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Abstract
This paper is concerned with stability of deficiency indices for discrete Hamiltonian
systems under perturbations. By applying the perturbation theory of Hermitian linear
relations we establish the invariance of deficiency indices for discrete Hamiltonian
systems under bounded perturbations. As a consequence, we obtain the invariance
of limit types for the systems under bounded perturbations. In particular, we build
several criteria of the invariance of the limit circle and limit point cases for the
systems. Some of these results improve and extend some previous results.
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1 Introduction
In this paper, we consider the following discrete linear Hamiltonian systems with one sin-
gular endpoint:

J�y(t) – P(t)R(y)(t) = λW (t)R(y)(t), t ∈ I, (1.1λ)

where I is the integer set {t}+∞
t=0 , J is the canonical symplectic matrix, that is,

J =

(
0 –In

In 0

)
,

In is the n × n unit matrix, � is the forward difference operator, that is, �y(t) = y(t +
1) – y(t); the weight function W (t) = diag{W1(t), W2(t)}, where W1(t) and W2(t) are n × n
nonnegative Hermitian matrices, the matrix P(t) can be written as

P(t) =

(
–C(t) A∗(t)
A(t) B(t)

)
,
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where A(t), B(t), and C(t) are n × n complex-valued matrices, B(t) and C(t) are Hermitian
matrices, A∗(t) is the complex conjugate transpose of A(t), the partial right shift operator
R(y)(t) = (uT (t + 1), vT (t))T with y(t) = (uT (t), vT (t))T and u(t), v(t) ∈C

n, and λ is a complex
spectral parameter.

To ensure the existence and uniqueness of the solution of any initial value problem for
(1.1λ), we always assume that

(A1) In – A(t) is invertible in I .
For any λ ∈C, by (A1), (1.1λ) can be rewritten as a discrete symplectic system

y(t + 1) = S(t,λ)y(t), t ∈ I, (1.2λ)

in the sense of [1, 2], where E(t) = (In – A(t))–1, and

S(t,λ) =

(
E(t) E(t)(B(t) + λW2(t))

(C(t) – λW1(t))E(t) In – A∗(t) + (C(t) – λW1(t))E(t)(B(t) + λW2(t))

)

satisfies

S∗(t, λ̄)JS(t,λ) = J , ∀t ∈ I.

Some interesting issues related to discrete symplectic system (1.2λ), such as associated
maximal and minimal linear relations, Weyl–Titchmarsh theory, and nonhomogeneous
problems, were studied in [1–3].

Discrete Hamiltonian systems are of growing interest in recent years because of their
wide applications (see [3–12] and references therein). Although discrete Hamiltonian sys-
tems originate from the discretization of continuous Hamiltonian systems, there is an im-
portant difference between them. It is well known that under certain condition, the min-
imal and maximal operators generated by continuous Hamiltonian systems are densely
defined and single-valued, respectively [13, 14]. However, the minimal and maximal op-
erators generated by the general discrete Hamiltonian systems may be neither densely
defined nor single-valued in general even though the definiteness condition is satisfied
[5–7, 15, 16]. This fact was ignored in some existing literature including [3, 17]. This is an
essential difficulty that we would encounter in the study of the stability of deficiency in-
dices for discrete Hamiltonian systems under perturbations because the classical operator
theory is not applicable in this case.

To overcome this difficulty, we will apply the theory of linear relations to study system
(1.1λ). In 1961, Arens [18] initiated the study of linear relations, and his work was followed
by many scholars [19–30]. In particular, perturbation theory of linear relations has re-
ceived lots of attention, and some excellent results have been obtained, including stability
of closedness, boundedness, self-adjointness, and spectra of linear relations (see [25, 27–
30]). Recently, we studied the stability of deficiency indices of Hermitian relations and
obtained several criteria of invariance of deficiency indices of Hermitian relations under
relatively bounded perturbations [31]. Then, using our perturbation results, we obtained
the invariance of deficiency indices of second-order symmetric linear difference equations
under perturbations [32], which can be seen as the simplest example of system (1.1λ). In
this paper, we apply the results given in [31] to study the stability of deficiency indices for
(1.1λ).
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It is well known that the deficiency indices of symmetric operators or Hermitian rela-
tions play a decisive role in their self-adjoint extensions. By the generalized von Neumann
theory [19] and the GKN theory [26] a symmetric operator or Hermitian relation has a
self-adjoint extension if and only if its positive and negative deficiency indices are equal;
moreover, the numbers and types of boundary conditions of its self-adjoint extensions are
determined by its deficiency indices. So it is necessary to pay attention to the stability of
their deficiency indices under perturbations.

To the best of our knowledge, there seems to be a few results about stability of defi-
ciency indices for discrete Hamiltonian systems under perturbations. In 2013, by using
the generalized von Neumann theory Zheng [33] obtained the invariance of the minimal
and maximal deficiency indices for (1.1λ) with P(t) under bounded perturbations. In the
present paper, we apply the perturbation theory of Hermitian relations obtained in [31] to
establish several criteria of stability of deficiency indices for (1.1λ) with both of P(t) and
W (t) under bounded perturbations. Our technique is obviously different from that in [33].
By using it we could obtain the invariance of any deficiency index for (1.1λ) with P(t) un-
der bounded perturbations. These results not only cover the results obtained in [33], but
also some of them improve or weaken the conditions of the existing results. In addition,
we note that almost all criteria for limit types of (1.1λ) were established only for the limit
point and limit circle cases. However, there are seldom criteria of the intermediate cases
for (1.1λ). We remark that the results given in the present paper provide an alternate way
to determine the limit types of system (1.1λ).

