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Abstract
In this paper, we introduce a general quantum Laplace transform Lβ and some of its
properties associated with the general quantum difference operator
Dβ f (t) = (f (β(t)) – f (t))/(β(t) – t), β is a strictly increasing continuous function. In
addition, we compute the β-Laplace transform of some fundamental functions. As
application we solve some β-difference equations using the β-Laplace transform.
Finally, we present the inverse β-Laplace transform L–1

β .
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1 Introduction
The Laplace transform in continuous and discrete cases has an essential role in applied
mathematics and in mathematical physics, particularly in solving differential and differ-
ence equations, respectively. Recently, versions of Laplace transform in other calculi, such
as q-calculus and time scale, were investigated, see [2–5]. The q-Laplace transform has
a similar role in solving q-difference equations, see [1]. The general quantum difference
operator Dβ is defined in [12] by

Dβy(t) =

⎧
⎨

⎩

y(β(t))–y(t)
β(t)–t , β(t) �= t,

y′(t), β(t) = t,

where the function y is defined on an interval I ⊆ R and β is a strictly increasing continu-
ous general function, that is, β(t) ∈ I for t ∈ I . The function y is said to be β-differentiable
if it is classic differentiable at the fixed points of the function β . Hamza et al. (2015)
[12] established the calculus based on Dβ when β has only one fixed point s0 ∈ I that
satisfies the inequality (t – s0)(β(t) – t) ≤ 0 for all t ∈ I , accordingly limk→∞ βk(t) = s0,
βk(t) := β ◦ β ◦ · · · ◦ β

︸ ︷︷ ︸
k-times

(t). Examples of this type are the Jackson q-difference operator

with β(t) = qt, 0 < q < 1, s0 = 0 and the Hahn difference operator with β(t) = qt + ω,
0 < q < 1, ω > 0, s0 = ω

1–q . They mentioned also another type of β when it has only one
fixed point s0 ∈ I and satisfies the inequality (t – s0)(β(t) – t) ≥ 0 for all t ∈ I ; consequently,
limk→∞ βk(t) = ∞, for example, the backward Hahn difference operator with β(t) = qt +ω,
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q > 1, ω > 0. A study of different types of the function β according to the number of its
fixed points, which can be basis for different calculi, was presented in [16]. In [13] some
integral inequalities based on Dβ were introduced. The homogeneous second-order lin-
ear β-difference equations and the theory of nth-order linear β-difference equations were
studied in [8, 9]. In addition, some properties of the quantum exponential functions in
a Banach algebra were studied in [10]. Properties of the β-Lebesgue spaces were intro-
duced in [6]. The β-difference operator Dβ and its calculus has applications in many ar-
eas in mathematics and physics such as the quantum variational calculus, the orthogonal
polynomials, quantum mechanics, and scale of relativity, see [7, 14, 15].

In this paper we deduce a general quantum Laplace transform Lβ associated with Dβ ,
where β has only one fixed point s0 ∈ I with the inequality (t – s0)(β(t) – t) ≤ 0 for all t ∈ I ,
which will be useful in solving the β-difference equations. We organize this paper as fol-
lows: In Sect. 2, we introduce the needed preliminaries from the β-calculus. In Sect. 3, we
present the β-regressive functions and define the “β-circle plus” ⊕β and the “β-circle mi-
nus” �β , and some associated relations. And then, we introduce the β-Laplace transform
and some of its properties. Furthermore, we compute the β-Laplace transform of some
fundamental functions. As application, we give two examples to solve some β-difference
equations. Finally, we deduce the inverse β-Laplace transform L–1

β .

2 Preliminaries
In this section, we introduce some needed preliminaries from the β-calculus, where β has
only one fixed point s0 ∈ I such that (t – s0)(β(t) – t) ≤ 0 for all t ∈ I , X is a Banach space.

Theorem 2.1 ([12]) Assume that f : I → X and g : I → R are β-differentiable functions
on I . Then:

(i) The product fg : I →X is β-differentiable at t ∈ I and

Dβ (fg)(t) =
(
Dβ f (t)

)
g(t) + f

(
β(t)

)
Dβg(t)

=
(
Dβ f (t)

)
g
(
β(t)

)
+ f (t)Dβg(t),

(ii) f /g is β-differentiable at t ∈ I and

Dβ (f /g)(t) =
(Dβ f (t))g(t) – f (t)Dβg(t)

g(t)g(β(t))
,

provided that g(t)g(β(t)) �= 0.

