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Abstract
The principal objective of the present paper is to manifest the exact traveling wave
and numerical solutions of the good Boussinesq (GB) equation by employing He’s
semiinverse process and moving mesh approaches. We present the achieved exact
results in the form of hyperbolic trigonometric functions. We test the stability of the
exact results. We discretize the GB equation using the finite-difference method. We
also investigate the accuracy and stability of the used numerical scheme. We sketch
some 2D and 3D surfaces for some recorded results. We theoretically and graphically
report numerical comparisons with exact traveling wave solutions. We measure the
L2 error to show the accuracy of the used numerical technique. We can conclude that
the novel techniques deliver improved solution stability and accuracy. They are
reliable and effective in extracting some new soliton solutions for some nonlinear
partial differential equations (NLPDEs).
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1 Introduction
The soliton theory is an important tool in describing various phenomena of wave propaga-
tion. Recently, several nonlinear equations have been successfully developed to investigate
wave propagation. For instance, the Korteweg–de Vries (KdV) equation is mainly used to
investigate the propagation of shallow water waves in one dimension, whereas the bad
Boussinesq (BSQ) equation describes the wave propagation in two dimensions. The BSQ
equation is also used in studying different processes appearing in electromagnetic waves
in dielectrics [1], magnetosound waves in plasma [2], and the magnetoelastic waves in an-
tiferromagnetic [3]. These equations and others have attracted the attention of a massive
number of mathematicians and physicists since the 1970s due to their use in revealing the
internal mechanisms of some sophisticated natural phenomena. Therefore numerous sci-
entists have invented and discovered a wide variety of new methods to develop the soli-
ton solutions for most NLPDEs. Some developed techniques and principles include the
inverse scattering transform [4], the trial function process [5], the sine–cosine principle
[6], the Weierstrass elliptic function approach [7], the tanh–sech technique [8], the F-
expansion technique [9], Hirota’s bilinear principle [10], the modified tanh-function tech-
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nique [11], the extended tanh-technique [12], the exp(–f (ζ ))-expansion process [13, 14],
and the truncated Painleve expansion [15]. More information about other techniques can
be obtained in [16–27].

The Boussinesq equation is given by

utt – uxx – uxxxx –
(
u2)

xx = 0, (1)

where u(x, t) is a real-valued function, and subscripts represent partial derivatives. This
equation models the propagation of shallow water waves in both directions. If the sign
associated to uxxxx is changed, then we end up with a linearly stable equation, and the
numerical computation can be achieved. Therefore the good Boussinesq (GB) equation is
given by

utt – uxx + uxxxx –
(
u2)

xx = 0. (2)

According to [28], the solitary waves described by the GB equation solely occur for a fi-
nite range of velocities and can merge into one solitary wave. The Boussinesq equation has
been exactly and numerically solved using different approaches. For example, the modified
decomposition method is applied in [29] to develop soliton solutions and periodic solu-
tions, whereas a simplified version of the Hirota technique is used in [30] to extract several
exact solutions for the GB problem. Furthermore, in [31], N-soliton solutions are deter-
mined by using the bilinear form. Nguyen [32] has employed the Hirota direct bilinear
process to find the soliton solution of the GB problem. The power-law nonlinearity [33]
and the variational iteration techniques [34] are derived to obtain solitary wave solutions
for the Boussinesq equation and the GB equation, respectively. On the other hand, the GB
equation is solved numerically by Ismail and Bratsos [35]. They have presented a condi-
tionally stable scheme that is second-order in space and fourth-order in time. The authors
in [36] have applied a finite difference process to the GB equation and discovered that the
used technique is unconditionally stable and is fourth-order in space and second-order in
time. Other numerical methods can be found in [8, 37–45].

In this work, we employ the He semiinverse approach and the moving mesh process [46]
to construct the soliton and numerical solutions, respectively, for the GB equation. The
numerical method followed in this paper uses a monitor function and moving mesh partial
differential equations (MMPDEs) to distribute the grid of the points in the area where the
error is high. The main advantage of this approach is the reduction of the error, especially
in the curvature and variation regions, by distributing more points in such regions.

