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Abstract
In this article, a fractional-order mathematical physics model, advection–dispersion
equation (FADE), will be solved numerically through a new approximative technique.
Shifted Vieta–Lucas orthogonal polynomials will be considered as the main base for
the desired numerical solution. These polynomials are used for transforming the FADE
into an ordinary differential equations system (ODES). The nonstandard finite
difference method coincidence with the spectral collocation method will be used for
converting the ODES into an equivalence system of algebraic equations that can be
solved numerically. The Caputo fractional derivative will be used. Moreover, the error
analysis and the upper bound of the derived formula error will be investigated. Lastly,
the accuracy and efficiency of the proposed method will be demonstrated through
some numerical applications.
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1 Introduction
The fractional-order differential equations have been widely used for describing a variety
of phenomena in physics, astrophysics, medicine, chemistry, optimal control, engineer-
ing, biology, fluid dynamics, etc. (see, for instance, [9, 18, 26–28]). The ordinary/partial
differential equations that contain fractional-order derivatives provide more flexible mod-
els compared with the classical ones that are characterized by integer-orders [2, 7, 10]. To
understand the idea of the fractional derivative more clearly, see the example of the Lane–
Emden-type equations of the fractional-order derivatives that include aspects of a stellar
structure, the thermal history of a spherical cloud of the gas, isothermal gas spheres, and
thermionic currents [19]. It is well known that the ordinary Lane–Emden equation does
not provide the correct description of the dynamics for the systems in the complex media
[5]. This example proves and supports the fractional-order derivative representation of
equations such as the diffusion equation, advection–dispersion equation, wave equation,
heat equation, Bagley–Torvik equation, as well as other applications [13, 16, 17, 24, 34, 36].

In many fractional-order models, the analytical solution is more complicated, therefore
the numerical solutions for these models are appropriate [1, 6, 20]. These numerical so-
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lutions depend on several techniques such as finite difference, finite volume, variational
iteration, Legendre polynomials, Chebyshev collocation, homotopy perturbation, opera-
tional matrix, variational iteration, Adams–Bashforth, nonstandard finite difference, sinc-
collocation, compact finite difference, tau method, block pulse, decomposition, radial ba-
sis, Taylor collocation, and wavelets spectral (see, for example, [5, 11, 24, 25, 35, 38]). All
these methods introduce numerical solutions for many types of fractional-order differen-
tial equations. In this work, we strive to solve the fractional-order advection–dispersion
equation numerically via a nonstandard finite difference method besides a collocation
method that depends on a new class of orthogonal polynomials (Vieta–Lucas).

Therefore, consider the following formula of the fractional-order advection–dispersion
equation (FADE) [15, 30, 31, 34]:

∂u(x, t)
∂t

= λ
∂αu(x, t)

∂xα
– μ

∂βu(x, t)
∂xβ

+ s(x, t),

0 < x < 1, 0 < t ≤ T , 1 < α ≤ 2, 0 < β ≤ 1,
(1)

with the initial condition

u(x, 0) = u(x), 0 < x < 1, (2)

and the boundary conditions

u(0, t) = u(1, t) = 0, 0 < t ≤ T . (3)

Here u(x, t) refers to the solute concentration, the fractional derivative term ∂αu(x,t)
∂xα is a dis-

persion function with the dispersion coefficient λ, the second fractional derivative ∂β u(x,t)
∂xβ

is the advection term with the average fluid velocity coefficient μ, and the last term s(x, t)
is the source/sink term. Besides that, the fractional-order terms are considered as the frac-
tional derivatives in the Caputo operator of differentiation.

The classical order advection–dispersion equation can be obtained by using the values
α = 2, β = 1 in Eq. (1) to have:

∂u(x, t)
∂t

= λ
∂2u(x, t)

∂x2 – μ
∂u(x, t)

∂x
+ s(x, t), 0 < x < 1, 0 < t ≤ T . (4)

Equation (1) is a generalization of Eq. (4), therefore, the researchers have a big chance for
modeling many problems in various areas of science such as anomalous diffusion, biology
problems, petroleum engineering, heat transfer, physical problems, and others [3, 4, 33,
37].