Lemma 2.2 ([12]) The following statements are true:
(i) The sequence of functions {βk(t)}∞k=0 converges uniformly to the constant function

β̂(t) := s0 on every compact interval J ⊆ I containing s0.
(ii) The series

∑∞
k=0 |βk(t) – βk+1(t)| is uniformly convergent to |t – s0| on every compact

interval J ⊆ I containing s0.

Theorem 2.3 ([12]) If f : I →X is continuous at s0, then
(i) the sequence {f (βk(t))}∞k=0 converges uniformly to f (s0),

(ii) the series
∑∞

k=0 ‖(βk(t) – βk+1(t))f (βk(t))‖ is uniformly convergent
on every compact interval J ⊆ I containing s0.
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Definition 2.4 ([12]) Let f : I →X and a, b ∈ I . The β-integral of f from a to b is defined
by

∫ b

a
f (t) dβ t =

∫ b

s0

f (t) dβ t –
∫ a

s0

f (t) dβ t,

where

∫ x

s0

f (t) dβ t =
∞∑

k=0

(
βk(x) – βk+1(x)

)
f
(
βk(x)

)
, x ∈ I,

provided that the series converges at x = a and x = b. f is called β-integrable on I if the
series converges at a and b for all a, b ∈ I . Clearly, if f is continuous at s0 ∈ I , then f is
β-integrable on I .

Theorem 2.5 ([12]) Assume that f , g are β-differentiable functions on I and Dβ f , Dβg are
both continuous at s0. Then

∫ b

a
f (t)Dβg(t) dβ t = f (b)g(b) – f (a)g(a) –

∫ b

a

(
Dβ f (t)

)
g
(
β(t)

)
dβ t, a, b ∈ I.

Here, at least one of the functions f and g is a real-valued function.

Definition 2.6 ([11]) The β-exponential functions ep,β (t) and Ep,β (t) are defined by

ep,β (t) =
1

∏∞
k=0[1 – p(βk(t))(βk(t) – βk+1(t))]

(2.1)

and

Ep,β (t) =
∞∏

k=0

[
1 + p

(
βk(t)

)(
βk(t) – βk+1(t)

)]
, (2.2)

where p : I → C is a continuous function at s0. Clearly, both products in (2.1) and (2.2)
are convergent to a non-zero number for every t ∈ I , since

∑∞
k=0 |p(βk(t))(βk(t) – βk+1(t))|

is uniformly convergent.

Theorem 2.7 ([11]) The β-exponential functions ep,β (t) and Ep,β (t) are the unique solu-
tions of the β-initial value problems

Dβy(t) = p(t)y(t), y(s0) = 1,

Dβy(t) = p(t)y
(
β(t)

)
, y(s0) = 1,

respectively.

Definition 2.8 ([11]) The β-trigonometric functions are defined by

cosp,β (t) =
eip,β (t) + e–ip,β (t)

2
,

sinp,β (t) =
eip,β (t) – e–ip,β (t)

2i
.
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Definition 2.9 ([11]) The β-hyperbolic functions are defined by

coshp,β (t) =
ep,β (t) + e–p,β (t)

2
,

sinhp,β (t) =
ep,β (t) – e–p,β (t)

2
.

Theorem 2.10 ([11]) Let p : I → C be a continuous function at s0. Then the following
properties hold:

(i) ep,β (β(t)) = [1 + (β(t) – t)p(t)]ep,β (t), t ∈ I ,
(ii) Dβ ( 1

ep,β (t) ) = –p(t)
ep,β (β(t)) ,

(iii) 1
ep,β (t) is the unique solution of the first-order β-difference equation

Dβy(t) =
–p(t)ep,β (t)
ep,β (β(t))

y(t), y(s0) = 1.

Theorem 2.11 ([11]) Assume that p, q : I → C are continuous functions at s0 ∈ I . The
following properties are true:

(i) 1
ep,β (t) = e–p/[1+(β(t)–t)p](t),

(ii) ep,β (t)eq,β (t) = ep+q+(β(t)–t)pq(t),
(iii) ep,β (t)/eq,β (t) = e(p–q)/[1+(β(t)–t)q](t).

3 Main results
In this section, we present the β-regressive functions and define the “β-circle plus” ⊕β

and the “β-circle minus” �β . We introduce the β-Laplace transform and some of its main
properties. Furthermore, we compute the β-Laplace transform of the β-exponential and
the β-trigonometric functions. As application, we give two examples to solve some β-
difference equations. Finally, we deduce the inverse β-Laplace transform L–1

β .

3.1 β-Regressive functions
Definition 3.1 A function p : I →C is said to be β-regressive on I if 1 + (β(t) – t)p(t) �= 0
for all t ∈ I .

