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Abstract
This research proposes and delves into a stochastic competitive phytoplankton
model with allelopathy and regime-switching. Sufficient criteria are proffered to
ensure that the model possesses a unique ergodic stationary distribution (UESD).
Furthermore, it is testified that these criteria are sharp on certain conditions. Some
critical functions of regime-switching on the existence of a UESD of the model are
disclosed: regime-switching could lead to the appearance of the UESD. The
theoretical findings are also applied to research the evolution of Heterocapsa triquetra
and Chrysocromulina polylepis.
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1 Introduction
A global proliferation of harmful algal blooms (HABs) has caused significant harm to hu-
man and animal health, fisheries, tourism, ecosystem and environment in last decades
[1]. For instance, according to the United States National Oceanic and Atmospheric Ad-
ministration, HABs are responsible for more than 50% of improper decrease of marine
mammals [2]; in addition, the United States Environmental Protection Agency estimated
that HABs influence 65% of the major estuaries of the United States, costing $2.2 billion
every year [3].

The toxins released by harmful phytoplankton may be responsible for HABs [4, 5]: the
rise in density of a phytoplankton population may influence the growth of some other
populations by producing allelopathic toxins or stimulator, leading to blooms [6]. Accord-
ingly, in recent years, numerous phytoplankton models with allelopathy were dissected
(see, e.g., [6–9]). Particularly, Bandyopadhyay [9] tested the following competitive model
with allelopathy:

⎧
⎨

⎩

d�1
dt = �1(r1 – α11�1 – α12�2 – β�1�

2
2 ),

d�2
dt = �2(r2 – α21�1 – α22�2),

(1)

where �i means the population density, ri > 0 represents the growth rate, αii > 0 is the
intraspecific competition rate, αij > 0 (j �= i) means the interspecific competition rate,
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i, j = 1, 2; β > 0 measures the allelopathic interaction. In model (1), β�2
1�2

2 is the allelo-
pathic interaction term proposed by Solé et al. [8] based upon experimental data of two
phytoplankton species, Heterocapsa triquetra and Chrysocromulina polylepis (the allelo-
pathic species).

Nevertheless, the environmental random disturbances (for example, the variations of
PH, temperature, and nutrition [10]) frequently act on the evolution of plankton [11–19].
Mandal and Banerjee [12] assumed that the environmental random disturbances are the
white noise which mainly acts on the growth rates of the plankton with

ri → ri + γiḂi(t),

they [12] tested the following stochastic competitive model with allelopathy:
⎧
⎨

⎩

d�1 = �1(r1 – α11�1 – α12�2 – β�1�
2
2 ) dt + γ1�1 dB1(t),

d�2 = �2(r2 – α21�1 – α22�2) dt + γ2�2 dB2(t),
(2)

where γ 2
i means the intensity of the white noise, (B1(t), B2(t)) is a two-dimensional Brown-

ian motion defined on a certain complete probability space (�,F , {Ft}t≥0, P). The authors
[12] tested the existence, uniqueness, boundedness, and stochastic permanence of the so-
lution of model (2).

However, the growth rates of plankton organisms often shift from one regime to
a dramatically different one because of some abrupt environmental disturbances (see
[14, 18, 19]) which cannot be portrayed by the white noise. For example, the growth rate
of microalgae at 30°C is about twice that at 20°C (see [10]). An effective approach to depict
these abrupt disturbances is to make use of a continuous-time finite-state Markov chain
(see [14, 18–21]). Let η = η(t) be an irreducible right-continuous Markov chain with the
state space X = {1, . . . , L}, the generator (qij)L×L, and the stationary distribution π . Incor-
porating η(t) into system (2), we derive the following regime-switching model:

⎧
⎨

⎩

d�1 = �1(r1(η) – α11(η)�1 – α12(η)�2 – β(η)�1�
2
2 ) dt + γ1(η)�1 dB1(t),

d�2 = �2(r2(η) – α21(η)�1 – α22(η)�2) dt + γ2(η)�2 dB2(t).
(3)

Stationary distribution (which can be regarded as a stable “stochastic positive equilib-
rium”) has propelled to the forefront in researches of stochastic models (see [13, 14, 19]).
However, little research has been conducted to test the stationary distribution of model (2)
or (3). For these reasons, in this paper, by taking advantage of some previous approaches
and results mainly in [22], sufficient criteria are offered to ensure that model (3) possesses
a unique ergodic stationary distribution (UESD) in Sect. 2. Furthermore, we proffer that
the above criteria are sharp under certain conditions. In Sect. 3, some critical functions
of regime-switching on the existence of a UESD of the model are disclosed and numeri-
cally manifested by means of some real data. Section 4 proffers the conclusions and the
Appendix provides the mathematical proofs.

