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Abstract

This paper aims to investigate the class of fifth-order Korteweg-de Vries equations by
devising suitable novel hyperbolic and exponential ansatze. The class under
consideration is endowed with a time-fractional order derivative defined in the
conformable fractional derivative sense. We realize various solitons and solutions of
these equations. The fractional behavior of the solutions is studied comprehensively
by using 2D and 3D graphs. The results demonstrate that the methods mentioned
here are more effective in solving problems in mathematical physics and other
branches of science.

Keywords: Fractional derivative; Fifth-order KdV equations; Hyperbolic wave
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1 Introduction
Nonlinear partial differential equations (PDEs) play a significant role in several scientific
and engineering fields [1-5]. Since the discovery of the soliton in 1965 by Zabusky and
Kruskal [6], many nonlinear PDEs have been derived and extensively applied in differ-
ent branches of physics and applied mathematics [7-17]. Nonlinear PDEs appear in con-
densed matter, solid state physics, fluid mechanics, chemical kinetics, plasma physics,
nonlinear optics, propagation of fluxion in Josephson junctions, ocean dynamics and
many others [18—27]. In order to understand the different nonlinear phenomena, various
methods for obtaining exact solutions to nonlinear PDEs have been proposed [28-31].
One of the most interesting evolution equations with a lot of applications in describing
different phenomena is the Korteweg—de Vries equation [32, 33]. This equation occurs
in different types, orders and lots of modifications [34—46]. Certain applications of the
equation are found in many fields including fluids dynamics, plasma physics and shallow
water and nonlinear waves processes, respectively. The main motivation of this work is to
study the fifth-order Korteweg—de Vries equation endowed with a time-fractional order
derivative in time that reads [47]

2

o
U + AU Uy + Dl + CUllygy + Al gyzns = 0, (1)
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where o € (0, 1] is the fractional order derivative and a, b, ¢ and d are non-zero real con-
stants. The fractional order derivative « in the above equation is considered to be taken in
the recent conformable fractional derivative sense [48—50]. It is worth to be noticed that
the field of fractional calculus is an old area of research that has gained much interest in
the last few decades [51-56].

Many researchers have proposed various forms of Eq. (1) by suitably introducing differ-
ent values of the non-zero real constants a, b, ¢ and d. Some of the famous examples with
fractional order derivatives in time include [47]:

1) The fractional Sawada—Kotera equation

U® + 4502ty + 15Uty + 15Uy + Ugrnz = 0, 2)
2) the fractional Caudrey—Dodd—Gibbon equation

u;y + 1800t + 300,y + 30Ulhyyy + Upprs = 0, (3)
3) the fractional Lax equation

u; + 30021ty + 30Uty + 10Uty + Usrprx = O, (4)
4) the fractional Kaup—Kuperschmidt equation

u; + 20021y + 25Uythy + 10Uty + Usryrx = O, (5)

and

5) the fractional Ito equation
US + 2% Uy + Ol + SUlhyyy + Unnx = 0. (6)

However, we tackle in this paper the class of time-conformable fractional fifth-order
Korteweg—de Vries equations given in Eqgs. (2)—(6) by devising suitable novel hyperbolic
and exponential ansatze. The essential advantage of these techniques over the other meth-
ods in the literature is that they present novel explicit analytical wave solutions including
many real free parameters. The closed-form wave answers of nonlinear PDEs have a sig-
nificant meaning revealing the interior working of the physical phenomena. Furthermore,
the calculations in these methods are very simple and vital in presenting new solutions
compared with the steps in other approaches.

In doing so, various solitons and solutions of the equations will be realized and further
depicted graphically to confirm their shapes. One can well see various analytical and nu-
merical methods used in tackling different forms of the Korteweg—de Vries equations and
evolution equations in the papers cited above and also in [57—-61]. The current paper is or-
ganized as follows: Sect. 2 presents some preliminaries about the conformable fractional
derivative. Section 3 gives the concept of the methodology. Section 4 is reserved for the
application. Section 5 gives some graphical results and a discussion. Finally, Sect. 6 gives
the conclusion.
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2 Fractional conformable derivative
Definition 1 ([48]) Let u : [0,00) — R be a real-valued function. The fractional con-

formable derivative of order « for u(¢) is defined by

D (u(t)) = lim

§—0

(u(t + 817 —u(t)

5 ), t>0,a €(0,1]. (7)