We denote the set of all β-regressive functions p : I → C and continuous at s0 by Rβ ,
and the set of all β-regressive constants z ∈C by Rc

β .

Definition 3.2 Let p, q ∈Rβ . Then we define p ⊕β q, �βp, and p �β q by
(i) (p ⊕β q)(t) = p(t) + q(t) + (β(t) – t)p(t)q(t), t ∈ I ,

(ii) (�βp)(t) = –p(t)
1+(β(t)–t)p(t) , t ∈ I ,

(iii) (p �β q)(t) = (p ⊕β (�βq))(t), t ∈ I .

From the definition we conclude that p �β p = 0, �β (�βp) = p, �β (p �β q) = q �β p,
�β (p ⊕β q) = (�βp) ⊕β (�βq), and (Rβ ,⊕β ) form an abelian group.

Note that at t = s0, ⊕β and �β reduce to the classic addition and subtraction operations.

Theorem 3.3 Let p, q ∈Rβ , t ∈ I . Then the following statements are true:
(i1) e�β p,β (t) = 1

ep,β (t) =
∏∞

k=0[1 – p(βk(t))(βk(t) – βk+1(t))] = E–p,β (t),
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(i2) e�β p,β (t) is the unique solution of the first-order β-difference equation

Dβy(t) = (�βp)(t)y(t), y(s0) = 1, (3.1)

(i3)
e�β p,β

(
β(t)

)
=

[
1 +

(
β(t) – t

)
(�βp)(t)

]
e�β p,β (t) =

e�β p,β (t)
1 + (β(t) – t)p(t)

= –
(�βp)(t)

p(t)
e�β p,β (t) = –

(�βp)(t)
p(t)ep,β (t)

,

(i4) Dβ (e�β p,β (t)) = (�β p)(t)
ep,β (t) = (�βp)(t)e�β p,β (t) = –p(t)[e�β p,β (β(t))],

(i5) ep,β (t)eq,β(t) = ep⊕β q,β (t),
(i6) ep,β (t)

eq,β (t) = ep�β q,β (t).

Proof
(i1) Using Definition 2.6 and Theorem 2.11 (i), we have

e�β p,β (t) = e –p(t)
[1–(β(t)–t)p(t)] ,β (t) =

1
ep,β (t)

=
∞∏

k=0

[
1 – p

(
βk(t)

)(
βk(t) – βk+1(t)

)]
= E–p,β (t).

(i2) Since (�βp)(t) = –p(t)
1+(β(t)–t)p(t) = –p(t)ep,β (t)

ep,β (β(t)) . Then equation (3.1) can be written as

Dβy(t) =
–p(t)ep,β (t)
ep,β (β(t))

y(t), y(s0) = 1.

By (i1) and Theorem 2.10 (iii), we get the desired result.
(i3) Using (i1), (i2), we have

e�β p,β
(
β(t)

)
= e�β p,β (t) +

(
β(t) – t

)(
Dβe�β p,β (t)

)

= e�β p,β (t) +
(
β(t) – t

)
(�βp)(t)e�β p,β (t)

=
[
1 +

(
β(t) – t

)
(�βp)(t)

]
e�β p,β (t)

=
[

1 –
(β(t) – t)p(t)

1 + (β(t) – t)p(t)

]

e�β p,β (t)

=
[

1
1 + (β(t) – t)p(t)

]

e�β p,β (t)

= –
(�βp)(t)

p(t)
e�β p,β (t)

= –
(�βp)(t)

p(t)ep,β (t)
.

(i4) From (i1) and Theorem 2.10, we get

Dβ

(
e�β p,β (t)

)
= Dβ

(
1

ep,β (t)

)

= –
p(t)

ep,β (β(t))
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=
1

ep,β (t)
–p(t)

[1 + (β(t) – t)p(t)]

=
1

ep,β (t)
(�βp)(t)

= (�βp)(t)e�β p,β (t).

On the other hand, from (i2), (i3)

–p(t)
[
e�β p,β

(
β(t)

)]
= (�βp)(t)e�β p,β (t) = Dβ

(
e�β p,β (t)

)
.

(i5) From Theorem 2.11 (ii) and Definition 3.2, we get the desired result.
(i6) From (i1), (i5), we get the result.

�

Lemma 3.4 Let z, x ∈ Rc
β such that z = x + iy, where z ∈ C, x, y ∈ R. Then |e�β z,β (t)| ≤

e�β x,β (t).

Proof Using Theorem 2.11 (ii), we get

ez,β (t) = e(x+iy),β (t) = ex,β (t)e iy
1+x(β(t)–t) ,β (t).