2 Theoretical results
For i = 1, 2, consider the stochastic logistic equation below:

d�̃i = �̃i
[
ri(η) – αii(η)�̃i

]
dt + γi(η)�̃i dBi(t),

(
�̃i(0),η(0)

)
=

(
�i(0),η(0)

)
. (4)
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For Eq. (4), taking advantage of Theorem 6 in [23] results in

lim sup
t→+∞

ln �̃i(t)/t ≤ 0, i = 1, 2. (5)

Furthermore, in accordance with [24], if ai > 0, then Eq. (4) possesses a UESD 	i(· × ·) on
R+ ×X, where

ai =
∑

j∈X
πjai(j), ai(j) = ri(j) –

γ 2
i (j)
2

, i = 1, 2.

For model (3), it is trivial to check that if ai < 0, then the species i will become extinct, i.e.,
limt→+∞ �i(t) = 0, i = 1, 2. Accordingly, from here on, we suppose that model (3) complies
with a1 > 0 and a2 > 0.

Now we provide our first theoretical result.

Theorem 1 If b̄1 > 0 and b̄2 > 0, then model (3) possesses a UESD concentrated on R
2
+ ×X,

where

b1 = a1 –
∑

j∈X

∫ +∞

0
α12(j)x	2(dx, dj), b2 = a2 –

∑

j∈X

∫ +∞

0
α21(j)x	1(dx, dj).

Remark 1 If αil(η(t)) ≡ αil , a positive constant, i, l = 1, 2, then model (3) is replaced by the
following special case:

⎧
⎨

⎩

d�1 = �1(r1(η) – α11�1 – α12�2 – β(η)�1�
2
2 ) dt + γ1(η)�1 dB1(t),

d�2 = �2(r2(η) – α21�1 – α22�2) dt + γ2(η)�2 dB2(t).
(6)

In light of [24], for model (4), if a1 > 0 and a2 > 0, one derives

∑

j∈X

∫ +∞

0
αii(j)x	i(dx, dj) = ai, i = 1, 2. (7)

Accordingly, for model (6),

b1 = a1 – α12
a2

α22
, b2 = a2 – α21

a1

α11
.

An interesting problem follows from Theorem 1: what happens if b̄1 < 0 or b̄2 < 0? For
model (3), this problem is difficult, hence we test model (6) and derive the following results.

Theorem 2 For model (6), let α11α22 > α12α21.
(i) If b1 < 0, b2 > 0, then species 1 becomes extinct and the transition probability of

(�2(t),η(t)) converges weakly to 	2.
(ii) If b1 > 0, b2 < 0, then species 2 becomes extinct and the transition probability of

(�1(t),η(t)) converges weakly to 	1.

Remark 2 Under the assumption α11α22 > α12α21, one can deduce that b1 < 0 and b2 < 0
cannot be valid at the same time. Accordingly, under α11α22 > α12α21, sharp criteria for the
existence of a UESD of model (6) are b1 > 0 and b2 > 0.
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3 Discussions and applications
The theoretical results disclose several critical functions of regime-switching on the sta-
bility of system (3). To manifest these functions more directly, we probe model (6) with
L = 2. Accordingly, system (6) jumps between the following two subsystems:

⎧
⎨

⎩

d�1 = �1(r1(1) – α11�1 – α12�2 – β(1)�1�
2
2 ) dt + γ1(1)�1 dB1(t),

d�2 = �2(r2(1) – α21�1 – α22�2) dt + γ2(1)�2 dB2(t),
(8)

and
⎧
⎨

⎩

d�1 = �1(r1(2) – α11�1 – α12�2 – β(2)�1�
2
2 ) dt + γ1(2)�1 dB1(t),

d�2 = �2(r2(2) – α21�1 – α22�2) dt + γ2(2)�2 dB2(t).
(9)

For models (8) and (9), suppose

ai =
∑

j=1,2

πj
(
ri(j) – γ 2

i (j)/2
)

> 0, i = 1, 2, α11α22 – α12α21 > 0. (10)

We can deduce from Theorems 1 and 2 that
(A) if b1 > 0 and b2 > 0, then model (6) possesses a UESD concentrated on R

2
+ ×X;

(B) If b1 < 0 and b2 > 0, then species 1 becomes extinct and the transition probability of
(�2(t),η(t)) converges weakly to 	2;

(C) If b1 > 0 and b2 < 0, then species 2 becomes extinct and the transition probability of
(�1(t),η(t)) converges weakly to 	1.