The fractional-order advection–dispersion equation is solved numerically through dif-
ferent approximation methods (see, for instance, [8, 14, 15, 21, 23, 29]). Despite the big
efforts of the researchers and mathematicians for solving this type of equations, many
other researchers still research new techniques and methods that give high accuracy solu-
tions for the same equations. We believe that the proposed shifted Vieta–Lucas orthogo-
nal polynomials are a new method to solve FADE, and no one used this approach to date.
Consequently, the main idea behind this work is to introduce a new numerical technique
for solving the FADE. This technique depends on the shifted Vieta–Lucas polynomials
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as a family of the desired numerical solution, besides the nonstandard finite difference
method, and the spectral collocation technique. As the final step, the obtained algebraic
system of equations will be solved numerically via any iteration method.

This paper is structured as follows. In the next section, some necessary mathematical
tools required for the construction of this work will be given. In addition, the derivation
of some important relations for shifted Vieta–Lucas polynomials will be introduced in the
same section. The desired series solution will be presented in Sect. 3. In Sect. 4, the error
bound are investigated. Construction methodology for solving the FADE that is given in
Eq. (1) via the spectral collocation method, together with the nonstandard method, will be
proposed in Sect. 5. For the demonstration of the accuracy, efficiency, and applicability of
the suggested technique, some numerical applications will be presented in Sect. 6. Lastly,
concluding remarks are reported.

2 Main mathematical tools
2.1 Caputo’s differentiation operator
Definition 2.1 ([1]) Let the function h(x) be differentiable, and let α be the order of the
derivative. Then Caputo operator of the fractional derivative can be defined as follows:

Dαh(x) =
1

�(m – α)

∫ x

0
h(m)(t)(x – t)m–(α+1) dt, α > 0, x > 0, (5)

where m – 1 < α ≤ m, m ∈N.

The Caputo operator is linear. Moreover, via Definition 2.1, the following can be claimed:

DαK = 0, K is a constant, (6)

Dαxm =

⎧⎨
⎩

0, m ∈ {0, 1, 2, . . . , �α� – 1},
�(m+1)

�(m+1–α) xm–α , m ∈N∧ m ≥ �α�,
(7)

where the ceiling function of r is �r�.

2.2 Nonstandard finite difference scheme notations
The discrete first derivative can be described by:

dy
dt

→ yr+1 – ψ(h)yr

φ(h)
,

where ψ(h) and φ(h) are functions in the step-size discretization h = 	t and

ψ(h) = 1 + O
(
h2) and φ(h) = h + O

(
h2).

This formula for the first derivative is called the nonstandard finite difference method
presentation. Also, the denominator function satisfies the condition 0 < φ(h) < 1, h → 0.
There is no determined base for the best choice of the function φ(h), but we can introduce
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the most popular functions in the nonstandard finite difference technique as follows:

φ(h) = exp(h) – 1, φ(h) = h, φ(h) = sinh(h), φ(h) =
1 – exp(–λh)

λ
, etc.

For more details, see some of Mickens’s publications [22].

2.3 Vieta–Lucas polynomials
In this part of the paper, we study a class of orthogonal polynomials, which, to the best
of our knowledge, are presented here for the first time. These polynomials can be cre-
ated by means of the recurrence relations and analytical formula to build a new family of
orthogonal polynomials that will be well-known as Vieta–Lucas polynomials.

Definition 2.2 ([12]) Consider |x| ≤ 2, then the class of polynomials of degree n ∈ N0 in
the variable x can be defined as:

VLn(x) = 2 cos(nθ ), θ = cos–1
(

x
2

)
, θ ∈ [0,π ].

This family of polynomials is called the Vieta–Lucas polynomials (VLn(x)) and N0 =
{0, 1, 2, . . .}.

Polynomial VLn(x) can be created by means of the following iterative formula:

VLn(x) = x VLn–1(x) – VLn–2(x), n = 2, 3, . . . , VL0(x) = 2, VL1(x) = x.

Also, VLn(x) can be obtained through the following explicit power series formula:

VLn(x) =
� n

2 �∑
i=0

(–1)i n�(n – i)
�(i + 1)�(n + 1 – 2i)

xn–2i, n = {2, 3, . . .}, (8)

where � n
2 � is the ceiling function.

Moreover, VLn(x) are orthogonal polynomials with respect to the following integral:

〈
VLm(x), VLn(x)

〉
=

∫ 2

–2

1√
4 – x2

VLm(x) VLn(x) dx =

⎧⎪⎪⎨
⎪⎪⎩

0, m 
= n 
= 0,

4π , m = n = 0,

2π , m = n 
= 0,

(9)

where 1√
4–x2 is the weight function corresponding to VLn(x).