So,

∣
∣ez,β (t)

∣
∣ =

∣
∣e(x+iy),β (t)

∣
∣ ≥ ex,β (t).

Then
∣
∣
∣
∣

1
ez,β(t)

∣
∣
∣
∣ =

∣
∣
∣
∣

1
e(x+iy),β (t)

∣
∣
∣
∣ ≤ 1

ex,β (t)
.

Since 1
ez,β (t) = e�β z,β (t). Therefore,

∣
∣e�β z,β (t)

∣
∣ ≤ e�β x,β(t). �

3.2 The β-Laplace transform
In this section, let sup I = ∞, s0 ∈ I . We assume that z,�βz ∈ Rc

β and hence e�β z,β is well
defined. Furthermore, we denote by V ([s0,∞),C) the set of β-integrable functions over
each compact subinterval of [s0,∞).

Definition 3.5 Let sup I = ∞, s0 ∈ I and f (t) be continuous at s0 on [s0,∞). We define the
improper β-integral by

∫ ∞

s0

f (t) dβ t := lim
b→∞

∫ b

s0

f (t) dβ t

:= lim
b→∞

∞∑

k=0

(
βk(b) – βk+1(b)

)
f
(
βk(b)

)
, (3.2)

provided this limit exists, and we say that the improper β-integral converges in this case.
If this limit does not exist, then we say that the improper β-integral diverges.
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Definition 3.6 A function f ∈ V ([s0,∞),C) is said to be of exponential order λ > 0, λ ∈R

if there exists a constant M > 0 such that |f (t)| ≤ Meλ,β (t) for all t ∈ [s0,∞).

Definition 3.7 Suppose f ∈ V ([s0,∞),C). Then the Laplace transform of f is defined by

Lβ

{
f (t)

}
:=

∫ ∞

s0

f (t)e�β z,β
(
β(t)

)
dβ t (3.3)

for all z ∈Rc
β for which the β-integral (3.3) exists.

Note that in the usual differential case, �βz = –z, β(t) = t, e�β z,β (β(t)) = e–zt , and (3.3)
becomes the usual Laplace transform

L
{

f (t)
}

=
∫ ∞

0
f (t)e–zt dt.

Moreover, in the case of β(t) = qt, q ∈ (0, 1), then s0 = 0, e�β z,β (β(t)) = e�qz,q(qt), and we
obtain the q-Laplace transform of the form

Lq
{

f (t)
}

=
∫ ∞

0
f (t)e�qz,q(qt) dqt,

see [4].

Theorem 3.8 Let f ∈ V ([s0,∞),C) be of exponential order λ, z ∈ Rc
β such that z = x + iy,

x, y ∈R. Then the integral in the β-Laplace transform (3.3) converges absolutely for |z| > λ,
provided that limt→∞ eλ�β z,β(t) = 0.

Proof Using Definition 3.6, Lemma 3.4, we get

∫ ∞

s0

∣
∣f (t)e�β z,β

(
β(t)

)∣
∣dβ t ≤

∫ ∞

s0

Meλ,β (t)e�β x,β
(
β(t)

)
dβ t

=
∫ ∞

s0

M
1 + (β(t) – t)x

eλ,β (t)e�β x,β(t) dβ t

=
∫ ∞

s0

M
1 + (β(t) – t)x

e(λ�β x),β(t) dβ t

=
M

λ – x

[∫ ∞

s0

λ – x
1 + (β(t) – t)x

e(λ�β x),β (t) dβ t
]

=
M

λ – x

[∫ ∞

s0

(λ �β x)(t)eλ�βx,β (t) dβ t
]

=
M

λ – x

[

lim
b→∞

∫ b

s0

Dβ

(
eλ�β x,β (t)

)
dβ t

]

=
M

x – λ
.

Then Lβ{f (t)} converges absolutely. �

Example 3.9 Find the β-Laplace transform of f (t) ≡ 1.
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Sol. Using Theorem 3.3 (i3), (i4), we have

Lβ{1} =
∫ ∞

s0

e�β z,β
(
β(t)

)
dβ t

= –
1
z

[∫ ∞

s0

(�βz)e�β z,β (t) dβ t
]

=
1
z

[

lim
b→∞

∫ b

s0

Dβ

(
–e�β z,β (t)

)
dβ t

]

=
1
z

,

provided that limt→∞ e�β z,β (t) = 0.

Theorem 3.10 For z,λ ∈Rc
β ,

Lβ

{
eλ,β (t)

}
=

1
z – λ

,

provided that limt→∞ eλ�β z,β(t) = 0.