Accordingly,
(I) if both subsystems (8) and (9) possess the corresponding UESD on R

2
+ (i.e.,

bi(j) > 0, i, j = 1, 2), the hybrid model (6) still possesses a UESD on R
2
+ × {1, 2}

owing to bi =
∑

j=1,2 πjbi(j) > 0, i = 1, 2.
(II) An interesting question is what happens if one subsystem possesses a UESD on R

2
+

but the other does not. Under such circumstances, the hybrid model (6) may
possess a UESD on R

2
+ × {1, 2} or not. If the Markov chain satisfies b1 > 0 and

b2 > 0, then (6) possesses a UESD on R
2
+ × {1, 2}; if the Markov chain satisfies

b1 < 0 or b2 < 0, then a species in (6) will become extinct, namely, model (6) does
not possess a stationary distribution on R

2
+ × {1, 2}.

(III) The case when neither (8) nor (9) possesses a stationary distribution on R
2
+ is

similar to the case (II). Nevertheless, there is an interesting finding: under such
circumstances, the hybrid system (6) could possess a UESD on R

2
+ × {1, 2}, namely,

the regime-switching could make the UESD on R
2
+ × {1, 2} appear.

Now let us reflect these functions by means of some real data of Heterocapsa triquetra
and Chrysocromulina polylepis (the allelopathic species) presented by [8] (see Table 1).

Compute that

a1(1) = r1(1) –
γ 2

1 (1)
2

= 0.02 > 0, a1(2) = 0.48 > 0,

a2(1) = 0.32 > 0, a2(2) = 0.12 > 0,

α11α22 – α12α21 = 1.49 × 10–9 > 0,
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Table 1 Parameter values

Symbol Value and unit Source

r1 0.57 day–1 [8]
r2 0.39 day–1 [8]
α11 1.89× 10–5 ml/(cell · day) [8]
α12 8.02× 10–6 ml/(cell · day) Estimated
α21 5.37× 10–6 ml/(cell · day) Estimated
α22 7.89× 10–5 ml/(cell · day) [8]
β 2.23× 10–5 ml3/(cell3 · day) [8]
γ1 γ1(1) = 1.049 day–1, γ1(2) = 0.4242 day–1 Estimated
γ2 γ2(1) = 0.3742 day–1, γ2(2) = 0.7348 day–1 Estimated

b1(1) = a1(1) – α12
a2(1)
α22

= –0.0162 < 0, b2(1) = 0.4664 > 0,

b1(2) = 0.3145 > 0, b2(2) = –0.016 < 0.

In accordance with (B) and (C), in state 1, Heterocapsa triquetra becomes extinct (see
Fig. 1(a)) while in state 2, Chrysocromulina polylepis becomes extinct (see Fig. 1(b)). This
suggests that neither subsystem (8) nor subsystem (9) possesses a stationary distribution
on R

2
+. Now we let π change.

(I) Let π = (0.5, 0.5), then b1 =
∑

j=1,2 πjb1(j) = 0.1491 > 0, b2 = 0.2252 > 0. In
accordance with (A), the hybrid model (6) possesses a UESD on R

2
+ × {1, 2}, see

Fig. 1(c) and Fig. 1(d).
(II) Let π = (0.96, 0.04), then b1 = –0.0029 < 0, b2 = 0.445 > 0. In accordance with (B),

the first species, Heterocapsa triquetra, becomes extinct.
(III) Let π = (0.03, 0.97), then b1 = 0.305 > 0, b2 = –0.0015 < 0. In accordance with (C),

the allelopathic species, Chrysocromulina polylepis, becomes extinct.

4 Concluding remarks
In this article we developed a stochastic phytoplankton model with allelopathy and
regime-switching, and offered sufficient criteria to ensure that the model possesses a
UESD concentrated on R

2
+ ×X (see Theorem 1). Furthermore, we proffered that the above

criteria are sharp under certain conditions (see Remark 2). The results manifested that
regime-switching could lead to the appearance of the UESD concentrated on R

2
+ ×X (see

Fig. 1).
Biologically, the existence of a UESD concentrated on R

2
+ × X suggests that the two

species in model (3) are stably coexistent. As a result, the findings of this article suggest
that if the Markov chain spends enough time in the desired state such that b̄1 > 0 and
b̄2 > 0, then the two species in model (3) are stably coexistent; otherwise, the coexistence
of the two species may be threatened, especially, if the Markov chain spends much more
time in the undesired state such that b̄i < 0, then the species i in model (6) becomes extinct,
i = 1, 2.