The boundary constraints are graphically deduced from the behavior of the exact trav-
eling wave solutions as the time changes. The exact solutions vanish at the boundaries of
the physical domain. As a result, the relevant boundary conditions are constants. In other
words, ux = 0 and uxxx = 0 as x → ±∞.

2 Traveling wave solution
In this part, we focus on extracting the exact solution of the GB equation using the He
semiinverse process [47, 48]. Plugging the traveling wave transformation

u(x, t) = ρ(ξ ), ξ = x – wt,
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were w plays the role of the speed wave, into Eq. (2) and integrating twice with respect to
ξ give

(
w2 – 1

)
ρ + ρξξ – ρ2 = 0. (3)

Hence from Eq. (3) we obtain the following variational formulation:

J =
∫ ∞

0

[
w2 – 1

2
ρ2 –

1
3
ρ3 –

1
2
ρ2

ξ

]
dξ . (4)

Next, we utilize a Ritz-like process to invoke bright optical solitons in the following form:

ρ(ξ ) = β sech2(αξ ), (5)

where β and α are constants to be found later. Plugging Eq. (5) into Eq. (4) leads to

J = –
8β3

45α
+

β2w2

3α
–

4β2α

15
–

β2

3α
.

To find the stationary points (fixed points) β and α of J , we differentiate J with respect to
β and α and equate the results to zero:

∂J
∂β

= –
8β2

15α
+

2βw2

3α
–

8βα

15
–

2β

3α
= 0,

∂J
∂α

=
8β3

45α2 –
β2w2

3α2 +
β2

3α2 –
4β2

15
= 0.

The solutions of this system are as follows:

β =
3
2
(
w2 – 1

)
,

α = ±
√

1 – w2

2
.

Substituting these values of β and α into Eq. (5) yields

ρ(ξ ) =
3
2
(
w2 – 1

)
sech2

(
±1

2
√

1 – w2ξ

)
.

Hence the exact solutions of Eq. (2) can be simply expressed as

u(x, t) =
3
2
(
w2 – 1

)
sech2

(
±1

2
√

1 – w2(x + x0 – wt)
)

, (6)

where w indicates the speed parameter, and x0 is a constant.

2.1 Stability analysis
We study the stability of the accomplished exact traveling wave results by employing the
Hamiltonian system expression given by

ϕ(w) =
∫ ∞

–∞
1
2
ρ2 dξ ,
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where w plays the role of the speed parameter, ϕ(w) is the momentum, and ρ indicates the
obtained exact solution of Eq. (3). A sufficient condition for testing the stability is given
by

∂ϕ

∂w
> 0.

Applying the Hamiltonian system to Eq. (6) gives

ϕ(w) = –3
(
1 – w2)3/2.

Taking the derivative with respect to w yields

∂ϕ

∂w
= 9w

√
1 – w2.

Hence we clearly observe that the exact solution is stable for all ξ ∈ (–∞, +∞) under the
parameter value |w| < 1. The sign of w plays a crucial role in determining the direction
of the time evolution of the traveling wave solution. Consequently, we take w = 0.5 and
x0 = –10 to plot the following figures.

3 Numerical investigation
In this section, we numerically solve GB equation via the adaptive moving mesh method.
This novel approach uses a monitor function, which distributes the mesh nodes along
the evolving solution at each time step. To discretize in space, we utilize the central finite
differences. To study Eq. (2) numerically, we assume that

ut = vxx. (7)

Differentiating Eq. (7) with respect to t and substituting the result into Eq. (2) lead to

(vt)xx =
(
–uxx + u + u2)

xx.