Proof We find

Lβ

{
eλ,β (t)

}
=

∫ ∞

s0

eλ,β (t)e�β z,β
(
β(t)

)
dβ t

=
∫ ∞

s0

1
1 + (β(t) – t)z

eλ,β (t)e�β z,β (t) dβ t

=
∫ ∞

s0

1
1 + (β(t) – t)z

e(λ�β z),β (t) dβ t

=
1

λ – z

[∫ ∞

s0

λ – z
1 + (β(t) – t)z

e(λ�β z),β(t) dβ t
]

=
1

λ – z

[∫ ∞

s0

(λ �β z)(t)eλ�β z,β (t) dβ t
]

=
1

λ – z

[

lim
b→∞

∫ b

s0

Dβ

(
eλ�β z,β(t)

)
dβ t

]

=
1

z – λ
,

provided that limt→∞ eλ�β z,β(t) = 0. �

Corollary 3.11 Let λ,μ, z ∈Rc
β . Then

Lβ

{
e λ

1+μ(β(t)–t) ,β (t)eμ,β (t)
}

= Lβ

{
e(λ+μ),β (t)

}
=

1
z – (λ + μ)

,

provided that limt→∞ e(λ+μ)�β z,β(t) = 0.

Proof Using Theorem 3.3 (i5), and since

λ

1 + μ(β(t) – t)
⊕β μ =

λ

1 + μ(β(t) – t)
+ μ +

λμ(β(t) – t)
1 + μ(β(t) – t)
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=
λ + μ + μ2(β(t) – t) + λμ(β(t) – t)

1 + μ(β(t) – t)

=
(λ + μ)[1 + μ(β(t) – t)]

1 + μ(β(t) – t)
= λ + μ.

Therefore, we have

Lβ

{
e λ

1+μ(β(t)–t) ,β (t)eμ,β (t)
}

= Lβ

{
e(λ+μ),β (t)

}
=

1
z – (λ + μ)

. �

Theorem 3.12 (Linearity) Let f , g ∈ V ([s0,∞),C), and c1, c2 be constants. Then

Lβ

{
c1f (t) + c2g(t)

}
= c1Lβ

{
f (t)

}
+ c2Lβ

{
g(t)

}
.

Proof

Lβ

{
c1f (t) + c2g(t)

}
=

∫ ∞

s0

{
c1f (t) + c2g(t)

}
e�β z,β

(
β(t)

)
dβ t

=
∫ ∞

s0

c1f (t)e�β z,β
(
β(t)

)
dβ t +

∫ ∞

s0

c2g(t)e�β z,β
(
β(t)

)
dβ t

= c1Lβ

{
f (t)

}
+ c2Lβ

{
g(t)

}
. �

Example 3.13 Find the β-Laplace transform of the following functions:

sinλ,β (t), cosλ,β (t), sinhλ,β (t), and coshλ,β (t).

Sol. By Definitions 2.8, 2.9 and since

Lβ

{
eλ,β (t)

}
=

1
z – λ

,

we have

Lβ

{
sinλ,β(t)

}
= Lβ

{
1
2i

[
eiλ,β (t) – e–iλ,β (t)

]
}

=
1
2i
Lβ

{
eiλ,β (t)

}
–

1
2i
Lβ

{
e–iλ,β (t)

}

=
1/2i

z – iλ
–

1/2i
z + iλ

=
λ

z2 + λ2 ,

Lβ

{
cosλ,β(t)

}
= Lβ

{
1
2
[
eiλ,β (t) + e–iλ,β(t)

]
}

=
1
2
Lβ

{
eiλ,β (t)

}
+

1
2
Lβ

{
e–iλ,β (t)

}

=
1/2

z – iλ
+

1/2
z + iλ

=
z

z2 + λ2 ,
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Lβ

{
sinhλ,β(t)

}
= Lβ

{
1
2
[
eλ,β (t) – e–λ,β(t)

]
}

=
1
2
Lβ

{
eλ,β (t)

}
–

1
2
Lβ

{
e–λ,β(t)

}

=
1/2

z – λ
–

1/2
z + λ

=
λ

z2 – λ2 ,

and

Lβ

{
coshλ,β (t)

}
= Lβ

{
1
2
[
eλ,β (t) + e–λ,β (t)

]
}

=
1
2
Lβ

{
eλ,β (t)

}
+

1
2
Lβ

{
e–λ,β (t)

}

=
1/2

z – λ
+

1/2
z + λ

=
z

z2 – λ2 .

Theorem 3.14 (β-Laplace transform of the β-derivative function) Let f ∈ V ([s0,∞),C)
be a function of exponential order λ. Then

Lβ

{
Dβ f (t)

}
= zLβ

{
f (t)

}
– f (s0),

provided that limt→∞ f (t)e�β z,β(t) = 0.