2.4 Shifted Vieta–Lucas polynomials
In this subsection, the relevant properties and relations of Vieta–Lucas polynomials and
their shifts will be concluded. The shifted Vieta–Lucas polynomials (VL∗

n(x)) can be con-
sidered as a new class of orthogonal polynomials defined on the closed interval [0, 1].

Definition 2.3 The shifted Vieta–Lucas polynomials of degree n on [0, 1] can be obtained
from VLn(x) as follows:

VL∗
n(x) = VLn(4x – 2) = VL2n(2

√
x).
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Also, VL∗
n(x) are created by utilizing the following recurrence formula:

VL∗
n+1(x) = (4x – 2) VL∗

n(x) – VL∗
n–1(x), n = 1, 2, . . . , (10)

with the starting values

VL∗
0(x) = 2, VL∗

1(x) = 4x – 2. (11)

Moreover, the explicit analytical formula for VL∗
n(x) can be obtained through the following

expression:

VL∗
n(x) = 2n

n∑
i=0

(–1)i 4n–i�(2n – i)
�(i + 1)�(2n – 2i + 1)

xn–i, n = {2, 3, . . .}. (12)

Polynomials VL∗
n(x) have the orthogonality property with respect to the following inner

product:

〈
VL∗

m(x), VL∗
n(x)

〉
=

∫ 1

0
VL∗

m(x) VL∗
n(x)ω(x) dx =

⎧⎪⎪⎨
⎪⎪⎩

0, n 
= m 
= 0,

4π , n = m = 0,

2π , n = m 
= 0,

(13)

where ω(x) = 1√
x–x2 is the wight function.

Let the function u(x) be Lebesgue-square-integrable on the interval [0, 1] and suppose
that it can be expressed as a linear combination of the independent power functions in
terms of VL∗

n(x) as follows:

u(x) =
∞∑
i=0

ci VL∗
i (x), (14)

where ci are the unknown coefficients.
Generally, only the first n + 1 terms of the series in Eq. (14) is appropriate in all cases of

the approximation theory. Therefore, we have

un(x) =
n∑

i=0

ci VL∗
i (x), (15)

where the undetermined coefficients ci, i = 0, 2, . . . , n can be obtained via one of the fol-
lowing expressions:

ci =
1

δiπ

∫ 2

–2

u( x+2
4 ) VLi(x)√

4 – x2
dx, (16)

or

ci =
1

δiπ

∫ 1

0

u(x) VL∗
i (x)√

x – x2
dx, (17)
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where

δi =

⎧⎨
⎩

4, i = 0,

2, i = {1, 2, . . . , n}.
(18)

3 Derivation of the main scheme
Theorem 1 Consider the approximate solution of the main problem described in Eq. (1)
expressed in the terms of shifted Vieta–Lucas polynomials as in Eq. (15). Then, the
fractional-order terms can be transformed into algebraic equations as follows:

Dα
(
un(x)

)
=

n∑
i=�α�

i–�α�∑
k=0

ciη
(α)
i,k xi–k–α , (19)

where

η
(α)
i,k = (–1)k 4i–k2i�(2i – k)�(i – k + 1)

�(k + 1)�(2i – 2k + 1)�(i – k + 1 – α)
. (20)

Proof Consider the approximate solution for Eq. (1) as given in Eq. (15). Then applying
the fractional operator gives

Dα
(
un(x)

)
=

n∑
i=0

ciDα
(
VL∗

i (x)
)
. (21)

Using Caputo’s operator definition (7), we have

Dα
(
VL∗

i (x)
)

= 0, i = 0, 1, . . . , �α�, 1 < α ≤ 2. (22)

In addition,

Dα
(
VL∗

i (x)
)

=
i∑

k=0

(–1)k 4i–k2i�(2i – k)
�(k + 1)�(2i – 2k + 1)

Dαxi–k . (23)

Using Eqs. (6) and (7), Eq. (23) is reformulated as

Dα
(
VL∗

i (x)
)

=
i–�α�∑
k=0

(–1)k 4i–k2i�(2i – k)�(i – k + 1)
�(k + 1)�(2i – 2k + 1)�(i – k + 1 – α)

xi–k–α . (24)

Collocating Eqs. (21), (22), and (24), we have

Dα
(
un(x)

)
=

n∑
i=�α�

i–�α�∑
k=0

ci(–1)k 4i–k2i�(2i – k)�(i – k + 1)
�(k + 1)�(2i – 2k + 1)�(i – k + 1 – α)

xi–k–α . (25)

Here, Eq. (25) can be rewritten in the following form:

Dα
(
un(x)

)
=

n∑
i=�α�

i–�α�∑
k=0

ciη
(α)
i,k xi–k–α , (26)
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where

η
(α)
i,k = (–1)k 4i–k2i�(2i – k)�(i – k + 1)

�(k + 1)�(2i – 2k + 1)�(i – k + 1 – α)
. (27)

The proof is completed. �

Remark The second term of fractional-order given in our problem Eq. (1) can be trans-
ferred into an algebraic term by using the same theorem (Theorem (1)).