The rest of this paper is organized as follows. In Sect. 2, we introduce some notations,
basic concepts, and useful fundamental results about linear relations and recall some fun-
damental results about system (1.1λ). In Sect. 3, we establish several criteria of stability
of deficiency indices for system (1.1λ) under bounded perturbations by using the per-
turbation theory of Hermitian relations obtained in [31]. As a consequence, we obtain
the invariance of limit types for the systems under bounded perturbations. In particular,
we build several criteria of the invariance of the limit circle and limit point cases for the
systems. Finally, we present an example to illustrate the perturbation results obtained in
Sect. 4.

2 Preliminaries
This section is divided into two parts. In Sect. 2.1, we introduce some notations, basic
concepts, and fundamental results about linear relations. In Sect. 2.2, we first recall the
maximal, preminimal, and minimal relations corresponding to system (1.1λ). Then we list
some useful results about (1.1λ), which will be used in the sequent sections.

2.1 Some notations, concepts, and results about linear relations
By C and R we denote the sets of complex numbers and real numbers, respectively. Let X
be a complex Hilbert space with inner product 〈·, ·〉, and let T be a linear relation in the
product space X2 with the following induced inner product, still denoted by 〈·, ·〉 without
any confusion:

〈
(x, f ), (y, g)

〉
= 〈x, y〉 + 〈f , g〉, (x, f ), (y, g) ∈ X2.
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The domain D(T) and range R(T) of T are respectively defined by

D(T) :=
{

x ∈ X : (x, f ) ∈ T for some f ∈ X
}

,

R(T) :=
{

f ∈ X : (x, f ) ∈ T for some x ∈ X
}

.

Its adjoint is defined by

T∗ =
{

(y, g) ∈ X2 : 〈g, x〉 = 〈y, f 〉 for all (x, f ) ∈ T
}

.

Further, denote

T(x) :=
{

f ∈ X : (x, f ) ∈ T
}

.

It is evident that T(0) = {0} if and only if T can uniquely determine a linear operator from
D(T) into X whose graph is T .

A linear relation T is called closed if it is a closed subspace in X2, Hermitian if T ⊂ T∗,
and self-adjoint if T = T∗.

Let T and S be two linear relations in X2, and let λ ∈C. Define

λT :=
{

(x,λf ) : (x, f ) ∈ T
}

,

T + S :=
{

(x, f + g) : (x, f ) ∈ T , (x, g) ∈ S
}

.

The subspace R(T – λI)⊥ and the number dλ(T) := dim(R(T – λI))⊥ are called the de-
ficiency space and deficiency index of T and λ, respectively [26, Definition 2.3], where
I := {(x, x) : x ∈ X}. It can be easily verified that the deficiency indices of T and T with
the same λ are equal. Further, if T is Hermitian, then dλ(T) is constant in the upper and
lower half-planes according to [26, Theorem 2.3]. Denote d±(T) := d±i(T). We say that
(d+(T), d–(T)) are the deficiency indices of T and that d±(T) are the positive and negative
deficiency indices of T , respectively.

In the following, we recall concepts of the norm of a linear relation and relatively bound-
edness of two linear relations.

Let T be a linear relation in X2. The quotient space X/T(0) is a Hilbert space [34] with
the inner product

〈
[x], [y]

〉
=

〈
x⊥, y⊥〉

, [x], [y] ∈ X/T(0),

where x = x0 + x⊥ and y = y0 + y⊥ with x0, y0 ∈ T(0) and x⊥, y⊥ ∈ T(0)⊥.
Now define the natural quotient map

QT : X → X/T(0), x �→ [x].

Further, define

T̃s = G(QT )T ,
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where G(QT ) is the graph of QT . Then T̃s is a linear operator with domain D(T) [25, Propo-
sition II.1.2]. The norm of T at x ∈ D(T) and the norm of T are defined by, respectively
(see [25, II.1]),

∥∥T(x)
∥∥ :=

∥∥T̃s(x)
∥∥,

‖T‖ := ‖T̃s‖ = sup
{∥∥T̃s(x)

∥∥ : x ∈ D(T) with ‖x‖ ≤ 1
}

.

If ‖T‖ < ∞, then T is said to be bounded [30].

Definition 2.1 ([25, Definition VII.2.1]) Let S and T be two linear relations in X2.
(1) S is said to be T-bounded if D(T) ⊂ D(S) and there exists a constant c ≥ 0 such that

∥∥S(x)
∥∥ ≤ c

(‖x‖ +
∥∥T(x)

∥∥)
, x ∈ D(T).

(2) If S is T-bounded, then the infimum of all numbers b ≥ 0 for which there exists
a constant a ≥ 0 such that

∥∥S(x)
∥∥ ≤ a‖x‖ + b

∥∥T(x)
∥∥, x ∈ D(T),

is called the T-bound of S.

Next, we recall a criterion of stability of defect indices of Hermitian relations under
relatively bounded perturbations, which will take a key role in the study of stability of
deficiency indices for (1.1λ) under perturbations.