Some issues deserve further investigation. To begin with, as pointed out above, for model
(3), what happens if b1 < 0 or b2 < 0 is still unknown. Another interesting issue is to test
other random perturbations, for instance, Lévy jumps. The motivation is that the evolu-
tion of plankton is frequently influenced by some abrupt disturbances which could not be
depicted by model (3) and one might resort to the Lévy jumps. When the Lévy jumps are
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Figure 1 Model (6) with L = 2 and parameter values
given in Table 1: (a) a trajectory of subsystem (8), which
manifests that Heterocapsa triquetra becomes extinct;
(b) a trajectory of subsystem (9), which manifests that
Chrysocromulina polylepis becomes extinct; (c) a
trajectory of the hybrid system (6), which manifests the
two species are coexistent; and (d) the density function
of the solution of the hybrid system (6) at t = 3000

evaluated, model (3) is replaced by
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d�1(t) = �1(t–)(r1(η) – α11(η)�1(t–) – α12(η)�2(t–) – β(η)�1(t–)�2
2 (t–)) dt

+ γ1(η)�1(t–)dB1(t) +
∫

z∈Z f1(z)�1(t–)̃F(dt, dz),

d�2(t) = �2(t–)(r2(η) – α21(η)�1(t–) – α22(η)�2(t–)) dt

+ γ2(η)�2(t–) dB2(t) +
∫

z∈Z f2(z)�2(t–)̃F(dt, dz),
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whereZ is a subset of R+, F̃ is a compensated Poisson random measure. Finally, for certain
single-species model without switching, one can obtain the explicit form of the density
function of the UESD (see, e.g., [25, 26]), the properties of the density function of the UESD
of model (3) are unclear, yet. We leave the above three issues for further consideration.

Appendix
For simplicity, define

ξ1(� , j) = r1(j) – α11(j)�1 – α12(j)�2 – β(j)�1�
2
2 ,

ξ2(� , j) = r2(j) – α21(j)�1 – α22(j)�2.

There are positive constants � and μ < 1 such that for ∀(� , j) ∈ R
2
+ ×X with ‖�‖ ≥ �,

�1ξ1(� , j) + �2ξ2(� , j)
1 + �1 + �2

–
γ 2

1 (j)�2
1 + γ 2

2 (j)�2
2

2(1 + �1 + �2)2

+ μ

[

3 +
2∑

i=1

(

ri(j) +
2∑

l=1

αil(j)�l

)

+ β(j)�1�
2
2

]

< 0,

where R
2
+ = {x1 ≥ 0, x2 ≥ 0}. Accordingly, for ∀χ ∈ (0, min{μ/2,μ/(2γ̂ 2)}) and ‖�‖ ≥ �,

θ (� , j) :=
�1ξ1(� , j) + �2ξ2(� , j)

1 + �1 + �2
–

γ 2
1 (j)�2

1 + γ 2
2 (j)�2

2
2(1 + �1 + �2)2 + μ

+ χ

[

2 +
2∑

i=1

(

ri(j) +
2∑

l=1

αil(j)�l

)

+ β(j)�1�
2
2 + 2γ̂ 2

]

< 0, ∀j ∈ X, (11)

where γ̂ 2 = maxi=1,2{maxj∈X{γ 2
i (j)}}. This suggests that

θ1 := sup
�∈R2

+,j∈X

{
θ (� , j)

}
< +∞. (12)

For all κ̃ = (̃κ1, κ̃2) ∈R
2
+ such that ‖̃κ‖ ≤ χ < 1/2, define

Ũ(� , j) =
1 + �1 + �2

�
κ̃1
1 �

κ̃2
2

, (� , j) ∈R
2
+ ×X.

It follows that ∀(� , j) ∈R
2
+ ×X, Ũ(� , j) > 1.

Consider the following equation:

dY (t) = g1
(
Y (t),η(t)

)
dt + g2

(
Y (t),η(t)

)
dB(t),

for any j ∈X and arbitrary twice continuously differentiable function U(·, j), and define

LU(Y , j) = UY (Y , j)g1(Y , j) + trace
[
gT

2 (Y , j)UYY (Y , j)g2(Y , j)
]
/2 +

∑

l∈X
qjlU(Y , l),

where (qij)L×L means the generator of η(t).



Ji et al. Advances in Difference Equations        (2020) 2020:632 Page 8 of 15

Lemma 1 For any (�(0),η(0)) = (ν, j) ∈ R
2
+ × X, model (3) possesses a unique solution

(�(t),η(t)) ∈R
2
+ ×X for all t ≥ 0, which is a Markov–Feller process, and

Eν,j
[
Ũχ

(
�(t),η(t)

)] ≤ exp{χθ1t}Ũχ (ν, j). (13)

Proof The proof of the first claim is similar to that of [14] and therefore is left out. Now
we consider the second claim. On the basis of (12), one obtains

LŨχ (� , j)

= χŨχ (� , j)
[

�1ξ1(� , j) + �2ξ2(� , j)
1 + �1 + �2

+
χ – 1

2
γ 2

1 (j)�2
1 + γ 2

2 (j)�2
2

(1 + �1 + �2)2

– κ̃1ξ1(� , j) – κ̃2ξ2(� , j) +
κ̃1γ

2
1 (j) + κ̃2γ

2
2 (j)

2

+
χ

2
(
κ̃2

1 γ 2
1 (j) + κ̃2

2 γ 2
2 (j)