4 Discussion of error estimate
Theorem 2 Suppose that the function u(x) ∈ L2

ω[0, 1] and u′′(x) ≤ M, where M is a con-
stant. Then u(x) can be expressed as an infinite linear combination of shifted Vieta–Lucas
polynomials, and un(x) has only n + 1 terms of this expression. Also, this numerical so-
lution converges uniformly to the function u(x) (un(x) → u(x) as n → ∞). Moreover, the
coefficients given in Eq. (17) are bounded, i.e.,

u(x) =
∞∑
i=0

ci VL∗
i (x), (28)

where

|ci| ≤ M
4i(i2 – 1)

, i > 2. (29)

Proof Consider the function u(x) satisfying the stated conditions and having expression as
in Eq. (28). Use the approximation theory to take only n + 1 terms of this series as follows:

un(x) =
n∑

i=0

ci VL∗
i (x), (30)

where the coefficients ci, i = 0, 1, . . . , n can be determined via Eq. (17). To compute the
integrals, use the substitution 4x – 2 = 2 cos(θ ) in Eq. (17), and then the following is gained:

ci =
2

δiπ

∫ π

0
u
(

2 + 2 cos(θ )
4

)
cos(iθ ) dθ . (31)

Integrating twice by parts in Eq. (31) gives

ci =
1

4δiπ

∫ π

0
u′′

(
1 + cos(θ )

2

)
sin(θ )�i(θ ) dθ , (32)

where

�i(θ ) =
sin(i – 1)θ

i – 1
–

sin(i + 1)θ
i + 1

. (33)

Applying the absolute value properties on Eq. (32) produces

|ci| =
∣∣∣∣ 1
4δiπ

∫ π

0
u′′

(
1 + cos(θ )

2

)
sin(θ )�i(θ ) dθ

∣∣∣∣. (34)
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From the properties of the function u(x) and of the trigonometric functions, Eq. (34) is
transformed into the inequality

|ci| ≤ M
4δiπ

∫ π

0

∣∣�i(θ )
∣∣dθ . (35)

By rearranging the integration and performing some analytical manipulations, we have

|ci| ≤ M
4i(i2 – 1)

, i > 2. (36)

Hence, the proof is completed. �

Lemma 4.1 ([32]) Let f (x) be a function such that f (k) = ck and assume the following:
• f (x) is a continuous, positive, decreasing function for x ≥ n.
•

∑
cn is convergent, and Rn =

∑∞
k=n+1 ck .

Then

Rn ≤
∫ ∞

n
f (x) dx. (37)

Lemma 4.1 is necessary for the following theorem.

Theorem 3 If the function u(x) satisfies the conditions of Theorem 2, and un(x) =∑n
i=0 ci VL∗

i (x) has only n + 1 terms of this function, then an estimate of the error (in L2
ω[0, 1]

norm) can be described by the following inequality:

∥∥u(x) – un(x)
∥∥

ω
<

M
12n 3

2
. (38)

Proof The error in L2
ω[0, 1] is defined by

∥∥u(x) – un(x)
∥∥2

ω
=

(∫ 1

0

∣∣u(x) – un(x)
∣∣2

ω(x) dx
) 1

2
. (39)

Using Eqs. (14) and (15), in addition to the orthogonality property of VL∗
i (x) that was

introduced in Eq. (13), we have the following result:

∥∥u(x) – un(x)
∥∥2

ω
=

1
δiπ

∞∑
i=n+1

|ci|2. (40)

By Eq. (40) of Theorem 2, we acquire the following inequality:

∥∥u(x) – un(x)
∥∥2

ω
≤ M2

16δiπ

∞∑
i=n+1

1
i4 . (41)

An application of Lemma 4.1 leads to

∥∥u(x) – un(x)
∥∥2

ω
<

M2

16δiπ

∫ ∞

n

1
x4 dx =

M2

96πN3 . (42)
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Finally, Eq. (42) describes the error bound as the following formula:

∥∥u(x) – un(x)
∥∥

ω
<

M
12n 3

2
. (43)

The theorem is proved. �

Theorem 4 If the function u(x) ∈ [0, 1] is n times continuously differentiable and the most
square-suitable approximation for this function is un(x) defined in Eq. (15), then we have

∥∥u(x) – un(x)
∥∥ ≤ NW n+1

(n + 1)!
√

π , (44)

where

N = max
x∈[0,1]

u(n+1)(x) and W = max{1 – x0, x0}.