Theorem 1 ([48]) Suppose v(t) and w(t) are a-differentiable for o« € (0,1] and t > 0, then
(a) D¥(t") =nt"*,VneR,
(b) D¥(C)=0,VC eR,
(c) Dg(xv(t) + yw(t)) = xDgv(t) + yDYw(t), Vx,y € R,
(d) D"‘(V(t)W(t)) = v(£)Df (w(?)) + w(t)Df (v(2)),
(e) D(; t)) = Wz(t (wW(t) D7 v(t) — v(£)DFw(2)), w(t) # 0,
(f) Importantly, if the first derivative of v(t) exists, then
dv

e (8)

Du(t) = £+

Theorem 2 ([48]) Let it be given that v(t) is a-differentiable for a € (0,1]. Let w(t) be a
differentiable function defined in the range of v(t), then

D (v() o w(?)) = £ W )V (w(2)). )
The proof of Theorem 1 and Theorem 2 can be found in [48].

3 The hyperbolic and exponential ansatz methods

We consider the nonlinear time-fractional differential equation of the form
P(u, DY u, Dy, D}y th, Dy, DY Dy, ....) = 0, (10)

where « € (0,1] is the fractional order derivative. Further, we make use of the following

transformations:
ulx,t) =v(§), & =f(x; %) (11)

where f is a function of x and ¢, depending on the application. Moreover, we derive the fol-
lowing hyperbolic (see periodic ansatze in [35]) and exponential [41] ansatze for transfor-
mations for the fractional fifth-order Korteweg—de Vries equation under consideration.

1) Hyperbolic ansatz method

A +Ajsech’(€), bright soliton solution,
A+ Ajtanh?(£), dark soliton solution,
v(E) = (12)

Ao+ A cschz(é ), singular soliton solution,

Ag + A; coth?(&), singular soliton solution.
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2) Exponential ansatz method

3

VE) = Ay + Ay —
(1+é5)2

(13)
where Ay, A; #0 and A, # 0 are non-zero constants to be determined. Substituting
either Eq. (12) or (13) as the case maybe into Eq. (10) and retaining the relevant
coefficients in &, we get a system of algebraic equations. This system of equations will
then be solved simultaneously to determine the unknowns with the help of computer

software to obtain the solutions of Eq. (10).

4 Application

In this section, we employ the presented hyperbolic and exponential ansatz function meth-
ods to construct bright soliton solutions, dark soliton solutions, singular soliton solutions
and exponential solutions for the class of fractional fifth-order Korteweg—de Vries equa-

tions under consideration.

4.1 The fractional Sawada-Kotera equation
4.1.1 Bright soliton solution
Let Ap, A1 #0,k,s and w be arbitrary constants. Then we assume a bright soliton solution

of the form

o

u(x, t) = Ag + Ay sech?(&), & =sx— kt— + w. (14)
o

Substituting Eq. (14) into (2) and simplify as explained in Sect. 3, we get the following
system of algebraic equations:

—2A1k + 324:5° + 12040A;5> + 90A2A,5 = 0,

—480A;5° + 240435 — 36040A;5> + 1804¢A%s = 0,

720A,5° — 540A2s> + 90A3s = 0. (15)

Solving the above system gives

~ +/5vks + 4s° — 1053

15s

AO ) Al = 2S2) (16)

which yields the following bright soliton solution:

+/5+ks + 4s5 — 10s3 t
ui(x,t) = V5 T + 2s% sech? (sx —k— + w). (17)
s o

4.1.2 Dark soliton solution
Let Ag, A1 #0,k,s and w be arbitrary constants. Then we assume a bright soliton solution
of the form

o

u(x,t) = Ag + A; tanh(£), & =sx— kt— +w. (18)
a
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Inserting Eq. (18) into (2), we get the following system of algebraic equations:

241k = 272A:5° — 60A2s® + 240A0A;15® — 90A%A;s = 0,
—2A1k +1232A;5° + 540A%s% — 60040A 15> — 18040A%s + 90A2A ;s = 0,
—16804;5° — 1020A%s® + 360AA ;s> — 90A3s + 18049A%s = 0,

7204,5° + 540A2s> + 90A3s = 0.

Solving the above system gives

- 20s3 & +/5v/ks + 4s®

Ap = -2¢%,
0 15s !

which yields the following dark soliton solution:

2053 + /5/ks + 4s° 0 o t
uy(x,t) = 15 —2s“tanh”| sx —k— +w ).
s o

4.2 The fractional Caudrey-Dodd-Gibbon equation
4.2.1 Singular soliton solutions

Let Ag, A1 #0,s,k and w be arbitrary constants. We have the following two cases:

Case (I). Assume a singular soliton solution of the form

o

t
u(x, t) = Ag + Aycsch?(&), & =sx—k— +w.
o
Inserting Eq. (22) into (3), we get the following system of algebraic equations:

Ak —32A;5° — 240AA;s* — 360A3A15 = 0,
—480A;5° — 480A%s® — 720A0A;5* — 720A0A%s = 0,

—720A;s° — 1080A%s® — 360A3s = 0.