)
–

κ̃1γ
2
1 (j)�1 + κ̃2γ

2
2 (j)�2

1 + �1 + �2
χ

]

≤ χŨχ (� , j)

[
�1ξ1(� , j) + �2ξ2(� , j)

1 + �1 + �2
+ 2χγ̂ 2

–
γ 2

1 (j)�2
1 + γ 2

2 (j)�2
2

2(1 + �1 + �2)2 + χ

2∑

i=1

(

ri(j) +
2∑

j=1

αij�j

)

+ χβ(j)�1�
2
2

]

≤ χθ (� , j)Ũχ (� , j) ≤ χθ1Ũχ (� , j). (14)

Furthermore, one has

lim inf
m→+∞

{
Ũ(� , j) : max

{
�1,�–1

1 ,�2,�–1
2

}
> m

}
= +∞. (15)

In accordance with (14), (15), and Theorem 5.1 in [27], (�(t),η(t)) possesses the Markov–
Feller property. Taking advantage of (14) and the Gronwall inequality yields the last dec-
laration. �

When b1 > 0 and b2 > 0, choose a κ = (κ1,κ2)T ∈R
2
+ fulfilling ‖κ‖ ≤ χ < 1/2. Define

θ∗ =
1
2

min{κ1b1,κ2b2}, U(� , j) =
1 + �1 + �2

�
κ1
1 �

κ2
2

, (� , j) ∈R
2
+ ×X. (16)

Lemma 2 If b1 > 0 and b2 > 0, then there is a positive constant ρ such that for any t ≥ ρ

and (�(0),η(0)) = (̃ν, j) ∈ ∂R2
+ ×X fulfilling ‖̃ν‖ ≤ �,

1
t

∫ t

0
Eν̃,j

[
�

(
�(s),η(s)

)]
ds ≤ –θ∗, (17)

where ∂R2
+ = R

2
+ \R2

+,

�(� , j) =
�1ξ1(� , j) + �2ξ2(� , j)

1 + �1 + �2
–

γ 2
1 (j)�2

1 + γ 2
2 (j)�2

2
2(1 + �1 + �2)2 –

2∑

i=1

κi

[

ξi(j) –
γ 2

i (j)
2

]

.
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Proof (a) Suppose �1(0) = �2(0) = 0. It follows that �1(t) = �2(t) ≡ 0, t ≥ 0, and

1
t

∫ t

0
Eν̃,j

[
�

(
�(s),η(s)

)]
ds = –

κ1

t

∫ t

0
a1

(
η(s)

)
ds –

κ2

t

∫ t

0
a2

(
η(s)

)
ds.

We can deduce from the ergodicity of η that

lim
t→+∞

1
t

∫ t

0
Eν̃,j

[
�

(
�(s),η(s)

)]
ds = –κ1a1 – κ2a2.

This yields (17).
(b) Suppose �1(0) = 0, �2(0) > 0. Thus �1(t) ≡ 0, �2(t) = �̃2(t), t ≥ 0, where (�̃2(t),η(t))

is the solution of model (4) with i = 2. We can see that

1
t

∫ t

0
Eν̃,j

[
�

(
�(s),η(s)

)]
ds

=
1
t

∫ t

0
Eν̃,j

[
�2(s)(r2(η(s)) – α22(η(s))�2(s))

1 + �2(s)
–

γ 2
2 (η(s))�2

2 (s)
2(1 + �2(s))2

– κ1
(
a1

(
η(s)

)
– α12

(
η(s)

)
�2(s)

)
– κ2

(
a2

(
η(s)

)
– α22

(
η(s)

)
�2(s)

)
]

ds

=
1
t

∫ t

0
Eν̃,j

[
�̃2(s)(r2(η(s)) – α22(η(s))�̃2(s))

1 + �̃2(s)
–

γ 2
2 (η(s))�̃2

2 (s)
2(1 + �̃2(s))2

– κ1
(
a1

(
η(s)

)
– α12

(
η(s)

)
�̃2(s)

)
) – κ2

(
a2

(
η(s)

)
– α22

(
η(s)

)
�̃2(s)

)
]

ds. (18)

Notice that a2 > 0, and hence Eq. (4) (i = 2) possesses a UESD 	2(· × ·). In accordance
with Itô’s formula, one can deduce from the strong law of large numbers and the ergodicity
of 	2 that

lim
t→+∞

1
t

ln
(
1 + �̃2(t)

)

= lim
t→+∞

1
t

∫ t

0

[
�̃2(s)(r2(η(s)) – α22(η(s))�̃2(s))

1 + �̃2(s)
–

γ 2
2 (η(s))�̃2

2 (s)
2(1 + �̃2(s))2

]

ds

=
∑

j∈X

∫

R+

[
x(r2(j) – α22(j)x)

1 + x
–

γ 2
2 (j)x2

2(1 + x)2

]

	2(dx, j).