Proof The function u(x) can be expanded in the following series:

u(x) = u(x0) + (x – x0)u′(x0) + · · · +
(x – x0)n

(n)!
u(n)(x0) +

(x – x0)n+1

(n + 1)!
u(n+1)(ξ ), (45)

where x0 ∈ [0, 1] and ξ ∈ ]x0, x[. Assume

ūn(x) = u(x0) + (x – x0)u′(x0) + · · · +
(x – x0)n–1)

(n – 1)!
u(n–1)(x0) +

(x – x0)n

(n)!
u(n)(x0). (46)

Then

∥∥u(x) – ūn(x)
∥∥ =

∣∣∣∣ (x – x0)n+1

(n + 1)!
u(n+1)(ξ )

∣∣∣∣. (47)

If un(x) is as in Theorem (4), then

∥∥u(t) – un(x)
∥∥2 ≤ ∥∥u(x) – ūn(x)

∥∥2 =
∫ 1

0
ω(x)

[
u(x) – ūn(x)

]2 dx

=
∫ 1

0
ω(x)

[
(x – x0)n+1

(n + 1)!
u(n+1)(ξ )

]2

dx

≤ N2

[(n + 1)!]2

∫ 1

0
ω(x)

[
(x – x0)n+1]2 dx.

(48)

Now, let W = max{1 – x0, x0}, thus

∥∥u(x) – un(x)
∥∥2 ≤ N2[W n+1]2

[(n + 1)!]2

∫ 1

0
ω(x) dx. (49)

Since ω(x) = 1√
x–x2 ,

∥∥u(x) – un(x)
∥∥2 ≤ N2[W n+1]2

[(n + 1)!]2

∫ 1

0

1√
x – x2

dx

=
N2[W n+1]2

[(n + 1)!]2 · π .
(50)
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Hence,

∥∥u(x) – un(x)
∥∥ ≤ NW n+1

(n + 1)!
√

π . (51)

The proof is complete. �

5 Suggested technique for the main problem (FADE)
This section concerns the numerical solution scheme for the fractional-order advection–
dispersion equation via our proposed technique in this work. Therefore, assume the prob-
lem given in Eqs. (1)–(3).

Firstly, propose the approximate solution of this problem presented in terms of shifted
Vieta–Lucas polynomials as follows:

un(x, t) =
n∑

i=0

ci(t) VL∗
i (x). (52)

Based on Theorem 1, along with substituting Eq. (52) into Eq. (1), we have the following
equation:

n∑
i=0

dci(t)
dt

VL∗
i (x) = λ

n∑
i=�α�

i–�α�∑
k=0

ci(t)η(α)
i,k x(i–k–α)

– μ

n∑
i=�β�

i–�β�∑
k=0

ci(t)η(β)
i,k x(i–k–β) + s(x, t),

0 < x < 1, 0 < t ≤ T , 1 < α ≤ 2, 0 < β ≤ 1.

(53)

Now, collocate Eq. (53) at the roots of the function VL∗
n+1–�α�(x), which are named the

collocation points xp, as follows:

n∑
i=0

dci(t)
dt

VL∗
i (xp) = λ

n∑
i=�α�

i–�α�∑
k=0

ci(t)η(α)
i,k x(i–k–α)

p

– μ

n∑
i=�β�

i–�β�∑
k=0

ci(t)η(β)
i,k x(i–k–β)

p + s(xp, t),

p = 0, 1, . . . ,
(
n – �α�).