Hence Eq. (2) is converted to the following system:

ut – vxx = 0,

vt + uxx – u – u2 = 0.
(8)

The relevant boundary conditions are obtained from Fig. 1, from which we observe that

ux = vx = 0, x = a, b,

where a and b are the endpoints of the physical domain. To find the numerical solutions
of system (8), we first obtain the exact solution of v(x, t):

v(x, t) =
∫ ∫ x

a

∂u(η, t)
∂t

dη.
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Figure 1 (a) The exact solution of u(x, t) is plotted in 3D diagram; (b) shows a 2D graph for the time evolution
of a single solitary wave for u(x, t)

Hence the exact solution of v(x, t) is given by

v(x, t) = w
√

1 – w2 tanh

(
1
2
√

1 – w2(x + x0 – wt)
)

. (9)

Thus the initial conditions are given by

u(x, 0) =
3
2
(
w2 – 1

)
sech2

(
1
2
√

1 – w2(x + x0)
)

,

v(x, 0) = w
√

1 – w2 tanh

(
1
2
√

1 – w2(x + x0)
)

.
(10)

Applying the adaptive moving mesh process to build the numerical solution of the GB
problem requires equal subintervals for the movement of the mesh. Thus the physical
domain [a, b] is first transformed into a computational domain, which is [0, 1], using the
following transformation:

x = x(ζ , t) : [0, 1] → [a, b], t > 0.

Employing the physical coordinate x and the computational coordinate ζ leads to

u = u
(
x(ζ , t), t

)
, v = v

(
x(ζ , t), t

)
, where x = x(ζ , t).

Thus the moving mesh connecting with the solutions u and v is formed as

xm(ζ ) = x(ζm, t), m = 0, 1, . . . , Nx,

and the computational domain is formed as

ζm = m
ζ , 
ζ =
1

Nx
, m = 0, 1, . . . , Nx.

Since the solution u and the mesh x are functions of the variable t, applying the chain rule
to system (8), we have

ut – uxẋ = vxx,

vt – vxẋ = –uxx + u + u2.
(11)
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In the moving mesh method the error indicator is selected to redistribute the mesh nodes
where the solution presents large curvatures or variations. We attempted different MM-
PDEs and monitor functions and we found that the obtained results are similar. As a result,
we use the MMPDE5 [46, 49, 50] given by

τ ẋ =
1
�

(�xζ )ζ , (12)

where τ ∈ (0, 1) is called a relaxation parameter, and �(u, v) denotes the monitor function.
A successful selection for this function often gives effective and dependable results. This
can be attributed to the fact that the monitor function feeds the bending and variation
regions in the solution with more nodes. Therefore we apply an exceptional function given
by

�(u, v) =
√

1 + u2
xx + v2

xx. (13)

The discretization of the mesh Eq. (12) is given by

xn+1
j – xn

j


t
=

1
τ�n

j 
ζ 2

[
�n

j+1/2
(
xn+1

j+1 – xn+1
j

)
– �n

j–1/2
(
xn+1

j – xn+1
j–1

)]
(14)

subject to the boundary conditions

x0 = a and xNx = b.

The initial condition is given by splitting the physical domain into Nx identical intervals
as follows:

a = x0 < x1 < x2 < · · · < xj < · · · < xNx = b,

where xj = a + j
x with 
x = b–a
Nx

and j = 1, 2, . . . , Nx – 1. Moreover, the discretizations of
the coupled equations (11) are given by

un+1
j – un

j


t
=

1
2

[un+1
j+1 – un+1

j–1

xn+1
j+1 – xn+1

j–1
+

un
j+1 – un

j–1

xn
j+1 – xn

j–1

]
ẋj+1/2

+
1

xn+1
j+1 – xn+1

j–1

[ vn+1
j+1 – vn+1

j

xn+1
j+1 – xn+1

j
–

vn+1
j – vn+1

j–1

xn+1
j – xn+1

j–1

]

+
1

xn
j+1 – xn

j–1

[ vn
j+1 – vn

j

xn
j+1 – xn

j
–

vn
j – vn

j–1

xn
j – xn

j–1

]
, (15)

vn+1
j – vn

j


t
=

1
2

[ vn+1
j+1 – vn+1

j–1

xn+1
j+1 – xn+1

j–1
+

vn
j+1 – vn

j–1

xn
j+1 – xn

j–1

]
ẋj+1/2

+
1

xn+1
j+1 – xn+1

j–1

[un+1
j+1 – un+1

j

xn+1
j+1 – xn+1

j
–

un+1
j – un+1

j–1

xn+1
j – xn+1

j–1

]

+
1

xn
j+1 – xn

j–1

[un
j+1 – un

j

xn
j+1 – xn

j
–

un
j – un

j–1

xn
j – xn

j–1

]
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+
un+1

j + un
j

2
+

(u2)n+1
j + (u2)n

j

2
, j = 1, 2, 3, . . . , Nx – 1, (16)

subject to the boundary conditions

ux = vx = 0 at x = a, b.

