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Abstract
Motivated by a recent study on certain families of the incomplete H-functions
(Srivastava et al. in Russ. J. Math. Phys. 25(1):116–138, 2018), we aim to investigate and
develop several interesting properties related to product of a more general
polynomial class together with incomplete Fox–Wright hypergeometric functions

p�
(γ )
q (t) and p�

(�)
q (t) including Marichev–Saigo–Maeda (M–S–M) fractional integral

and differential operators, which contain Saigo hypergeometric, Riemann–Liouville,
and Erdélyi–Kober fractional operators as particular cases regarding different
parameter selection. Furthermore, we derive several integral transforms such as
Jacobi, Gegenbauer (or ultraspherical), Legendre, Laplace, Mellin, Hankel, and Euler’s
beta transforms.

MSC: Primary 26A33; 33C20; secondary 33C05
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1 Introduction
In a variety of diverse fields, together with engineering science, material science, math-
ematical physics, chemistry, and biology, the concept of differential equations (including
fractional order) and their application have played an important role, see [5, 14, 18, 41–48].
In addition, the special functions of one or more variables are also important because they
occur as solutions to these simulated differential equations. Therefore, with the develop-
ment of new problems in the area of technologies in engineering and applied sciences,
the subject of special functions is very diverse and is continuously growing. As a result, a
number of articles on these concepts and their future implementations have been made
available in the literature, see [1–4, 39, 40]. Incomplete special functions have additionally
been utilized to a wide range of problems, and numerous scientific studies on incomplete
special functions, along with related higher transcendental special functions, have cur-
rently been published by various authors [6–12, 15, 20–23, 31, 35–38]. In particular, the
incomplete Fox–Wright functions p�

(γ )
q (t) and p�

(�)
q (t) with p numerator and q denomi-
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nator parameters are stated as follows [23, 35]:

p�
(γ )
q

[
(a1, A1, x), (aj, Aj)2,p;

t
(bj, Bj)1,q;

]
=

∞∑
�=0

γ (a1 + A1�, x)
∏p

j=2 �(aj + Aj�)∏q
j=1 �(bj + Bj�)

t�

�!
(1.1)

and

p�
(�)
q

[
(a1, A1, x), (aj, Aj)2,p;

t
(bj, Bj)1,q;

]
=

∞∑
�=0

�(a1 + A1�, x)
∏p

j=2 �(aj + Aj�)∏q
j=1 �(bj + Bj�)

t�

�!
(1.2)

(
x � 0, Aj ∈R

+ (j = 1, . . . , r); Bj ∈R
+ (j = 1, . . . , s); 1 +

q∑
j=1

Bj –
p∑

j=1

Aj � 0

)
,

with

|t| < ∇ :=

( p∏
j=1

A–Aj
j

)
·
( q∏

j=1

BBj
j

)
.

The incomplete Fox–Wright functions p�
(γ )
q (t) and p�

(�)
q (t) in (1.1) and (1.2) satisfy the

decomposition formula

p�
(γ )
q [t] + p�

(�)
q [t] = p�q[t], (1.3)

where p�q[t] is the Fox–Wright function [16].
Also, the normalized incomplete Fox–Wright functions p�

∗(γ )
q (t) and p�

∗(�)
q (t) are given

by [23, 35]

p�
∗(γ )
q

[
(a1, A1, x), (aj, Aj)2,p;

t
(bj, Bj)1,q;

]
=
∏q

j=1 �(bj)∏p
j=1 �(aj)

p�
(γ )
q

[
(a1, A1, x), (aj, Aj)2,p;

t
(bj, Bj)1,q;

]
(1.4)

and

p�
∗(�)
q

[
(a1, A1, x), (aj, Aj)2,p;

t
(bj, Bj)1,q;

]
=
∏q

j=1 �(bj)∏p
j=1 �(aj)

p�
(�)
q

[
(a1, A1, x), (aj, Aj)2,p;

t
(bj, Bj)1,q;

]
. (1.5)

Let Sm
n [u] denote the general family of polynomials made known through Srivastava [30]:

Sm
n [u] =

[n/m]∑
s=0

(–n)ms

s!
An,su

s (n = 0, 1, 2, . . .). (1.6)

Here, m is a positive integer (arbitrary), the coefficients An,s ∈R (or C) are constants (arbi-
trary), and (λ)ν = �(λ+ν)

�(λ) (λ,ν ∈ C) denotes the shifted factorial (or the Pochhammer sym-
bol). Also, the above polynomials provide a large number spectrum of well-known poly-
nomials as one of its particular cases on appropriately specializing the coefficient An,s.
Particularly, by setting m = 1, An,s = s!