Thus, solving the above system gives

4 ++/5Vks + 4s° - 10s° )
0= ) 1=-5,
30s

which yields the following singular soliton solution:

++/53/ks + 4s6 — 10s3 £
us(x,t) = V5 20 — §% Csch? (sx —k— + w).
S o

Case (II). Assume a singular soliton solution of the form

o

t
ulx,t) = Ag + A; coth®(£), € =sx—k— +w.
o
Inserting Eq. (26) into (3), we get the following system of algebraic equations:

241k = 272A,5° — 120A25% + 480A0A5° — 3604345 = 0,

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

Page 5 of 12
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—2A1k + 1232A;5° + 1080A7s> — 120040415 — 720A0A%s + 360A5A;s = 0,
—1680A,5° — 2040435 + 720A0A,5> — 360A3s + 7204A%s = 0,

72045 + 1080A%s% + 360435 = 0. (27)

Thus, solving the above system gives

205 £ /5v/ks + 4s° )

A Al = -5 28
0 30s 1 S (28)

which yields the following singular soliton solution:

205 £ /5/ks + 4sb

30s

tOl
us(x, t) —s% coth? (sx - k; + w). (29)

4.3 The fractional Lax equation
4.3.1 Bright soliton solution
Let Ag,A; #0,s,k and w be arbitrary constants. Assume a bright soliton solution of the

form
9 ¢
ulx,t)=Ag+Arsech®(§), &=sx—k— +w. (30)
o
Substituting Eq. (30) into (4), we get the following system of algebraic equations:

—2A1k + 32A:5° + 80ApA;5> + 60A3A;s = 0,
—480A;5° + 320A%s® — 240A0A; s> + 1204A%s = 0,

720A:s° — 600A2s> + 60A3s = 0. (31)
Thus, solving the above system gives
1
Ao=3 (V138> - 55%), A1 =FV13s>+55°,  k=4(F5/135° +195°),  (32)

which yields the following bright soliton solution:
1 t*
us(x, t) = 3 (j:v 13s% — 532) + (:FV 1352 + 532) sech? (sx —k— + w). (33)
o

4.3.2 Dark soliton solution
Let Ag, A1 #0,s,k and w be arbitrary constants. Let us assume a bright soliton solution in
the form

o

t
u(x,t) = Ag + Ar tanh(£), & =sx—k— +w. (34)
o
Substituting Eq. (34) into (4), we get the following system of algebraic equations:

241k — 272A,5° — 120A7s® + 16040A ;s> — 60A%A;5 = 0,

—2A1k +1232A;5° + 760A7s> — 40040A ;s> — 120A0A%s + 60A%A;s = 0,
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—16804,5° — 1240A%s% + 240A0A;s* — 60A3s + 12049A%s = 0,

720A:s° + 600A2s> + 60A3s = 0. (35)

Thus, solving the above system gives

2
Ag = 3 (£V/13s* +55%), Ay = —/13s* F 552, k =4(¥5v/13s° +195°),  (36)

which yields the following dark soliton solution:
2 t*
ug(x,t) = 3 (:i:\/ 13s% + 5s2) + (:FSV 13s° + 1955) tanh? <Sx —k— + w). (37)
o

4.4 The fractional Kaup-Kuperschmidt equation
4.4.1 Exponential solution
Let A;,As # 0,k and ¢ be arbitrary constants. We assume an exponential solution in the

form

§

ulx,t) = Ay +A2(1+e7)2, £= k(x—c%). (38)

Substituting Eq. (38) into (5), we get the following system of algebraic equations:

ZOA%Azk + 10A1A2k3 —A2Ck +A2k5 =0,

60A2Azk + 40A1 Ask — 90A;1 A2k + 35432k — 3Ayck — 57A2k° = 0,

40ATA2k + 40A1 A5k — 100A1 A5k + 20A5k — 23543k — 2A5¢k + 3024,k = 0,
—40A3 A2k — 40A1 A%k + 100A1A2k% — 20A3k + 235A2K3 + 2A,ck — 3024,k° = 0,
—60A2 Ak — 40A1 A%k + 90A1 A2k — 35A3K> + 3A,ck + 57A5k° = 0,