Since

lim inf
t→+∞

ln(1 + �̃2(t))
t

≥ lim
t→+∞

ln 1
t

= 0,

inequality (5) implies that limt→+∞ t–1 ln(1 + �̃2(t)) = 0. Accordingly,

∑

j∈X

∫

R+

[
x(r2(j) – α22(j)x)

1 + x
–

γ 2
2 (j)x2

2(1 + x)2

]

	2(dx, j) = 0. (19)
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One can deduce from (7), (18), and the ergodicity of 	2 and (19) that

lim
t→+∞

1
t

∫ t

0
Eν̃,j

[
�

(
�(s),η(s)

)]
ds

=
∑

j∈X

∫

R+

[
x(r2(j) – α22(j)x)

1 + x
–

γ 2
2 (j)x2

2(1 + x)2

]

	2(dx, j)

– κ1

(

a1 –
∑

j∈X

∫

R+

α12(j)x	2(dx, j)
)

– κ2

(

a2 –
∑

j∈X

∫

R+

α22(j)x	2(dx, j)
)

= –κ1b1.

(c) Suppose �1(0) > 0, �2(0) = 0. The proof is analogous and hence left out. �

Lemma 3 If b1 > 0 and b2 > 0, then there are a couple of constants ϒ ∈ (0,χ/2) and θϒ > 0
such that for any t ∈ [ρ, M∗ρ] and (�(0),η(0)) = (ν, j) ∈R

2
+ ×X fulfilling ‖ν‖ ≤ �,

Eν,j
[
Uϒ

(
�(t),η(t)

)] ≤ Uϒ (ν, j) exp
{

–ϒθ∗t/4
}

+ θϒ , (20)

where M∗ ∈N and

M∗ > 1 +
(
θ1 + θ∗)/μ. (21)

Proof We can deduce from Itô’s formula that

ln U
(
�(t),η(t)

)
= ln U(ν, j) +

∫ t

0
�

(
�(s),η(s)

)
ds +

∫ t

0

γ1(η(s))�1(s)
1 + �1(s) + �2(s)

dB1(s)

+
∫ t

0

γ2(η(s))�2(s)
1 + �1(s) + �2(s)

dB2(s) –
2∑

i=1

∫ t

0
κiγi

(
η(s)

)
dBi(s)

=: ln U(ν, j) + ζ (t).

Then (13) purports that

Eν,j
(
exp

{
χζ (t)

})
=
Eν,j[Uχ (�(t),η(t))]

Uχ (ν, j)
≤ exp{χθ1t}. (22)

Define

W (� , j) = (1 + �1 + �2)�κ1
1 �

κ2
2 , (� , j) ∈ R

2
+ ×X.

Tanking advantage of Itô’s formula again results in

Eν,j[W χ (�(t),η(t))]
W χ (ν, j)

≤ exp{χθ1t}. (23)

Because

U–χ (� , j) = (1 + �1 + �2)–2χ W χ (� , j) ≤ W χ (� , j),
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inequality (23) suggests that

Eν,j
(
exp

{
–χζ (t)

})
=
Eν,j[U–χ (�(t),η(t))]

U–χ (ν, j)
≤ Eν,j[W χ (�(t),η(t))]

U–χ (ν, j)

= (1 + ν1 + ν2)2χ
Eν,j[W χ (�(t),η(t))]

W χ (ν, j)
≤ (1 + ν1 + ν2)2χ exp{χθ1t}.

We then deduce from (22) that for t ∈ [ρ, M∗ρ],

Eν,j
(
exp

{
χζ (t)

})
+Eν,j

(
exp

{
–χζ (t)

}) ≤ [
1 + (1 + ν1 + ν2)2χ

]
exp

{
χθ1M∗ρ

}
=: θ2. (24)

Define

�ν,j,t(z) = lnEν,j
(
exp

{
zζ (t)

})
.

Then (24) and Lemma 3.5 in [22] purport that �ν,j,t(z) is twice differentiable for z ∈
[0,χ/2), and there exists a constant θ3 > 0 which depends only on θ2 such that for any
z ∈ [0,χ/2), t ∈ [ρ, M∗ρ],

d�ν,j,t(z)
dz

(0) = Eν,j
(
ζ (t)

)
, 0 ≤ d2�ν,j,t(z)

dz2 ≤ θ3. (25)

Because (�(t),η(t)) is Feller and (17) is validated, we can find a θ4 > 0 such that for 0 <
dist(ν, ∂R2

+) < θ4,

Eν,j
(
ζ (t)

)
= Eν,j

∫ t

0
�

(
�(s),η(s)

)
ds ≤ –

θ∗t
2

, t ∈ [
ρ, M∗ρ

]
. (26)

Expanding �ν,j,t(z) around 0, then taking advantage of (25) and (26), one can derive that
there is a sufficiently small ϒ such that

�ν,j,t(ϒ) ≤ –
θ∗t
2

ϒ + θ3ϒ
2 ≤ –

θ∗ϒ
4

t.