(–n)ms
for s = k and An,s = 0 for s �= k, the general class

of polynomials leads to a power function, i.e.,

Sm
n [u] = u

k (
k ∈ Z

+ with k ≤ n
)
. (1.7)



Jangid et al. Advances in Difference Equations        (2020) 2020:606 Page 3 of 17

Taking into account formula (1.3), it is also appropriate to study the characteristics and
properties of the incomplete Fox–Wright function p�

(�)
q (t).

2 Fractional integral and differential operators
We recall a general pair of fractional integral and differential operators popularly known
as Marichev–Saigo–Maeda (M-S-M), which involve, in their kernel, third Appell’s two-
variable hypergeometric function F3(.) and are defined by [32]

F3
(
σ ,σ ′,ρ,ρ ′;η;X,Y

)
=

∞∑
m,n=0

(σ )m(σ ′)n(ρ)m(ρ ′)n

(η)m+n

X

m!
Y

n!
(
max

{|X|, |Y| < 1
})

. (2.1)

Here, we mention and study left-hand-sided fractional integral and differential opera-
tors(see, for details, [19, 26, 28]).

Definition 1 For σ ,σ ′,ρ,ρ ′,η ∈ C and x > 0 with 	(η) > 0, the left-hand-sided Marichev–
Saigo–Maeda (M–S–M) fractional integral and differential operators are respectively de-
fined as

(
Iσ ,σ ′ ,ρ,ρ′ ,η

0+ f
)
(X) =

X–σ

�(η)

∫ X

0
(X – t)η–1

t
–σ ′

× F3

(
σ ,σ ′,ρ,ρ ′;η; 1 –

t

X
, 1 –

X

t

)
f (t) dt (2.2)

and

(
Dσ ,σ ′ ,ρ,ρ′ ,η

0+ f
)
(X) =

(
I–σ ′ ,–σ ,–ρ′ ,–ρ,–η

0+ f
)
(X)

=
(

d
dX

)κ(
I–σ ′ ,–σ ,–ρ′+[	(η)]+1,–ρ,–η+κ+1

0+ f
)
(X)

=
1

�(κ – η)

(
d

dX

)κ

X
σ ′

1

∫ X

0
(X – t)κ–η–1

t
σ

× F3

(
–σ ′, –σ ,κ – ρ ′, –ρ;κ – η; 1 –

t

X
, 1 –

X

t

)
f (t) dt, (2.3)

where κ = [	(η)] + 1 and [	(η)] denotes the integer part of 	(η).

The preceding results are well known and can be used as a proof of subsequent theo-
rems.

Lemma Let σ ,σ ′,ρ,ρ ′,η,λ ∈C such that 	(η) > 0.
(a) If 	(λ) > max{0,	(σ ′ – ρ ′),	(σ + σ ′ + ρ – η)}, then

(
Iσ ,σ ′ ,ρ,ρ′ ,η

0+ t
λ–1)(X)

=
�(λ)�(–σ ′ + ρ ′ + λ)�(–σ – σ ′ – ρ + η + λ)

�(ρ ′ + λ)�(–σ – σ ′ + η + λ)�(–σ ′ – ρ + η + λ)
X

–σ–σ ′+η+λ–1. (2.4)
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(b) If 	(λ) > max{0,	(–σ + ρ),	(–σ – σ ′ – ρ ′ + η)}, then

(
Dσ ,σ ′ ,ρ,ρ′ ,η

0+ t
λ–1)(X)

=
�(λ)�(σ – ρ + λ)�(σ + σ ′ + ρ ′ – η + λ)

�(–ρ + λ)�(σ + σ ′ – η + λ)�(σ + ρ ′ – η + λ)
X

σ+σ ′–η+λ–1. (2.5)

Firstly, we shall investigate the left-hand-sided Marichev–Saigo–Maeda (M–S–M) frac-
tional integral and differential operators of the product of a general family of polynomial
along with incomplete Fox–Wright functions p�

(�)
q (t).