(54)

where ci (i = 0, 1, . . . , n) are n+1 unknown coefficients. For obtaining these coefficients n+1
algebraic equations are needed, but Eq. (54) gives us only n + 1 – �α� ordinary differential
equations that are transformed into algebraic equations. So �α� equations are required for
completing the desired system. For this aim, substitute the numerical approach (52) in the
boundary conditions, Eq. (3). Moreover, for obtaining the initial values of the coefficients
ci (i = 0, 1, . . . , n) at the initial state, we use Eq. (52) with Eq. (2) in addition to Eq. (17). The
general formula of the boundary conditions given in Eq. (3) via the terms of VL∗

n can be
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determined through the following equations:

n∑
i=0

2(–1)(i)ci(t) = 0, (55)

n∑
i=0

2ci(t) = 0. (56)

Lastly, the nonstandard finite difference method will be used for the transformation of
Eq. (54) into n + 1 –�α� algebraic equations. Hence, combining these results with Eqs. (55)
and (56) will constitute a linear system of n + 1 equations. This system can be solved nu-
merically via any suitable procedure for obtaining the unknowns ci (i = 0, 1, . . . , n) and
therefore the desired approximate solution un(x) of FADE can be calculated.

6 Numerical experiments
In this section, we introduce some examples that are solved numerically via the suggested
method. Also, comparisons of our results with other published numerical results will be
made. These examples and numerical benchmarks will be constructed to illustrate the
accuracy, applicability, and efficiency of our proposed method for solving the FADE nu-
merically.

Example 6.1 Consider the following fractional-order advection–dispersion equation [15,
30, 31, 34]:

∂u(x, t)
∂t

=
∂αu(x, t)

∂xα
–

∂βu(x, t)
∂xβ

+ s(x, t),

0 < x < 1, 0 < t ≤ T , 1 < α ≤ 2, 0 < β ≤ 1,
(57)

with the source function

s(x, t) = e–2t
(

2
(
xβ – xα

)
–

(
�(α + 1) + �(β + 1)

)
+

�(α + 1)
�(α + 1 – β)

xα–β

)
, (58)

the initial condition

u(x, 0) = xα – xβ , 0 < x < 1, (59)

and the boundary conditions

u(0, t) = u(1, t) = 0, 0 < t ≤ T . (60)

The analytic solution of Eqs. (58)–(60) is given by

u(x, t) = e–2t(xα – xβ
)
.

Apply our proposed method as follows;

u3(x, t) =
3∑

i=0

ci(t) VL∗
i (x). (61)
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Use Eq. (61) together with (54) to obtain

3∑
i=0

dci(t)
dt

VL∗
i (xp) =

3∑
i=�α�

i–�α�∑
k=0

ci(t)η(α)
i,k x(i–k–α)

p

–
3∑

i=�β�

i–�β�∑
k=0

ci(t)η(β)
i,k x(i–k–β)

p + s(xp, t), p = 0, 1,

(62)

where the collocation points xp are the roots for the shifted Vieta–Lucas polynomials of
the second degree. Also, Eqs. (55) and (56) are used respectively to have

3∑
i=0

2(–1)(i)ci(t) = 0, (63)

3∑
i=0

2ci(t) = 0. (64)

The nonstandard finite difference method given in Sect. 2.2 is applied here to convert
the two generated equations of Eq. (62) into two algebraic equations. These equations are
combined with Eqs. (63) and (64) to have a system of algebraic equations. Now, we have
four equations in four unknown coefficients ci (i = 0, 1, 2, 3). This system can be presented
in the following matrix formula:

ACn = BCn–1 + φ(h)sn, or Cn = A–1ACn–1 + φ(h)A–1sn, (65)

where

A =

⎛
⎜⎜⎜⎝

2 R1 – φ(h)G1 R2 – φ(h)G2 R3 – φ(h)G3

2 K1 – φ(h)H1 K2 – φ(h)H2 K3 – φ(h)H3

2 –2 2 –2
2 2 2 2

⎞
⎟⎟⎟⎠ ,

B =

⎛
⎜⎜⎜⎝

2 R1 R2 R3

2 K1 K2 K3

0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ ,

R1 = VL∗
1 (x0), R2 = 0, R3 = VL∗

3 (x0),

K1 = VL∗
1 (x1), K2 = 0, K3 = VL∗

3 (x1),

G1 = –η
(β)
1,0 x(1–β)

0 , G2 = η
(α)
2,0x(2–α)

0 – η
(β)
2,0 x(2–β)

0 – η
(β)
2,1 x(1–β)

0 ,

G3 = η
(α)
3,0x(3–α)

0 + η
(α)
3,1x(2–α)

0 – η
(β)
3,0 x(3–β)

0 – η
(β)
3,1 x(2–β)

0 – η
(β)
3,2 x(1–β)

0 ,

H1 = –η
(β)
1,0 x(1–β)

1 , H2 = η
(α)
2,0x(2–α)

1 – η
(β)
2,0 x(2–β)

1 – η
(β)
2,1 x(1–β)