Then (22) purports that for 0 < dist(ν, ∂R2
+) < θ4 and t ∈ [ρ, M∗ρ],

Eν,j[Uϒ (�(t),η(t))]
Uϒ (ν, j)

= Eν,j
(
exp

{
ϒζ (t)

})
= exp

{
�ν,j,t(ϒ)

} ≤ exp

{

–
θ∗ϒ

4
t
}

.

If dist(ν, ∂R2
+) ≥ θ4, for ‖ν‖ ≤ � and t ∈ [ρ, M∗ρ], (13) purports that

Eν,j
[
Uϒ

(
�(t),η(t)

)] ≤ exp{ϒθ1t}Uϒ (ν, j) ≤ exp
{
ϒθ1M∗ρ

}
max

‖ν‖≤�, j∈X
{

Uϒ (ν, j)
}

=: θϒ .

Therefore, (20) is validated. �

Proof of Theorem 1 Define

τ = inf
{

t ≥ 0 :
∥
∥�(t)

∥
∥ ≤ �

}
.
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In accordance with (14), we have

LUϒ (� , j) ≤ ϒθ (� , j)Uϒ (� , j) – ϒμUϒ (� , j).

Then (11) purports that

LUϒ (� , j) ≤ –ϒμUϒ (� , j), ‖�‖ ≥ �.

Taking advantage of Dynkin’s formula yields

Eν,j
[
exp

{
ϒμ

(
τ ∧ M∗ρ

)} · Uϒ
(
�

(
τ ∧ M∗ρ

)
,η

(
τ ∧ M∗ρ

))]

≤ Uϒ (ν, j) + Eν,j

∫ τ∧M∗ρ

0
exp{ϒμs}[LUϒ

(
�(s),η(s)

)
+ ϒμUϒ

(
�(s),η(s)

)]
ds

≤ Uϒ (ν, j).

For this reason,

Uϒ (ν, j) ≥ Eν,j
[
exp

{
ϒμ

(
τ ∧ M∗ρ

)} · Uϒ
(
�

(
τ ∧ M∗ρ

)
,η

(
τ ∧ M∗ρ

))]

= Eν,j
[
1{τ≤(M∗–1)ρ} · exp{ϒμτ } · Uϒ

(
�(τ ),η(τ )

)]

+ Eν,j
[
1{(M∗–1)ρ<τ<M∗ρ} · exp{ϒμτ } · Uϒ

(
�(τ ),η(τ )

)]

+ Eν,j
[
1{τ≥M∗ρ} · exp

{
ϒμM∗ρ

} · Uϒ
(
�

(
M∗ρ

)
,η

(
M∗ρ

))]

≥ Eν,j
[
1{τ≤(M∗–1)ρ} · Uϒ

(
�(τ ),η(τ )

)]

+ exp
{
ϒμ

(
M∗ – 1

)
ρ
}
Eν,j

[
1{(M∗–1)ρ<τ<M∗ρ} · Uϒ

(
�(τ ),η(τ )

)]

+ exp
{
ϒμM∗ρ

}
Eν,j

[
1{τ≥M∗ρ} · Uϒ

(
�

(
M∗ρ

)
,η

(
M∗ρ

))]
. (27)

Because (�(t),η(t)) has the Markov property and (20) is validated, we obtain

Eν,j
[
1{τ≤(M∗–1)ρ} · Uϒ

(
�

(
M∗ρ

)
,η

(
M∗ρ

))]

≤ Eν,j
[
1{τ≤(M∗–1)ρ} · (θϒ + exp

{
–ϒθ∗(M∗ρ – τ

)
/4

}
Uϒ

(
�(τ ),η(τ )

))]

≤ θϒ + exp
{

–ϒθ∗ρ/4
}
Eν,j

[
1{τ≤(M∗–1)ρ} · Uϒ

(
�(τ ),η(τ )

)]
. (28)

In the same way, (13) purports that

Eν,j
[
1{(M∗–1)ρ<τ<M∗ρ} · Uϒ

(
�

(
M∗ρ

)
,η

(
M∗ρ

))]

≤ Eν,j
[
1{(M∗–1)ρ<τ<M∗ρ} · exp

{
ϒθ1

(
M∗ρ – τ

)} · Uϒ
(
�(τ ),η(τ )

)]

≤ exp{ϒθ1ρ}Eν,j
[
1{(M∗–1)ρ<τ<M∗ρ} · Uϒ

(
�(τ ),η(τ )

)]
. (29)