Theorem 1 Let σ ,σ ′,ρ,ρ ′,η,λ ∈ C be such that 	(η),μ,ν > 0 and 	(λ) > max{	(–sμ),
	(σ ′ – ρ ′ – sμ),	(σ + σ ′ + ρ – η – sμ)}. Thereupon, for X > 0,

(
Iσ ,σ ′ ,ρ,ρ′ ,η

0+
(
t
λ–1Sm

n
[
t
μ
]

p�
(�)
q
[
t
ν
]))

(X)

= X
λ–σ–σ ′+η–1

[n/m]∑
s=0

(–n)ms

s!
An,sX

sμ

× p+3�
(�)
q+3

[
(a1, A1, x), (λ + sμ,ν), (–σ ′ + ρ ′ + λ + sμ,ν),

(ρ ′ + λ + sμ,ν), (–σ – σ ′ + η + λ + sμ,ν),

(–σ – σ ′ – ρ + η + λ + sμ,ν), (aj, Aj)2,p;
(–σ ′ – ρ + η + λ + sμ,ν), (bj, Bj)1,q;

X
ν

]
. (2.6)

Proof For the sake of simplicity, let us consider

L =
(
Iσ ,σ ′ ,ρ,ρ′ ,η

0+
(
t
λ–1Sm

n
[
t
μ
]

p�
(�)
q
[
t
ν
]))

(X). (2.7)

Now, using (1.2) and (1.6) in (2.7) and then taking advantage of relationship (2.4), we find
for X > 0

L =

(
Iσ ,σ ′ ,ρ,ρ′ ,η

0+

(
t
λ–1

[n/m]∑
s=0

(–n)ms

s!
An,st

sμ
∞∑
�=0

�(a1 + A1�, x)
∏p

j=2 �(aj + Aj�)∏q
j=1 �(bj + Bj�)

t�ν

�!

))
(X)

=
[n/m]∑
s=0

(–n)ms

s!
An,s

∞∑
�=0

�(a1 + A1�, x)
∏p

j=2 �(aj + Aj�)∏q
j=1 �(bj + Bj�)�!

× (
Iσ ,σ ′ ,ρ,ρ′ ,η

0+
{
t
λ+sμ+�ν–1})(X)

=
[n/m]∑
s=0

(–n)ms

s!
An,s

∞∑
�=0

�(a1 + A1�, x)
∏p

j=2 �(aj + Aj�)∏q
j=1 �(bj + Bj�)�!

×X
–σ–σ ′+η+λ+sμ+�ν–1

× �(λ + sμ + �ν)�(–σ ′ + ρ ′ + λ + sμ + �ν)�(–σ – σ ′ – ρ + η + λ + sμ + �ν)
�(ρ ′ + λ + sμ + �ν)�(–σ – σ ′ + η + λ + sμ + �ν)�(–σ ′ – ρ + η + λ + sμ + �ν)

.

Finally, in opinion of (1.2) interpretation, we get (2.6) as a desired outcome. �
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Theorem 2 Let σ ,σ ′,ρ,ρ ′,η,λ, c ∈C be such that μ,ν > 0 and 	(λ) > max{	(–sμ),	(–σ +
ρ – sμ),	(–σ – σ ′ – ρ ′ + η – sμ)}. Then, for X > 0,

(
Dσ ,σ ′ ,ρ,ρ′ ,η

0+
(
t
λ–1Sm

n
[
t
μ
]

p�
(�)
q
[
t
ν
]))

(X)

= X
λ+σ+σ ′–η–1

[n/m]∑
s=0

(–n)ms

s!
An,sX

sμ

× p+3�
(�)
q+3

[
(a1, A1, x), (λ + sμ,ν), (σ – ρ + λ + sμ,ν),
(–ρ + λ + sμ,ν), (σ + σ ′ – η + λ + sμ,ν),

(σ + σ ′ + ρ ′ – η + λ + sμ,ν), (aj, Aj)2,p;
(σ + ρ ′ – η + λ + sμ,ν), (bj, Bj)1,q;

X
ν

]
. (2.8)

Proof For the sake of simplicity, let us consider

T =
(
Dσ ,σ ′ ,ρ,ρ′ ,η

0+
(
t
λ–1Sm

n
[
t
μ
]

p�
(�)
q
[
t
ν
]))

(X). (2.9)

Now using (1.2) and (1.6) in (2.9) and then taking advantage of relationship (2.5), for X > 0,
we acquire

T =

(
Dσ ,σ ′ ,ρ,ρ′ ,η

0+

(
t
λ–1

[n/m]∑
s=0

(–n)ms

s!
An,st

sμ
∞∑
�=0

�(a1 + A1�, x)
∏p

j=2 �(aj + Aj�)∏q
j=1 �(bj + Bj�)

t�ν

�!