Lemma 2.1 ([31, Corollary 3.1]) Let T and S be Hermitian relations in X2 with D(T) ⊂
D(S) and S(0) ⊂ T(0). If S is T-bounded with T-bound less than 1, then d±(T + S) = d±(T).

Lemma 2.2 ([30, Proposition 2.1]) Let T and S be two linear relations in X2. Then T =
(T – S) + S if and only if D(T) ⊂ D(S) and S(0) ⊂ T(0).

2.2 Some fundamental results about system (1.1λ)
In this subsection, we first introduce the concepts of maximal, preminimal, and minimal
relations and then list some useful results about system (1.1λ).

We denote

L2
W (I) :=

{
y =

{
y(t)

}+∞
t=0 ⊂C

2n :
∑
t∈I

R(y)∗(t)W (t)R(y)(t) < +∞
}

with the semiscalar product

〈y, z〉 :=
∑
t∈I

R∗(z)(t)W (t)R(y)(t).

Further, we define ‖y‖ := (〈y, y〉)1/2 for y ∈ L2
W (I). Since the weight function W (t) may be

singular in I , ‖ · ‖ is a seminorm. We denote

L2
W (I) := L2

W (I)/
{

y ∈L2
W (I) : ‖y‖ = 0

}
.
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Then L2
W (I) is a Hilbert space with the inner product 〈·, ·〉 (see [3, Lemma 2.5]). For a func-

tion y ∈L2
W (I), we denote by [y] the corresponding class in L2

W (I). Set

L2
W ,0(I) :=

{
y ∈L2

W (I) : there exist two integer s, k ∈ I with s ≤ k

such that y(t) = 0 for t ≤ s and t ≥ k + 1
}

.

The natural difference operator corresponding to system (1.1λ) is

L(y)(t) := J�y(t) – P(t)R(y)(t).

Set

H :=
{(

[y], [g]
) ∈ L2

W (I) × L2
W (I) : there exists y ∈ [y] such that

L(y)(t) = W (t)R(g)(t), t ∈ I
}

,

H00 :=
{(

[y], [g]
) ∈ H : there exists y ∈ [y] such that y ∈L2

W ,0(I)

and L(y)(t) = W (t)R(g)(t), t ∈ I
}

,

where H is called the maximal relation, and H00 is called the preminimal relation corre-
sponding to L or system (1.1λ); H0 := H00 is called the minimal relation corresponding
to L or to system (1.1λ).

A classification of L or (1.1λ) at t = +∞ is given in terms of d±(H0) in [3, Definition 5.1].
In particular, L is said to be in the limit point case (l.p.c.) at t = +∞ if d+(H0) = d–(H0) = n,
and in the limit circle case (l.c.c.) at t = +∞ if d+(H0) = d–(H0) = 2n. We refer to the cases
n < d±(H0) < 2n as L in the intermediate cases at t = +∞.

By nλ(H0) we denote the number of linearly independent solutions of (1.1λ) in L2
W (I).

By [5, Corollary 5.1] we know that nλ(H0) = dλ(H0) if and only if the following condition
is satisfied:

(A2) There exists a finite subset I0 := [s0, t0] ⊂ I such that for some λ ∈ C and any non-
trivial solution y(t) of (1.1λ),

∑
t∈I0

R(y)∗(t)W (t)R(y)(t) > 0. (2.1)

Remark 2.1 By [5, Theorem 3.1] H0 and H00 are both Hermitian relations in L2
W (I)×L2

W (I).
Condition (A2) is called the definiteness condition for (1.1λ). It was shown in [5] that if (2.1)
holds for some λ ∈C, then it holds for any λ ∈C. As pointed out in Sect. 1, the definiteness
condition (A2) cannot guarantee H0 to be densely defined or H to be single-valued. In fact,
if there exists t0 ∈ I such that W (t0) �= 0, then H0 is Hermitian and nondensely defined
in L2

W (I) × L2
W (I), and H is multivalued in L2

W (I) × L2
W (I) by [5, Theorem 3.1] and [7,

Theorems 3.1 and 3.2]. So the classical perturbation theory of symmetric operators is not
available in the study of stability of deficiency indices of H0 under perturbations. We will
apply the result about the perturbation of Hermitian relations, that is, Lemma 2.1, to study
this problem in the present paper.

Finally, we introduce a criterion of limit point case (see [5, Theorem 6.1]) and the largest
index theorem (see [3, Theorem 5.5]) for (1.1λ).
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Lemma 2.3 (1.1λ) is in l.p.c. at t = +∞ if (A1) and

+∞∑
t=1

√
w1(t – 1)w2(t) = ∞, (2.2)

where wj(t) is the minimal eigenvalue of Wj(t) for j = 1, 2.

Theorem 2.1 Assume that (A1) holds. If there exists λ0 ∈ C such that all the solutions of
(1.1λ0 ) are in L2

W (I), then this is true for all λ ∈C.

Remark 2.2 Theorem 2.1 was significantly generalized in [35]. In the smallest deficiency
index case, that is, when (1.1λ) is in l.p.c. at t = +∞, it follows from [5, Theorem 5.2] that
dλ(H0) ≡ n for all λ ∈ C if (A1) holds. In addition, if (A2) holds, then nλ(H0) ≡ n for all
λ ∈C.