It is to be highlighted that the initial conditions are chosen by Eqs. (10) at t = 0. Here 
t
presents the step size of time t. To evaluate the boundaries of uxx and vxx, we require some
fictitious points

u–1 = u1, v–1 = v1, uNx+1 = uNx–1, vNx+1 = vNx–1, ∀t.

Here we list the procedure of the alternating solution as follows:
1. At the time step tn the monitor function Eq. (13) is computed using the solutions un

and vn.
2. A new mesh at the time step tn+1 is obtained by solving scheme (14) using the

monitor function �n. The monitor function is fixed during the computation.
3. The solutions un+1 and vn+1 are obtained by solving the numerical schemes (15) and

(16) simultaneously using xn and xn+1.
4. This procedure is repeated from step 1.

3.1 Accuracy of the numerical schemes
This subsection is devoted to introducing the accuracy of the adaptive mesh schemes (14),
(15) and scheme (16). The approximated solutions un

j and vn
j are replaced throughout by

u(xj, tn) and v(xj, tn), respectively, at the point (xj, tn). Then we introduce the step size for
both the time and spatial variables. They are presented by 
t = tn+1 – tn, 
x+ = xj+1 – xj,
and 
x– = xj – xj–1. Taylor series expansion is used to determine xn+1

j+1 and xn+1
j–1 as follows:

xn+1
j+1 = xn+1

j +
[

ζxζ +

1
2

ζ 2xζζ +

1
6

ζ 3xζζζ +

1
24


ζ 4xζζζζ + · · ·
]n+1

j
,

xn+1
j–1 = xn+1

j +
[

–
ζxζ +
1
2

ζ 2xζζ –

1
6

ζ 3xζζζ +

1
24


ζ 4xζζζζ – · · ·
]n+1

j
.

Adding these expressions and simplifying, we get

xn+1
j+1 – 2xn+1

j + xn+1
j–1


ζ 2 – xζζ =
[

1
12


ζ 2xζζζζ +
1

360

ζ 4xζζζζζζ + · · ·

]n+1

j
.

In the same manner, we have

τ
xn+1

j – xn
j


t
– τxt =

[
1
2

txtt +

1
6

t2xttt + · · ·

]n

j
.

Consequently, the truncation error of the implicit scheme (14) is

Tn
j = τ

xn+1
j – xn

j


t
–

xn+1
j+1 – 2xn+1

j + xn+1
j–1


ζ 2 – (τxt – xζζ ).
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Thus

Tn
j = O(
t) + O

(

x2). (17)

To investigate the accuracy of schemes (15) and (16), we use Taylor series expansions for
un+1

j and un
j with respect to 
t/2 as follows:

un+1
j =

[
u +


t
2

ut +

t2

8
utt +


t3

48
uttt +


t4

348
utttt + · · ·

]n+1/2

j
,

un
j =

[
u –


t
2

ut +

t2

8
utt –


t3

48
uttt +


t4

348
utttt + · · ·

]n+1/2

j
.

Subtracting these expansions and simplifying lead to

un+1
j – un

j


t
– ut =

[

t2

24
uttt +


t4

1920
uttttt + · · ·

]n+1/2

j
.

The spatial first and second derivatives for u are approximated by the average of finite
differences at tn and tn+1 as follows:

un+1
j+1 =

[
u + 
x+ux +

1
2
(

x+)2uxx +

1
6
(

x+)3uxxx +

1
24

(

x+)4uxxxx + · · ·

]n+1

j
,

un+1
j–1 =

[
u – 
x–ux +

1
2
(

x–)2uxx –

1
6
(

x–)3uxxx +

1
24

(

x–)4uxxxx – · · ·

]n+1

j
,

un+1
j+1 – un+1

j–1


x+
n + 
x–

n
– ux|n+1

j =
[

1
6

(
(
x+

n)3 + (
x–
n)3


x+
n + 
x–

n

)
uxxx + · · ·

]n+1

j
,

2

x+ + 
x–

(un+1
j+1 – un+1

j


x+ –
un+1

j – un+1
j–1


x–

)
– uxx|n+1

j

=
[

1
24

(
(
x+

n)3 + (
x–
n)3


x+
n + 
x–

n

)
uxxxx + · · ·

]n+1

j
.