We can deduce from (27), (28), and (29) that

Uϒ (ν, j)

≥ exp
{
ϒθ∗ρ/4

}
Eν,j

[
1{τ≤(M∗–1)ρ} · Uϒ

(
�

(
M∗ρ

)
,η

(
M∗ρ

))]
– θϒ exp

{
ϒθ∗ρ/4

}
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+ exp
{
ϒρ

(
μ

(
M∗ – 1

)
– θ1

)}
Eν,j

[
1{(M∗–1)ρ<τ<M∗ρ} · Uϒ

(
�

(
M∗ρ

)
,η

(
M∗ρ

))]

+ exp
{
ϒμM∗ρ

}
Eν,j

[
1{τ≥M∗ρ} · Uϒ

(
�

(
M∗ρ

)
,η

(
M∗ρ

))]

≥ exp{θ5ϒρ}Eν,j
[
Uϒ

(
�

(
M∗ρ

)
,η

(
M∗ρ

))]
– θϒ exp

{
ϒθ∗ρ/4

}
,

where θ5 > 0 is a constant. Accordingly,

Eν,j
[
Uϒ

(
�

(
M∗ρ

)
,η

(
M∗ρ

))] ≤ exp
{

–θ∗ϒρ/4
} · Uϒ (ν, j) + θϒ . (30)

Additionally, it is standard (see, e.g., [22]) to show that {(�(jM∗ρ),η(jM∗ρ))}j∈N is aperi-
odic and irreducible, and any compact set A ∈ R

2
+ is petite. Then Theorem 15.0.1 in [28]

purports that {(�(jM∗ρ),η(jM∗ρ))}j∈N is positively recurrent. Accordingly, {(�(t),η(t))} is
positively recurrent. Then [29] (Theorems 4.3 and 4.4) suggests that model (3) possesses
a UESD on R

2
+ ×X. �

Proof of Theorem 2 We only prove (i), the proof of (ii) is analogous to that of (i) and hence
left out.

On the basis of the comparison theorem for stochastic equations [30], one observes
�(t) ≤ �̃(t) for t ≥ 0, i = 1, 2. Then (5) purports that

lim sup
t→+∞

ln�i(t)
t

≤ lim sup
t→+∞

ln �̃i(t)
t

≤ 0, i = 1, 2. (31)

Taking advantage of Itô’s formula in (6) results in

ln
�1(t)
�1(0)

=
∫ t

0
a1

(
η(s)

)
ds – α11

∫ t

0
�1(s) ds – α12

∫ t

0
�2(s) ds

–
∫ t

0
β
(
η(s)

)
�1(s)�2

2 (s) ds +
∫ t

0
γ1

(
η(s)

)
dB1(s), (32)

ln
�2(t)
�2(0)

=
∫ t

0
a2

(
η(s)

)
ds – α21

∫ t

0
�1(s) ds – α22

∫ t

0
�2(s) ds

+
∫ t

0
γ2

(
η(s)

)
dB2(s). (33)

Computing (32) × α22 – (33) × α12, we have

α22 ln
�1(t)
�1(0)

– α12 ln
�2(t)
�2(0)

= α22

∫ t

0
a1

(
η(s)

)
ds – α12

∫ t

0
a2

(
η(s)

)
ds

– (α11α22 – α12α21)
∫ t

0
�1(s) ds

–
∫ t

0
α22β

(
η(s)

)
�1(s)�2

2 (s) ds

+ α22

∫ t

0
γ1

(
η(s)

)
dB1(s) – α12

∫ t

0
γ2

(
η(s)

)
dB2(s).

≤ α22

∫ t

0
a1

(
η(s)

)
ds – α12

∫ t

0
a2

(
η(s)

)
ds

+ α22

∫ t

0
γ1

(
η(s)

)
dB1(s) – α12

∫ t

0
γ2

(
η(s)

)
dB2(s).
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Accordingly,

α22t–1 ln
�1(t)
�1(0)

– α12t–1 ln
�2(t)
�2(0)

≤ α22t–1
∫ t

0
a1

(
η(s)

)
ds – α12t–1

∫ t

0
a2

(
η(s)

)
ds

+ α22t–1
∫ t

0
γ1

(
η(s)

)
dB1(s) – α12t–1

∫ t

0
γ2

(
η(s)

)
dB2(s).

Taking the superior limit of both sides, and then applying (31) and the fact that

lim
t→+∞ t–1

∫ t

0
γi

(
η(s)

)
dBi(s) = 0, i = 1, 2,

we have

α22 lim sup
t→+∞

t–1 ln�1(t) ≤ α22a1 – α12a2 = α22b1 < 0.

For this reason, limt→+∞ �1(t) = 0. Accordingly, the transition probability of (�2(t),η(t))
converges weakly to 	2. �
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