3 Main results
In this section, we study the stability of deficiency indices for system (1.1λ) with coefficient
matrices under bounded perturbations with respect to the weight functions. We establish
several criteria of stability of deficiency indices for (1.1λ) under bounded perturbations by
using the perturbation theory of Hermitian relations obtained in [31]. As a consequence,
we obtain the invariance of limit types of (1.1λ) under bounded perturbations. In partic-
ular, we build several criteria of the invariance of the limit circle and limit point cases for
the systems.

Consider the perturbed discrete Hamiltonian system with P(t) and W (t) perturbed by
P̃(t) and W̃ (t), respectively, that is,

L̃(y)(t) := J�y(t) – P̃(t)R(y)(t) = λW̃ (t)R(y)(t), t ∈ I, (3.1λ)

where the weight function W̃ (t) = diag{W̃1(t), W̃2(t)} with n × n matrices W̃j(t) ≥ 0, j =
1, 2; P̃(t) can be written as

P̃(t) =

(
–C̃(t) Ã∗(t)
Ã(t) B̃(t)

)
,

where Ã(t), B̃(t), and C̃(t) are n × n complex-valued matrices, B̃(t) and C̃(t) are Hermitian
matrices, and Ã∗(t) is the complex conjugate transpose of Ã(t). Similarly, (Ã1), (Ã2), L2

W̃ (I),
L2

W̃ ,0(I), L2
W̃ (I), ‖ · ‖W̃ , 〈·, ·〉W̃ , H̃ , H̃00, H̃0, dλ(H̃0), and nλ(H̃0) are defined as in Sects. 1

and 2.2.
The rest of this section is divided into two parts based on whether the weight matrix is

perturbed.

3.1 Stability of deficient indices for (1.1λ) in the case of W̃(t) = W(t)
In this subsection, we pay our attention on stability of deficiency indices for system (1.1λ)
in the case of W̃ (t) = W (t) for t ∈ I . By applying the perturbation theory of Hermitian
relations, we establish several criteria of stability of deficiency indices for (1.1λ) under
bounded perturbations. As a consequence, we obtain the invariance of limit types of (1.1λ)
under bounded perturbations.
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Theorem 3.1 Assume that (A1) holds. Let W̃ (t) = W (t) for t ∈ I . If there exist nonnegative
constants cj and real-valued functions cj(t) with |cj(t)| ≤ cj for j = 1, 2 such that

P̃(t) – P(t) = diag
{

c1(t)W1(t), c2(t)W2(t)
}

, t ∈ I, (3.2)

then d±(H0) = d±(H̃0).

Proof It follows from (3.2) that Ã(t) = A(t) for t ∈ I . So (Ã1) holds since (A1) holds. Since
the deficient indices of H0 and H̃0 are equal to those of H00 and H̃00, respectively, it suffices
to show that

d±(H00) = d±(H̃00). (3.3)

By Remark 2.1 and the assumption that W̃ (t) = W (t) for t ∈ I it follows that H00 and H̃00

are both Hermitian relations in L2
W (I) × L2

W (I). Next, we will prove (3.3) by Lemma 2.1.
The proof is divided into three steps.

Step 1. We prove that D(H00) = D(H̃00).
It is evident that L2

W̃ ,0(I) = L2
W ,0(I) since W̃ (t) = W (t) for t ∈ I . For any [y] ∈ D(H00),

there exist y ∈ [y] and g ∈L2
W (I) such that y ∈L2

W ,0(I) and

L(y)(t) = J�y(t) – P(t)R(y)(t) = W (t)R(g)(t), t ∈ I. (3.4)

This, together with (3.2), yields that

L̃(y)(t) = J�y(t) – P̃(t)R(y)(t)

= J�y(t) – P(t)R(y)(t) +
(
P(t) – P̃(t)

)
R(y)(t)

= W (t)R(g)(t) – diag
{

c1(t)W1(t), c2(t)W2(t)
}

R(y)(t) t ∈ I. (3.5)

Take g̃(t) = (g̃T
1 (t), g̃T

2 (t))T with g̃j(t) ∈ C
n, j = 1, 2, such that

g̃1(t + 1) = g1(t + 1) – c1(t)y1(t + 1), g̃2(t) = g2(t) – c2(t)y2(t), t ∈ I,

where y(t) = (yT
1 (t), yT

2 (t))T and g(t) = (gT
1 (t), gT

2 (t))T with yj(t), gj(t) ∈ C
n, j = 1, 2. Then it

follows from (3.5) that L̃(y)(t) = W (t)R(g̃)(t) for t ∈ I . In addition, noting that y ∈L2
W ,0(I),

g ∈L2
W (I), and |cj(t)| ≤ cj, we get that g̃ ∈L2

W (I), and so ([y], [g̃]) ∈ H̃00. Thus [y] ∈ D(H̃00).
Hence D(H00) ⊂ D(H̃00). With a similar argument, we can show that D(H̃00) ⊂ D(H00).
Consequently, D(H00) = D(H̃00).

Step 2. We show that H00(0) = H̃00(0).
For any [g] ∈ H00(0), there exist g ∈ [g] and y ∈ L2

W ,0(I) with [y] = 0 such that (3.4) and
(3.5) hold. Note that [y] = 0 implies that W (t)R(y)(t) = 0 for t ∈ I . Hence it follows from
(3.5) that L̃(y)(t) = W (t)R(g)(t) for t ∈ I . This implies that [g] ∈ H̃00(0). Thus H00(0) ⊂
H̃00(0). Similarly, we can show that H̃00(0) ⊂ H00(0), and thus H00(0) = H̃00(0).