Similarly, we can construct the approximation of ux and uxx at the time level tn. In the same
manner, we can derive the second derivative for v at tn and tn+1. Hence the truncation error
of the adaptive moving mesh schemes (15) and (16) is given by

Tn+1/2
j = O

(

t2) + O

(
(
x+)3 + (
x–)3


x+ + 
x–

)
.

As a result, the accuracy of the adaptive mesh scheme is of the second order in time and
roughly more than the second order in space when 
x+ = 
x–, that is,

Tn+1/2
j = O

(

t2) + O

(

x2). (18)

3.2 Stability of the numerical schemes
Here we use the von Neumann analysis to examine the stability of the numerical scheme
(14). We ignore the boundary conditions and consider (tn, ζj) with tn = n
t, ζj = j
ζ , and
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xj = j
x. Rearranging Eq. (14) yields

xn
j = –γ xn+1

j+1 + (1 + 2γ )xn+1
j – γ xn+1

j–1 , (19)

where γ = 
t
τ
ζ2 . To employ the von Neumann technique, we assume that

xn
j = ρneik
ζ j, (20)

where k is a constant. Substituting Eq. (20) into Eq. (19) gives

1 = ρ –
(
eik
ζ – 2 + e–ik
ζ

)
ρ.

Since (eik
ζ – 2 + e–ik
ζ ) = –4 sin2(k
ζ /2), we have

ρ =
1

1 + 4γ sin2( k
ζ

2 )
≤ 1.

Hence Eq. (14) is unconditionally stable for γ ≥ 0.
Now, to study the stability of scheme (15) and scheme (16), we assume that the mesh is

fixed. Then the schemes are expressed by

un+1
j – un

j =
μ

2
δ2

x
(
vn+1

j + vn
j
)
,

vn+1
j – vn

j =
μ

2
δ2

x
(
un+1

j + un
j
)

+
α

2
(
un+1

j + un
j
)
,

(21)

where δ2
x = un

j+1 – 2un
j + un

j–1, μ = 
t/
x2, and α = 
t max0≤j≤Nx (1 + un
j ). We assume that

un
j = λneik
xj, vn

j = βneik
xj. (22)

Substituting Eqs. (22) into schemes (21) leads to

2μ sin2
(

1
2

k
x
)

β + λ = 1 – 2μ sin2
(

1
2

k
x
)

,

β +
(

2μ sin2
(

1
2

k
x
)

– α/2
)

λ = 1 – 2μ sin2
(

1
2

k
x
)

+ α/2.

Solving this system gives

λ =
–(α + 4)μ sin2( 1

2 k
x) + 4μ2 sin4( 1
2 k
x) + 1

αμ sin2( 1
2 k
x) – 4μ2 sin4( 1

2 k
x) + 1
,

β =
–αμ sin2( 1

2 k
x) + α + (1 – 2μ sin2( 1
2 k
x))2

αμ sin2( 1
2 k
x) – 4μ2 sin4( 1

2 k
x) + 1
.

Since the required conditions for the stability of the numerical schemes are |λ| ≤ 1, |β| ≤ 1,
sin2( 1

2 k
x) ≤ 1, and α = 
t max0≤j≤Nx (1 + un
j ), the schemes are unconditionally stable for

μ ≥ 0. In this work, we used MATLAB software for running the numerical schemes to
obtain numerical results.
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Figure 2 A 3D surface that shows one traveling wave for the exact solution u(x, t) is depicted in Figure (a),
whereas the surface in (b) illustrates the numerical solutions for u(x, t). Figures (c) and (d) show 3D surfaces for
the evolution time and the numerical solution of v(x, t), respectively