Proof Using Theorems 2.5, 3.3 (i4), we have

Lβ

{
Dβ f (t)

}
=

∫ ∞

s0

[
Dβ f (t)

]
e�β z,β

(
β(t)

)
dβ t

= lim
b→∞

∫ b

s0

f (t)e�β z,β (t) dβ t –
∫ ∞

s0

(�βz)(t)e�β z,β (t)f (t) dβ t

= z
[∫ ∞

s0

e�β z,β
(
β(t)

)
f (t) dβ t

]

– f (s0)

= zLβ

{
f (t)

}
– f (s0). �

Corollary 3.15 Let f ∈ V ([s0,∞),C) be a function of exponential order λ. Then, for any
n ∈N, we have

Lβ

{
Dn

β f (t
}

= znLβ

{
f (t)

}
–

n–1∑

j=0

zn–1–jDj
β f (s0). (3.4)

Proof As a consequence of Theorem 3.14 and using induction, we get

Lβ

{
D2

β f (t)
}

= z
[
zLβ

{
f (t)

}
– f (s0)

]
– Dβ f (s0)

= z2Lβ

{
f (t)

}
– zf (s0) – Dβ f (s0),

Lβ{D3
β f (t)} = z3Lβ{f (t)} – z2f (s0) – zDβ f (s0) – D2

β f (s0).
Assume that the corollary is true for k ∈N

Lβ

{
Dk

β f (t)
}

= zkLβ

{
f (t)

}
–

k–1∑

m=0

zk–1–mDm
β f (s0).
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Then

Lβ

{
Dk+1

β f (t)
}

= Lβ

{
Dβ

(
Dk

β f (t)
)}

= zLβ

{
Dk

β f (t)
}

– Dk
β f (s0)

= z

[

zkLβ

{
f (t)

}
–

k–1∑

m=0

zk–1–mDm
β f (s0)

]

– Dk
β f (s0)

= zk+1Lβ

{
f (t)

}
–

k–1∑

m=0

zk–mDm
β f (s0) – Dk

β f (s0)

= zk+1Lβ

{
f (t)

}
–

k∑

m=0

zk–mDm
β f (s0).

Hence, the corollary holds for any n ∈N. �

Example 3.16 Using the β-Laplace transform, find the solution of the β-initial value prob-
lem

D2
βy(t) + Dβy(t) – 20y(t) = 0, y(s0) = 2, Dβy(s0) = –3.

Sol. By taking the β-Laplace transform and using equation (3.4), we have

0 = z2Lβ

{
y(t)

}
– 2z + 3 +

[
zLβ

{
y(t)

}
– 2

]
– 20Lβ

{
y(t)

}

=
(
z2 + z – 20

)
Lβ

{
y(t)

}
– 2z,

so that

Lβ

{
y(t)

}
=

2z
z2 + z – 20

=
10/9
z + 5

+
8/9

z – 4
,

and hence

y(t) = 10/9e–5,β (t) + 8/9e4,β (t).

Theorem 3.17 (β-Laplace transform of the β-integral function) Let f ∈ V ([s0,∞),C) be
a function of exponential order λ. Then

Lβ

{
F(t)

}
=

1
z
Lβ

{
f (t)

}
,

where

F(t) :=
∫ t

s0

f (τ ) dβτ ,

provided that limt→∞ F(t)e�β z,β(t) = 0.
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Proof Using Theorem 2.5, we have

Lβ

{
F(t)

}
= Lβ

{∫ t

s0

f (τ ) dβτ

}

=
∫ ∞

s0

e�β z,β
(
β(t)

)
F(t) dβ t

= –
1
z

[∫ ∞

s0

F(t)
[
Dβe�β z,β

(
β(t)

)]
dβ t

]

=
1
z

[∫ ∞

s0

e�β z,β
(
β(t)

)
f (t) dβ t

]

=
1
z
Lβ

{
f (t)

}
,

provided limt→∞ F(t)e�β z,β (t) = 0 holds. �

Corollary 3.18 Assume f ∈ V ([s0,∞),C) and Lβ{f (t)} = F(z). Then

Lβ

{
e�βλ,β

(
β(t)

)
f (t)

}
= F(z ⊕β λ).

Proof Using Theorem 3.3 (i5) and since �β (z ⊕β λ) = (�βλ) ⊕β (�βz), we have

e�βλ,β
(
β(t)

)
e�β z,β

(
β(t)

)
= e�β (z⊕βλ),β

(
β(t)

)
.