Step 3. We show that H̃00 – H00 is H00-bounded with H00-bound 0, that is, H̃00 – H00 is
bounded.
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It is evident that H̃00 – H00 is a Hermitian relation in L2
W (I) × L2

W (I) since H00 and H̃00

are Hermitian relations in L2
W (I) × L2

W (I). In addition, since D(H00) = D(H̃00) and H00(0) =
H̃00(0), H̃00 = H̃00 – H00 + H00 according to Lemma 2.2.

Based on the discussions in Step 1, for any [y] ∈ D(H00) = D(H̃00) = D(H̃00 – H00), there
exist g, g̃ ∈L2

W (I) and y ∈ [y] with y ∈L2
W ,0(I) such that

R(g̃ – g)(t) = – diag
{

c1(t)In, c2(t)In
}

R(y)(t)

for t ∈ I and ([y], [g̃ – g]) ∈ H̃00 – H00, that is, [g̃ – g] ∈ (H̃00 – H00)([y]). Therefore

∥∥(H̃00 – H00)
(
[y]

)∥∥ ≤ ∥∥[g̃ – g]
∥∥ ≤ max

{|c1|, |c2|
}‖y‖.

So H̃00 – H00 is bounded, that is, H̃00 – H00 is H00-bounded with H00-bound 0.
Based on these three statements, it follows that H00 and H̃00 – H00 satisfy the conditions

in Lemma 2.1. Therefore d±(H̃00 – H00 + H00) = d±(H̃00) = d±(H00) by Lemma 2.1. So (3.3)
holds. This completes the proof. �

Remark 3.1
(1) By using the generalized von Neumann theory, Zheng [33] showed the invariance of

the minimal and maximal deficiency indices of (1.1λ) under assumptions (A1) and
(A2), W̃ (t) = W (t) for t ∈ I , and the condition that

P̃(t) – P(t) = diag
{

C0W1(t), B0W2(t)
}

, (3.6)

where B0 and C0 are constants. Theorem 3.1 extends the results in [33]. By applying
the perturbation theory of Hermitian relations we do not need that condition (A2)
holds in Theorem 3.1. Furthermore, we obtain the invariance for any deficient index
of (1.1λ) under assumption (A1), W̃ (t) = W (t) for t ∈ I , and condition (3.2) in
Theorem 3.1.

(2) Note that (3.2) implies that c1(t) and c2(t) are both real-valued functions. In fact,
P̃(t) – P(t) is Hermitian since P̃(t) and P(t) are Hermitian matrices. This, together
with W (t) ≥ 0 and (3.2), yields that c1(t) and c2(t) are real-valued. With a similar
argument, B0 and C0 in (3.6) also must be real numbers. This fact was ignored in the
proof of Corollaries 3.1 and 3.2 in [33], where the author regarded the perturbation
as (λ – λ0)W (t) for any λ,λ0 ∈C.

Let E and F be two Hermitian matrices. In this paper, we write E ≥ F if E – F ≥ 0.
By comparing with Theorem 3.1 the following result imposes a weaker restriction on

P̃(t) – P(t) when W (t) = W̃ (t) > 0.

Theorem 3.2 Assume that (A1) and (Ã1) hold. Let W̃ (t) = W (t) > 0 for t ∈ I . If there exist
two constants c1 and c2 such that

c1W (t) ≤ P̃(t) – P(t) ≤ c2W (t), t ∈ I, (3.7)

then d±(H0) = d±(H̃0).
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Proof The main idea of the proof is similar to that of Theorem 3.1. It suffices to show that
(3.3) holds by Lemma 2.1. The proof is divided into three steps.

Step 1. We prove that D(H00) = D(H̃00).
It is evident that L2

W̃ ,0(I) = L2
W ,0(I) since W̃ (t) = W (t) > 0 for t ∈ I . For any [y] ∈ D(H00),

there exist y ∈ [y] and g ∈ L2
W (I) such that y ∈ L2

W ,0(I) and (3.4) holds. Take g̃(t) :=
(g̃T

1 (t), g̃T
2 (t))T with g̃j(t) ∈C

n, j = 1, 2, such that

(
g̃T

1 (t + 1), g̃T
2 (t)

)T = W –1(t)
[
J�y(t) – P̃(t)R(y)(t)

]
, t ∈ I.

Then the corresponding class [g̃] ∈ L2
W (I) since y ∈L2

W ,0(I) and

L̃(y)(t) = J�y(t) – P̃(t)R(y)(t)

= W (t)R(g)(t) –
(
P̃(t) – P(t)

)
R(y)(t)

= W (t)R(g̃)(t), t ∈ I. (3.8)

Thus ([y], [g̃]) ∈ H̃00. Hence, [y] ∈ D(H̃00). Therefore, D(H00) ⊂ D(H̃00). With a similar ar-
gument, we can show that D(H̃00) ⊂ D(H00). Consequently, D(H00) = D(H̃00).

