

B ], problem (1) has a positive solution xλ with xλ
i ∈ [a, b] for i ∈ [1, n].
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Proof For x ∈ [a, b]n, we have

xi = λ

n∑

j=1

gijf (xj)

= λ

{ n∑

j=1

g+
ij f (xj) –

n∑

j=1

g–
ij f (xj)

}

,

λ

{

m
n∑

j=1

g+
ij – M

n∑

j=1

g–
ij

}

≤ xi ≤ λ

{

M
n∑

j=1

g+
ij – m

n∑

j=1

g–
ij

}

or

λA ≤ xi ≤ λB

for i ∈ [1, n]. The proof is complete. �

Remark 3 When condition (3) holds, there exists σ > 1 such that

n∑

j=1

g+
ij > σ

n∑

j=1

g–
ij for i ∈ [1, n].

In this case, we can choose suitable a and b such that f is positive and continuous on [a, b]
and that M

m ≤ σ , where m and M are defined in Theorem 2.

Example 1 Let a > 4. We consider the periodic boundary value problem

⎧
⎨

⎩
�2xi–1 + axi = λf (xi) for i = 1 or 2,

x0 = x2, x1 = x3,
(10)

or the nonlinear algebraic system

(
a – 2 2

2 a – 2

)(
x1

x2

)

= λ

(
f (x1)
f (x2)

)

,

or
(

x1

x2

)

=
λ

a(a – 4)

(
a – 2 –2
–2 a – 2

)(
f (x1)
f (x2)

)

. (11)

In this case, Theorems 1 and 2 are valid for (10) or (11). To the best of our knowledge, such
a system cannot be handled by the previous results.
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