Then

Lβ

{
e�βλ,β

(
β(t)

)
f (t)

}
=

∫ ∞

s0

e�β z,β
(
β(t)

)[
e�βλ,β

(
β(t)

)
f (t)

]
dβ t

=
∫ ∞

s0

e�β (z⊕βλ),β
(
β(t)

)
f (t) dβ t

= F(z ⊕β λ). �

Definition 3.19 Let λ ∈ Rc
β . We define the functions ψk : I → C for each k ∈ N0 recur-

sively by taking ψ0(t) := 1, and

ψk+1(t) :=
∫ t

s0

1
1 + λ(β(τ ) – τ )

ψk(τ ) dβτ .

Theorem 3.20 Let λ ∈Rc
β and n ∈N0 = {0, 1, 2, . . .} be given. Then

Lβ

{
ψn(t)eλ,β (t)

}
=

1
(z – λ)n+1 ,

provided that

lim
t→∞ψk(t)eλ�β z,β (t) = 0 for each k = 0, 1, . . . , n.

Proof Using induction, for n = 0, we have

Lβ

{
ψ0(t)eλ,β (t)

}
= Lβ

{
eλ,β (t)

}
=

1
z – λ

.
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For any n ∈N,

Dβ

(
ψn(t)

)
= Dβ

[∫ t

s0

1
1 + λ(β(τ ) – τ )

ψn–1(τ ) dβτ

]

=
1

1 + λ(β(t) – t)
ψn–1(t).

Suppose Lβ{ψn–1(t)eλ,β(t)} = 1
(z–λ)n for some n ≥ 1. Then, by using Theorems 2.5, 3.3, we

get

Lβ

{
ψn(t)eλ,β (t)

}

=
∫ ∞

s0

ψn(t)eλ,β(t)e�β z,β
(
β(t)

)
dβ t

=
∫ ∞

s0

ψn(t)
[
1 +

(
β(t) – t

)
(�βz)(t)

]
eλ�β z,β (t) dβ t

=
1

λ – z

[∫ ∞

s0

ψn(t)
[

λ – z
1 + z(β(t) – t)

]

eλ�β z,β(t) dβ t
]

=
1

λ – z

[∫ ∞

s0

ψn(t)(λ �β z)(t)eλ�β z,β (t) dβ t
]

=
1

λ – z

[

lim
b→∞

∫ b

s0

ψn(t)eλ�β z,β (t) dβ t –
∫ ∞

s0

Dβ

(
ψn(t)

)
eλ�β z,β

(
β(t)

)
dβ t

]

=
1

λ – z

[

–
∫ ∞

s0

Dβ

(
ψn(t)

)
eλ�β z,β

(
β(t)

)
dβ t

]

=
1

z – λ

[∫ ∞

s0

Dβ

(
ψn(t)

)[
1 +

(
β(t) – t

)
(λ �β z)(t)

]
eλ�β z,β(t) dβ t

]

=
1

z – λ

[∫ ∞

s0

[
ψn–1(t)

1 + λ(β(t) – t)

][
1 + λ(β(t) – t)
1 + z(β(t) – t)

]

eλ�β z,β (t) dβ t
]

=
1

z – λ

[∫ ∞

s0

ψn–1(t)eλ,β(t)
[ e�β z,β(t)

1 + z(β(t) – t)

]

dβ t
]

=
1

z – λ

[∫ ∞

s0

ψn–1(t)eλ,β(t)e�β z,β
(
β(t)

)
dβ t

]

=
1

z – λ

[
Lβ

{
ψn–1(t)eλ,β(t)

}]
=

1
(z – λ)n+1 .

Thus the desired result is satisfied for all n ∈N. �

In the following theorem, we deduce the inverse β-Laplace transform L–1
β .

Theorem 3.21 For z ∈Rc
β and λ �= 0,

L–1
β

{
1

(z2 + λ2)2

}

=
sinλ,β (t)

2λ3 –
cosλ,β (t)

2λ2

∫ t

s0

1
1 + λ2(β(τ ) – τ )2 dβτ

–
sinλ,β(t)

2λ

∫ t

s0

(β(τ ) – τ )
1 + λ2(β(τ ) – τ )2 dβτ ,



Shehata et al. Advances in Difference Equations        (2020) 2020:613 Page 14 of 16

such that

lim
t→∞ψk(t)eiλ�β z,β (t) = 0 and lim

t→∞ψk(t)e–iλ�β z,β (t) = 0, k = 0, 1.