Step 2. We show that H00(0) = H̃00(0).
For any [g] ∈ H00(0), there exist g ∈ [g] and y ∈L2

W ,0(I) with [y] = 0 such that (3.4) holds.
Then, based on the discussions in Step 1, there exists g̃ ∈ L2

W (I) such that (3.8) holds. It
follows from (3.7) that

c1R(y)∗(t)W (t)R(y)(t) ≤ R(y)∗(t)
(
P̃(t) – P(t)

)
R(y)(t) ≤ c2R(y)∗(t)W (t)R(y)(t), t ∈ I,

which, together with [y] = 0, yields that (P̃(t) – P(t))R(y)(t) = 0 for t ∈ I since W (t)R(y)(t) =
0 for t ∈ I . Hence it follows from (3.8) that L̃(y)(t) = W (t)R(g)(t) for t ∈ I . This implies that
[g] ∈ H̃00(0). Thus H00(0) ⊂ H̃00(0). Similarly, we can show that H̃00(0) ⊂ H00(0), and thus
H00(0) = H̃00(0).

Step 3. We show that H̃00 – H00 is H00-bounded with H00-bound 0, that is, H̃00 – H00 is
bounded.

It is evident that H̃00 – H00 is a Hermitian relation in L2
W (I) × L2

W (I) and H̃00 = H̃00 –
H00 + H00 according to Lemma 2.2.

Based on the discussions in Step 1, for any [y] ∈ D(H00) = D(H̃00) = D(H̃00 – H00), there
exist y ∈ [y] with y ∈ L2

W ,0(I) and g, g̃ ∈ L2
W (I) such that (3.4) and (3.8) hold. This means

that ([y], [g]) ∈ H00 and ([y], [g̃]) ∈ H̃00. Then ([y], [g̃ – g]) ∈ H̃00 – H00, that is, [g̃ – g] ∈
(H̃00 – H00)([y]). This, together with (3.8), yields that

∥∥(H̃00 – H00)
(
[y]

)∥∥2 ≤ ∥∥[g̃ – g]
∥∥2 =

∑
t∈I

R(g̃ – g)∗(t)W (t)R(g̃ – g)(t)

=
∑
t∈I

R(g̃ – g)∗(t)
(
P(t) – P̃(t)

)
R(y)(t)

=
∑
t∈I

R(g̃ – g)∗(t)
(
P(t) – P̃(t) + c2W (t)

)
R(y)(t)

– c2
∑
t∈I

R(g̃ – g)∗(t)W (t)R(y)(t). (3.9)
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It follows from (3.7) that 0 ≤ P(t) – P̃(t) + c2W (t) ≤ (c2 – c1)W (t) for t ∈ I . So P(t) – P̃(t) +
c2W (t) is positive semidefinite. Thus by using Cauchy’s inequality from (3.9) it follows that

∥∥(H̃00 – H00)
(
[y]

)∥∥2

≤ ∥∥[g̃ – g]
∥∥2

≤
(∑

t∈I

R(g̃ – g)∗(t)
(
P(t) – P̃(t) + c2W (t)

)
R(g̃ – g)(t)

)1/2

×
(∑

t∈I

R(y)∗(t)
(
P(t) – P̃(t) + c2W (t)

)
R(y)(t)

)1/2

+ |c2|
(∑

t∈I

R(g̃ – g)∗(t)W (t)R(g̃ – g)(t)
)1/2(∑

t∈I

R(y)∗(t)W (t)R(y)(t)
)1/2

≤ (c2 – c1)
(∑

t∈I

R(g̃ – g)∗(t)W (t)R(g̃ – g)(t)
)1/2(∑

t∈I

R(y)∗(t)W (t)R(y)(t)
)1/2

+ |c2|‖g̃ – g‖‖y‖
≤ (c2 – c1)‖g̃ – g‖‖y‖ + |c2|‖g̃ – g‖‖y‖,

which yields that ‖(H̃00 – H00)([y])‖ ≤ (c2 – c1 + |c2|)‖y‖. This implies that H̃00 – H00 is
H00-bounded with H00-bound 0, that is, H̃00 – H00 is bounded.

Based on these three statements, it follows that H00 and H̃00 – H00 satisfy the conditions
in Lemma 2.1. Therefore d±(H̃00) = d±(H00) by Lemma 2.1. So (3.3) holds. This completes
the proof. �

In the particular case that W1(t) > 0 and W2(t) = 0, we obtain the following result.

Theorem 3.3 Assume that (A1) holds. Let W1(t) = W̃1(t) > 0 and W2(t) = W̃2(t) ≡ 0 for
t ∈ I . If there exist two constants c1 and c2 such that (3.7) holds, then d±(H0) = d±(H̃0).

Proof The main idea of the proof is similar to that of Theorem 3.2 with only Step 1 being
replaced by the following:

Step 1. We prove that D(H00) = D(H̃00).
It is evident thatL2

W̃ ,0(I) = L2
W ,0(I) since W̃ (t) = W (t) for t ∈ I . For any [y] ∈ D(H00), there

exist y ∈ [y] and g ∈ L2
W (I) such that y ∈ L2

W ,0(I) and (3.4) holds. Next, we will show that
[y] ∈ D(H̃00). To prove [y] ∈ D(H̃00), it suffices to prove that there exists g̃ ∈L2

W (I) such that
(3.8) holds. By (3.7) and the assumptions that W1(t) = W̃1(t) > 0 and W2(t) = W̃2(t) ≡ 0 for
t ∈ I , we have that

P̃(t) – P(t) – c1W (t) =

(
C(t) – C̃(t) – c1W1(t) Ã∗(t) – A∗(t)

Ã(t) – A(t) B̃(t) – B(t)

)
≥ 0,

c2W (t) –
(
P̃(t) – P(t)

)
=

(
c2W1(t) – C(t) + C̃(t) A∗(t) – Ã∗(t)

A(t) – Ã(t) B(t) – B̃(t)

)
≥ 0.