1 ,

H3 = η
(α)
3,0x(3–α)

1 + η
(α)
3,1x(2–α)

1 – η
(β)
3,0 x(3–β)

1 – η
(β)
3,1 x(2–β)

1 – η
(β)
3,2 x(1–β)

1 ,

Cn = (cn
0, cn

1, cn
2, cn

3)T , and sn = (sn
0, sn

1, 0, 0, )T .
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At this time, the matrix equation Eq. (65) will be solved numerically via any suitable iter-
ation method with the initial values of the coefficients C0 = (c0

1, c0
2, c0

3, c0
4)T . These starting

values are obtained through Eq. (59) in addition to Eq. (17). Consequently, the coefficients
ci (i = 0, 1, 2, 3) are obtained. Hence, the desired approximate solution of the problem (57)–
(60) is calculated.

The numerical results obtained through our suggested method for the first Example 6.1
in different cases are reported in Table 1 in addition to Figs. 1, 2, 3, and 4. In Table 1,

Table 1 For Example 6.1, a comparison the absolute error results in [15] and [31], in the case α = 2,
β = 1, T = 2 at n = 5, and those in our setting when n = 3, φ(h) = 0.5(exp(2h) – 1)

x Method in [15] Method in [31] Ours

0.0 2.726× 10–5 2.198× 10–5 2.553× 10–19

0.1 3.456× 10–5 2.416× 10–5 3.155× 10–17

0.2 3.810× 10–5 2.606× 10–5 5.664× 10–17

0.3 3.809× 10–5 2.758× 10–5 7.554× 10–17

0.4 3.514× 10–5 2.865× 10–5 8.651× 10–17

0.5 3.009× 10–5 2.920× 10–5 9.107× 10–17

0.6 2.387× 10–5 2.915× 10–5 8.814× 10–17

0.7 1.735× 10–5 2.844× 10–5 7.836× 10–17

0.8 1.120× 10–5 2.704× 10–5 5.849× 10–17

0.9 5.722× 10–6 2.489× 10–5 3.329× 10–17

1.0 7.257× 10–7 2.489× 10–5 2.553× 10–19

Figure 1 Approximate and analytical solutions of Example 6.1 for n = 3 with final times T = 1 (left), T = 2
(right), and φ(h) = 0.5(exp(2h) – 1)

Figure 2 Approximate and exact solutions of Example 6.1 for n = 3 with final times T = 5 (left), T = 10 (right),
and φ(h) = 4 sinh(h/4)
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Figure 3 Approximate and exact solutions of Example 6.1 for n = 5 with final times T = 20 (left), T = 30 (right),
and φ(h) = 2 sin(h/2)

Figure 4 Exact and approximate solutions for Example 6.1 in the case of n = 5 with fractional values α = 1.8,
β = 0.8 (left), α = 1.6, β = 0.8 (right) with φ(h) = 2 sin(h/2), h = 2.5× 10–4, and T = 15

the numerical results were obtained in published articles [15] and [31], and are compared
with ours. These numerical results are reported when the parameters are α = 2, β = 1,
T = 2 at n = 5 for [15] and [31] while for the proposed technique n = 3, in addition to
the nonstandard term φ(h) = 0.5(exp(2h) – 1) with 	t = h = 0.0004. All the results of the
following figures are calculated under the same conditions, the main differences are the
nonstandard term and the final time T except in Fig. 4. Figure 1 shows the numerical and
exact solutions for Example 6.1 with the same parameters of Table 1, only the different the
final times (T = 1, T = 2). Also, Fig. 2 describes the results with a large enough time do-
main in Example 6.1. Moreover, Fig. 3 presents the results of the suggested method with
different values of the final time and the truncation terms of the approximate solutions
n = 5. Furthermore, Fig. 4 provides the results for different fractional parameters α and β

with T = 15. From Table 1, and the results in Figs. 1, 2, 3, and 4, the suggested method is
applicable and more accurate than those in [15] and [31]. Also, it is obvious that our pro-
posed method can be used for large enough times of the problem and gives good accuracy.
Finally, this discussion supported and proved the truth of the theoretical technique and
theorems introduced in this article.
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Example 6.2 ([30, 31])

∂u(x, t)
∂t

=
∂1.5u(x, t)

∂x1.5 – 2
∂u(x, t)

∂x
+ s(x, t), 0 < x < 1, 0 < t ≤ T , (66)

with the source function

s(x, t) =
(
x2 – x

)
(2t – 1) + (4x – 2)

(
t2 – t

)
– 4

√
x
π

(
t2 – t

)
, (67)

the initial condition

u(x, 0) = 0, 0 < x < 1, (68)

and the conditions

u(0, t) = u(1, t) = 0, 0 < t ≤ T . (69)

The exact solution of Eqs. (66)–(69) is

u(x, t) =
(
x2 – x

)(
t2 – t

)
.