—20A3A2k — 10A1A,k% + Ayck — Axk® = 0. (39)
Thus, solving the above system gives

Case one: A; = k2, A,y = 122, ¢=11k%

(40)
Case two: Alz—%, Ay = %) c= §,
which yield the following solutions:
122 k-11K+E0)
ur(x,t) = —k* 4 —————, (41)
(1 + ek(x—11k4%))2
or
2 BkZek(x—li—4 %)
ug(x,t) = —— T (42)
2(1 + T )2
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4.5 The fractional Ito equation

4.5.1 Exponential solution

Let A1, Az # 0,k and ¢ be arbitrary constants. Assume we have an exponential solution in
the form

é X t
u(x, t) =A1 +A2m, E = (x—c;). (43)

Substituting Eq. (43) into (6), we get the following system of algebraic equations:

242 A0k — Agck + 3A1A5k3 + Ask® = 0,

6AZAsk + 4A1ASk — 3Ayck — 27A1 Ak + 9AK® — 57Ak° = 0,

4A2Ayk + 4A1 A%k + 2A3k — 2A5ck — 30A1 A2k — 63A%K% + 3024,k = 0,
—4A Ak — 4A ASk — 2A5K + 2Asck + 30A1 A2k + 63A3K% — 3024,K° = 0,
—6A2 A2k — 4ALAZK + 3Asck + 27A1 A2k — 9ALK® + 574,k = 0,

—2A2Ask + Ayck — 3A1 A,k — Ay = 0. (44)

Thus, solving the above system gives

Aj=-—7, Ay=30K,  c=6k, (45)
which yield the following solutions:

5K2 30k2eKe-6K' )
—+

—_— 46
(1 + ek-6k* T2 (46)

ug(x,t) = —

5 Graphical results and discussion
In this section, we give some graphical depictions to some of the acquired solutions us-
ing the devised hyperbolic and exponential ansatz methods for the class of fifth-order
Korteweg—de Vries equations under consideration. Both the 2-dimensional and the 3-
dimensional plots are presented. Based on the ansatz methods devised, we have con-
structed bright and dark soliton solutions for the fractional Sawada—Kotera equation in
Egs. (17) and (21); singular soliton solutions for the fractional Caudrey—Dodd—Gibbon
in equations (25) and (29); bright and dark soliton solutions for the fractional Lax equa-
tion in Egs. (33) and (37); exponential solutions for the fractional Kaup—Kuperschmidt in
Egs. (41) and (42); and finally the exponential solution for the fractional Ito in Eq. (46). In
Fig. 1, we plot the dark soliton solution of the fractional Sawada—Kotera equation given
in equation (19). In Fig. 2, we plot the singular solution of the fractional Caudrey—Dodd-
Gibbon given in Eq. (25). In Fig. 3, we plot the exponential solution of the fractional Kaup—
Kuperschmidt equation given in Egs. (36). In these figures, we study the effect of the frac-
tion order on the variation of the wave displacement. Figures 1 and 3 cleanly show bell-
shaped solution, while Fig. 2 gives a singular solution representation.

In Figs. 1-3, the fractional order « clearly affected on the propagating of wave solution
in which the amplitude is increased with the increase of «.
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x=0
12
1.0
08 — a=03
% 06 — a=05
S o
3 04 — a=07
02 — a=09
0.0
0 1 2 3 4
t-axis
Figure 1 Graphical depiction of the solution given in Eq. (21) when k=2,5=0.8, w=0.1
x=0
-0.41
-0.2 — a=03
ug(x,t) Z 05
% — a=0.
-0.08 5 -03
-0.10 04 o a=07
- — a=09
-0.5
1 2 3 4
Xx-axis t-axis
20 0
Figure 2 Graphical depiction of the solution given in Eq. (29) when k=2,5=08, w =1
x=0
1.0 ‘
_ 0.5 — a=03
£ — a=05
3
0.0 — a=07
— a=09
-05
0 1 2 3 4
t-axis
Figure 3 Graphical depiction of the solution given in Eq. (42) when k=2

6 Conclusion

In summary, the present paper investigates a well-known class of fifth-order Korteweg—de
Vries equations by devising novel hyperbolic and exponential ansatze in the presence of a
time-fractional order derivative. The fractional derivative is considered to be taken in the
sense of the conformable fractional derivative. Various solitons and solutions of the equa-
tions including bright solitons, dark solitons, singular solitons and certain exponential

solutions have been realized in the study. We finally depict some of the obtained solutions

Page 9 of 12
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graphically and conclude that similar considerations of various evolution equations can

be done using the devised ansatze.
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