(3.10)

According to [36, Observation 7.1.2.], we get that B̃(t) – B(t) ≥ 0 and B(t) – B̃(t) ≥ 0 for
t ∈ I . Thus B(t) = B̃(t) for t ∈ I . This, together with (3.10), yields that A(t) = Ã(t) for t ∈ I by
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[36, Observation 7.1.10.]. Consequently, (Ã1) holds, and P̃(t) – P(t) = diag{C(t) – C̃(t), 0}.
Inserting it into (3.8), we get that

g̃1(t + 1) = g1(t + 1) – W –1
1 (t)

(
C(t) – C̃(t)

)
y1(t + 1)

for t ∈ I , where y(t) = (yT
1 (t), yT

2 (t))T , g(t) = (gT
1 (t), gT

2 (t))T , and g̃(t) = (g̃T
1 (t), g̃T

2 (t))T with
yj(t), gj(t), g̃j(t) ∈ C

n, j = 1, 2. In addition, noting that y ∈ L2
W ,0(I) and g ∈ L2

W (I), we have
that

∑
t∈I R(g̃)∗(t)W (t)R(g̃)(t) < +∞. So the corresponding class [g̃] ∈ L2

W (I). Thus [y] ∈
D(H̃00). Hence D(H00) ⊂ D(H̃00). With a similar argument, we can show that D(H̃00) ⊂
D(H00). Consequently, D(H00) = D(H̃00). The proof is complete. �

Remark 3.2 We remark that (3.7) implies that c1 and c2 are real numbers since P(t), P̃(t),
and W (t) are Hermitian matrices.

The following result is a direct consequence of Theorems 3.1–3.3.

Corollary 3.1 If any of the conditions of Theorems 3.1, 3.2, and 3.3 hold, then L is in the
limit (d+(H0), d–(H0)) case at +∞ if and only if L̃ is in the limit (d+(H0), d–(H0)) case at
+∞. In particular, L is in l.c.c. at +∞ if and only if L̃ is in l.c.c. at +∞; L is in l.p.c. at +∞
if and only if L̃ is in l.p.c. at +∞.

3.2 Stability of deficient indices for (1.1λ) in the case of W̃(t) �= W(t)
In this subsection, we study the stability of deficiency indices for system (1.1λ) when
W̃ (t) �= W (t) for t ∈ I . Note that H0 and H̃0 are defined in (L2

W (I))2 and (L2
W̃ (I))2, re-

spectively, and it is difficult to study the stability of deficiency indices of H0 and H̃0 since
(L2

W (I))2 and (L2
W̃ (I))2 are different spaces. So we turn to study the invariance of the limit

circle and limit point cases.

Theorem 3.4 Assume that (A1) holds. Let P̃(t) = P(t) for t ∈ I . If there exist two positive
constants c1 and c2 such that

c1W (t) ≤ W̃ (t) ≤ c2W (t), t ∈ I, (3.11)

then L is in l.c.c. at +∞ if and only if L̃ is in l.c.c. at +∞.

Proof First, consider the necessity. Suppose that L is in l.c.c. at +∞. Then d±(H0) = 2n. By
(2) of [5, Corollary 5.1] we get that n±(H0) = 2n. It follows from Theorem 2.1 that nλ(H0) =
2n for all λ ∈C. Again by (2) of [5, Corollary 5.1], n0(H0) – d0(H0) = n±(H0) – d±(H0), that
is, 2n – d0(H0) = 2n – 2n. Hence d0(H0) = 2n.

Next, we will show that d0(H̃0) = d0(H0). It suffices to prove that H̃0 and H0 with λ =
0 have the same deficiency space, that is, R(H̃0)⊥ = R(H0)⊥. By [26, Lemma 2.4] and [5,
Theorem 3.1],

R(H0)⊥ =
{

[y] ∈ L2
W (I) :

(
[y], 0

) ∈ H∗
0
}

=
{

[y] ∈ L2
W (I) :

(
[y], 0

) ∈ H
}

=
{

[y] ∈ L2
W (I) : there exists y ∈ [y] such that L(y)(t) = 0, t ∈ I

}
.
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With a similar argument, we can show that

R(H̃0)⊥ =
{

[y] ∈ L2
W̃ (I) : there exists y ∈ [y] such that L̃(y)(t) = 0, t ∈ I

}
.

Since P̃(t) = P(t) for t ∈ I , L̃(y)(t) = L(y)(t) for t ∈ I . In addition, it follows from (3.11) that
L2

W (I) = L2
W̃ (I). Thus R(H̃0)⊥ = R(H0)⊥. Consequently, d0(H̃0) = d0(H0) = 2n. This, together

with [5, Theorem 5.2] and the fact that n ≤ dλ(H̃0) ≤ 2n, yields that d±(H̃0) = 2n. Therefore
L̃ is in l.c.c. at +∞.