Proof Let λ �= 0 be given. By the partial fraction

1
(z2 + λ2)2 =

–1
4λ3i(z + iλ)

–
1

4λ2(z + iλ)2 +
1

4λ3i(z – iλ)
–

1
4λ2(z – iλ)2 ,

then taking the inverse β-Laplace transform and applying Theorem 3.10 and Theo-
rem 3.20, we obtain

L–1
β

{
1

(z2 + λ2)2

}

=
–1

4λ3i
L–1

β

{
1

z + iλ

}

–
1

4λ2 L
–1
β

{
1

(z + iλ)2

}

+
1

4λ3i
L–1

β

{
1

z – iλ

}

–
1

4λ2 L
–1
β

{
1

(z – iλ)2

}

=
–1

4λ3i
e–iλ,β (t) –

1
4λ2

[

e–iλ,β (t)
∫ t

s0

1
1 – iλ(β(τ ) – τ )

dβτ

]

+
1

4λ3i
eiλ,β (t) –

1
4λ2

[

eiλ,β (t)
∫ t

s0

1
1 + iλ(β(τ ) – τ )

dβτ

]

=
1

2λ3

[
eiλ,β (t) – e–iλ,β (t)

2i

]

–
1

4λ2

[

e–iλ,β(t)
∫ t

s0

1 + iλ(β(τ ) – τ )
1 + λ2(β(τ ) – τ )2 dβτ

+ eiλ,β (t)
∫ t

s0

1 – iλ(β(τ ) – τ )
1 + λ2(β(τ ) – τ )2 dβτ

]

=
sinλ,β (t)

2λ3 –
1

2λ2

[
e–iλ,β (t) + eiλ,β (t)

2

]∫ t

s0

1
1 + λ2(β(τ ) – τ )2 dβτ

–
1

2λ

[
eiλ,β (t) – e–iλ,β(t)

2i

]∫ t

s0

(β(τ ) – τ )
1 + λ2(β(τ ) – τ )2 dβτ

=
sinλ,β (t)

2λ3 –
cosλ,β (t)

2λ2

∫ t

s0

1
1 + λ2(β(τ ) – τ )2 dβτ

–
sinλ,β(t)

2λ

∫ t

s0

(β(τ ) – τ )
1 + λ2(β(τ ) – τ )2 dβτ . �

Corollary 3.22 Let λ �= 0, z ∈Rc
β . The following relations hold:

(1) L–1
β { z

(z2+λ2)2 } = sinλ,β (t)
2λ

∫ t
s0

1
1+λ2(β(τ )–τ )2 dβτ – cosλ,β (t)

2
∫ t

s0
(β(τ )–τ )

1+λ2(β(τ )–τ )2 dβτ .

(2) L–1
β { z2

(z2+λ2)2 } = sinλ,β (t)
2λ

+ cosλ,β (t)
2

∫ t
s0

1
1+λ2(β(τ )–τ )2 dβτ + λ sinλ,β (t)

2
∫ t

s0
(β(τ )–τ )

1+λ2(β(τ )–τ )2 dβτ .

(3) L–1
β { z3

(z2+λ2)2 } = cosλ,β (t) – λ sinλ,β (t)
2

∫ t
s0

1
1+λ2(β(τ )–τ )2 dβτ + λ2 cosλ,β (t)

2
∫ t

s0
(β(τ )–τ )

1+λ2(β(τ )–τ )2 dβτ .

Example 3.23 Using the β-Laplace transform, find the solution of the β-initial value prob-
lem

D2
βy(t) – 4y(t) = t, y(s0) = 1, Dβy(s0) = 2. (3.5)

Sol. By applying the β-Laplace transform of equation (3.5), we get

z2y(z) – zy(s0) – Dβy(s0) – 4y(z) + 4y(s0) =
1
z2 ,
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and then

y(z) =
z3 – 2z2 + 1

z2(z – 2)(z + 2)
.

Therefore,

L–1
β

{
y(t)

}
= L–1

β

{
z3 – 2z2 + 1

z2(z – 2)(z + 2)

}

.

Since

z3 – 2z2 + 1
z2(z – 2)(z + 2)

=
–1/4

z2 +
1/16
z – 2

+
15/16
z + 2

,

then

y(t) = –1/4L–1
β

{
1
z2

}

+ 1/16L–1
β

{
1

z – 2

}

+ 15/16L–1
β

{
1

z + 2

}

.

Hence,

y(t) = –1/4t + 1/16e2,β (t) + 15/16e–2,β (t).

4 Conclusion
In this paper, a general quantum Laplace transform Lβ associated with the general quan-
tum difference operator Dβ and some of its properties were introduced. Moreover, the
β-Laplace transform of some fundamental functions was computed. Finally, the inverse
β-Laplace transform L–1

β was presented.
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