Figure 3 A graphical comparison of the exact and numerical solutions is presented in (a) u(x, t) and (b) v(x, t).
The exact solutions for both u(x, t) and v(x, t) seem identical to numerical results. The curvature regions clearly
show the match of solutions

Figures 2(a), (b) illustrate 3D surfaces for the exact traveling wave solution and the nu-
merical solution. These figures show one wave. The exact and numerical results seem to
be identical. In Fig. 2(c), we plot the numerical solution of v(x, t), which is used as an aux-
iliary equation for converting the original equation. The obtained exact and numerical
results have very similar behaviors, as illustrated in Fig. 3(a). The achieved solutions are
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Figure 4 Diagrams (a) and (b) illustrate the time development of a single traveling wave for the exact and
numerical solutions of u(x, t), respectively. In (c), we present the time evolution of the corresponding mesh x

Table 1 L2 errors and CPU times consumed to arrive at t = 5 for the numerical technique


x L2 error measured CPU

1.0× 10–1 1.88× 10–4 1.5× 10–2 s
5.0× 10–2 4.26× 10–5 1.4× 10–1 s
2.5× 10–2 2.19× 10–5 7.7× 10–1 s
1.5× 10–2 1.33× 10–5 0.51× 10+1 s
1.0× 10–2 4.715× 10–6 0.819× 10+1 s

also shown similarly in 2D figures given in Figs. 4(a), (b). This leads to the conclusion that
the used methods are applicable, powerful, and useful in solving other nonlinear PDEs.

Table 1 presents a brief description of L2 errors and CPU times consumed to arrive at
t = 5 for the adaptive technique. Various values of 
x were used. The error decreases
to reach 4.715 × 10–6 when 
x = 1.0 × 10–2 for a long time (0.819 × 10+1 s). However,
the method gives a small and acceptable error 2.19 × 10–5 in short time 7.7 × 10–1 when

x = 2.5 × 10–2. The increase in the CPU time is due to the additional functions, which
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Figure 5 L2 error measured for u obtained by the numerical process against the grid of nodes N with w = 0.5
and x0 = –10

altogether evaluated along with the PDE. We can observe from Fig. 5 that the L2 error
dramatically decreases when the number of mesh points increases. However, the CPU
time slightly increases. As a result, the adaptive moving mesh method is reliable and more
computationally effective.

4 Discussion and results
In this paper, we successfully employed a novel technique to construct the numerical so-
lutions of Eq. (2). This method distributes the mesh points into the regions in which the
error is high. Taylor expansion was specifically applied on Eq. (14). The accuracy is of the
first order in time and of the second order in space, as shown in Eq. (17). Furthermore, the
accuracy of schemes (15) and (16) is of the second order in time and of slightly more than
the second order in space when 
x+ = 
x–, as described in Eq. (18). Moreover, the von
Neumann stability showed that for Eq. (14), schemed (15) and (16) are unconditionally
stable.

It is well known that the numerical solutions of PDEs are established by approximat-
ing the relevant equation on a mesh. Some solutions may contain dramatic spatial change.
Hence a fine number of nodes is required on a small enough domain. However, this proce-
dure is often extensive in computation. Consequently, we employed the adaptive moving
mesh method, which sends more points into the regions in which there is a variation. The
authors in [36] used the finite difference method to extract the numerical solution of the
GB equation. The points are distributed on a uniform mesh. However, the adaptive mov-
ing mesh method gave new and more general results than those presented in [36]. We
obtained more successful results during an acceptable time.

5 Conclusions
In this work, we discussed the traveling wave solutions and the numerical results of the
good Boussinesq equation using the He semiinverse and the adaptive moving mesh meth-
ods, respectively. The accomplished exact solution was determined in the form of a hyper-
bolic trigonometric function. The exact solution was stable for all x ∈ (–∞, +∞) under the
parameter values –1 < w < 1. The exact and numerical solutions were compared in some
3D figures, which showed that the solutions were almost the same. The stability and ac-
curacy of the numerical scheme were studied. The L2 error was measured to illustrate the
accuracy of the adaptive moving mesh approach. The error vanished for a large number
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of mesh nodes, as shown in Fig. 5. The used methods gave successful and effective results
for most nonlinear partial differential equations.
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