With a similar argument, the sufficiency can be shown by noting that (3.11) implies
1
c2

W̃ (t) ≤ W (t) ≤ 1
c1

W̃ (t) for t ∈ I . This completes the proof. �

Introduce the following new system:

J�y(t) – P̃(t)R(y)(t) = λW (t)R(y)(t), t ∈ I. (3.12λ)

If we regard (3.12λ) as the perturbation of (1.1λ) and (3.1λ) as the perturbation of (3.12λ),
then the following two results can be directly derived by Theorem 3.4 and Corollary 3.1.

Theorem 3.5 Assume that (A1) holds. If (3.2) and (3.11) hold, then L is in l.c.c. at +∞ if
and only if L̃ is in l.c.c. at +∞.

Theorem 3.6 Assume that (A1) holds. If (3.7) and (3.11) with W1(t) > 0 and either W2(t) >
0 or W2(t) = 0 for t ∈ I hold, then L is in l.c.c. at +∞ if and only if L̃ is in l.c.c. at +∞.

Theorem 3.7 Assume that (A1) and (3.11) hold. Then (2.2) holds if and only if

+∞∑
t=1

√
w̃1(t – 1)w̃2(t) = ∞, (3.13)

where w̃j(t) is the minimal eigenvalue of W̃j(t) for j = 1, 2. Moreover, L is in l.p.c. at +∞ if
and only if L̃ is in l.p.c. at +∞ in this case.

Proof It follows from (3.11) that

c1wj(t) ≤ w̃j(t) ≤ c2wj(t), j = 1, 2, t ∈ I.

Therefore (2.2) holds if and only if (3.13) holds. Consequently, in this case, L is in l.p.c. at
+∞ if and only if L̃ is in l.p.c. at +∞ according to Lemma 2.3. This completes the proof. �

Remark 3.3 The results of Theorem 3.7 shows that if the weight functions of (1.1λ) and
(3.1λ) satisfy quite strong conditions, then the deficient indices of (1.1λ) are invariant un-
der any perturbation of P(t).

Remark 3.4 Note that the number of linearly independent square summable solutions of
(1.1λ) is invariant if its coefficient matrices P(t) and W (t) vary at finite points. Therefore
we remark that the results obtained in the present paper still hold if there exists t0 ∈ I such
that the assumptions of our results are satisfied for t ≥ t0.
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4 Examples
In this section, we give an example illustrating the perturbation results obtained in this
paper. It is well known that there are a lot of limit circle and limit point criteria for sys-
tem (1.1λ). The criteria of stability of deficiency indices of (1.1λ) obtained in this paper
provide an alternate way to determine the extreme limit type. However, to the best of our
knowledge, there are seldom criteria of the intermediate cases for (1.1λ). Therefore it is
very difficult to determine if (1.1λ) is in the intermediate cases. So next, we give an exam-
ple in the intermediate case to illustrate the advantages of our conclusions obtained in this
paper.

Consider system (1.1λ) with n = 2,

A(t) =

(
0 1
0 0

)
, B(t) = diag

{
0, 3–t/2

}
,

C(t) = diag
{

0, –3t}, W (t) = diag{1, 0, 0, 0}
(4.1)

for t ∈ I . It is obvious that assumptions (A1) and (A2) hold. So, dλ(H0) = nλ(H0). Next, we
will show that (1.1λ) with those matrix functions is in the limit-3 case at t = +∞.

In fact, by Lemma 2.1 in [37], nλ(H0) is equal to the number of linearly independent
solutions of the following fourth-order difference equation:

�2[2 · 3t�2x(t – 2)
]

– �[
–3t�x(t – 1)

]
= λx(t), t ∈ I, (4.2λ)

in l2 for any λ ∈ C. The solutions of (4.2λ) with λ = 0 are of the form αt with α satisfying
the equation

(
6α2 – 5α + 1

)(
3α2 – 5α + 2

)
= 0.

By a simple calculation there are four distinct roots of this equation:

α1 = 1/2, α2 = 1/3, α3 = 2/3, α4 = 1.

Then xj(t) = αt
j for j = 1, 2, 3, 4 are four linearly independent solutions of (4.2λ) with λ = 0.

It is evident that xj ∈ l2 for j = 1, 2, 3, but x4 /∈ l2. This implies that (1.1λ) is neither in l.p.c.
nor in l.c.c. at t = +∞ by Theorem 2.1 and Remark 2.2. So (1.1λ) is in the limit-3 case at
t = +∞.

Now we consider system (3.1λ) with n = 2,

Ã(t) =

(
0 1
0 0

)
, B̃(t) = diag

{
0, 3–t/2

}
,

C̃(t) = diag
{
sin t + e–t – 2, –3t}, W̃ (t) = diag{1, 0, 0, 0}

(4.3)

for t ∈ I . It is evident that assumptions (Ã1) and (Ã2) still hold. But it is difficult to deter-
mine the limit type of this system as discussed before. As pointed out in the first paragraph
of this section, almost all criteria for limit types were established only for the limit point
and limit circle cases. However, there are seldom criteria of the intermediate cases. In ad-
dition, we note that the existing criteria for limit types are not applicable to (3.1λ) with
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matrix functions satisfying (4.3). At this point, we find that we may regard (4.3) as the per-
turbations of (4.1). Moreover, it is easy to verify that the conditions of Theorem 3.1 are
satisfied with c1(t) = 2 – sin t – e–t , c2(t) = c2 = 0, and c1 = 4. Therefore (3.1λ) with (4.3) is
also in the limit-3 case at t = +∞ by Theorem 3.1.
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