Suppose that

u3(x, t) =
3∑

i=0

ci(t) VL∗
i (x). (70)

We use the presented method to obtain the approximate solution of this problem.
The numerical results via our suggested technique for Example 6.2 are presented in Ta-

ble 2 and the three figures thereafter. Table 2 lists the absolute error in the three cases,
T = 0.3, 0.6, and 0.9, with same step size 	t = h = 0.00025 (which will be considered in all
results of this example), φ(h) = –(exp(–1.2h) – 1)/1.2 at n = 3. In Fig. 5, the graphs of the
exact and numerical solutions for Example 6.2 for n = 3 and φ(h) = –(exp(–1.2h) – 1)/1.2
with T = 0.3 and T = 0.6 are respectively shown. The curves of the exact and numerical
solutions are plotted in Fig. 6 for Example 6.2 at n = 3 and φ(h) = 4 sinh(h/4) with T = 5 and

Table 2 For Example 6.2, the absolute error results in different cases of the final time T when n = 3,
φ(h) = –(exp(–1.2h) – 1)/1.2

x T = 0.3 T = 0.6 T = 0.9

0.0 3.469× 10–18 3.469× 10–18 0.000
0.1 8.543× 10–10 1.523× 10–9 1.166× 10–9

0.2 1.258× 10–9 3.165× 10–9 2.519× 10–9

0.3 1.311× 10–9 4.754× 10–9 3.894× 10–9

0.4 1.110× 10–9 6.119× 10–9 5.121× 10–9

0.5 7.514× 10–10 7.088× 10–9 6.033× 10–9

0.6 3.328× 10–10 7.490× 10–9 6.461× 10–9

0.7 4.887× 10–11 7.154× 10–9 6.241× 10–9

0.8 2.963× 10–10 5.908× 10–9 5.202× 10–9

0.9 3.124× 10–10 3.580× 10–9 3.178× 10–9

1.0 3.469× 10–18 3.469× 10–18 0.000
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Figure 5 Approximate and analytical solutions of Example 6.2 for n = 3 with final times T = 0.3 (left), T = 0.6
(right), and φ(h) = –(exp(–1.2h) – 1)/1.2

Figure 6 Approximate and exact solutions of Example 6.2 for n = 3 with final times T = 5 (left), T = 10 (right),
and φ(h) = 4 sinh(h/4)

Figure 7 Approximate and exact solutions of Example 6.2 for n = 5 with final times T = 20 (left), T = 30 (right),
and φ(h) = 2 sin(h/2)

T = 10, respectively. Moreover, the last figure (Fig. 7) shows the analytical and approximate
solutions of Example 6.2 for n = 5 and φ(h) = 2 sin(h/2) with T = 20 and T = 30, respec-
tively. Consequently, these obtained results show us the fact that our proposed method is
efficient and gives a high accuracy for different cases.
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7 Conclusions
In the present article, we have introduced a trustworthy method for solving a mathemat-
ical physics model of fractional-order, advection–dispersion equation, numerically. This
method was based on a class of orthogonal polynomials which is called the shifted Vieta–
Lucas polynomials. The principle strategy of the suggested treatment is transforming the
original equation into a system of ODEs by applying the spectral collocation method. Next,
we used the nonstandard finite difference method to transform these equations into alge-
braic equations. After that, the Gaussian elimination method was used (or any appropri-
ate iterative technique). Actually, we have proposed an accurate technique that converges
fast to the real solution for solving the FADEs. Also, an error estimate of our method was
derived. Some numerical applications were introduced for demonstrating the accuracy,
efficiency, and applicability of the current method. Moreover, our numerical results were
compared with other published approximation data in the literature, showing reliability
and accuracy of the proposed technique. Furthermore, this method gives us flexibility for
solving different equations appearing in applications in many fields such as physics, engi-
neering, chemistry, and others, because the given problems are solved at different values
of T . All computed results were obtained using MATLAB program. In the future, we can
apply this technique for solving many equations from applications in one and two dimen-
sions, especially in physics, such as diffusion equation, wave equation, telegraph equation,
and so on.
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