))
(X)

=
[n/m]∑
s=0

(–n)ms

s!
An,s

∞∑
�=0

�(a1 + A1�, x)
∏p

j=2 �(aj + Aj�)∏q
j=1 �(bj + Bj�)�!

× (
Dσ ,σ ′ ,ρ,ρ′ ,η

0+
{
t
λ+sμ+�ν–1})(X)

=
[n/m]∑
s=0

(–n)ms

s!
An,s

∞∑
�=0

�(a1 + A1�, x)
∏p

j=2 �(aj + Aj�)∏q
j=1 �(bj + Bj�)�!

×X
σ+σ ′–η+λ+sμ+�ν–1

× �(λ + sμ + �ν)�(σ + σ ′ + ρ ′ – η + λ + sμ + �ν)�(σ – ρ + λ + sμ + �ν)
�(–ρ + λ + sμ + �ν)�(σ + ρ ′ – η + λ + sμ + �ν)�(σ + σ ′ – η + λ + sμ + �ν)

.

Finally, in opinion of the (1.2) interpretation, we get (2.8) as a desired outcome. �

The F3 Appell function in (2.1) tends to reduce to the hypergeometric function 2F1 of
Gauss as follows:

2F1(σ ,ρ;η;X) = F3
(
σ ,σ ′,ρ,ρ ′;η;X, 0

)
= F3

(
σ , 0,ρ,ρ ′;η;X,Y

)
= F3

(
σ ,σ ′,ρ, 0;η;X,Y

)
. (2.10)

In the light of the reduction formula (2.10), the Marichev–Saigo–Maeda operators (2.2)
including (2.3) reduce to Saigo’s hypergeometric fractional operators. If we take σ = σ + ρ ,
σ ′ = ρ ′ = 0, ρ = –η, η = σ , we immediately obtain Saigo’s fractional integral along with
differential operators in conjunction with the hypergeometric function 2F1 [26, 27]:

(
Iσ ,ρ,η

0,+ f
)
(X) =

X–σ–ρ

�(σ )

∫ X

0
(X – t)σ–1

2F1

(
σ + ρ, –η;σ ; 1 –

t

X

)
f (t) dt, (2.11)
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and

(
Dσ ,ρ,η

0,+ f
)
(X) =

(
I–σ ,–ρ,σ+η

0,+ f
)
(X)

=
(

d
dX

)κ(
I–σ+κ ,–ρ–κ ,σ+η–κ

0,+ f
)
(X)

(
κ =

[	(σ )
]

+ 1
)
. (2.12)

Furthermore, by specializing the parameters in (2.11) and (2.12), we obtain Riemann–
Liouville and Erdélyi–Kober fractional operators. Setting ρ = –σ in (2.11) and (2.12) yields
the familiar Riemann–Liouville integrals and derivatives of fractional order σ ∈ C beside
	(σ ) > 0 as well as X ∈R

+ (see, e.g., [17]):

(
Iσ ,–σ ,η

0,+ f
)
(X) =

(
Iσ

0,+f
)
(X) ≡ 1

�(σ )

∫ X

0
(X – t)σ–1f (t) dt (2.13)

and

(
Dσ ,–σ ,η

0,+ f
)
(X) =

(
Dσ

0,+f
)
(X)

=
(

d
dX

)κ(
Iκ–σ

0,+ f
)
(X)

(
κ =

[	(σ )
]

+ 1
)
. (2.14)

Again setting ρ = 0 in (2.11) and (2.12) provides the so-called Erdélyi–Kober integrals and
derivatives of fractional order σ ∈C along with 	(σ ) > 0 and X ∈R

+ (see, e.g., [34]):

(
Iσ ,0,η

0,+ f
)
(X) =

(
I+

η,σ f
)
(X) =

X–σ–η

�(σ )

∫ X

0
(X – t)σ–1

t
ηf (t) dt (2.15)

and

(
Dσ ,0,η

0,+ f
)
(X) =

(
D+

η,σ f
)
(X)

=
(

d
dX

)n(
I–σ+κ ,–σ ,σ+η–κ

0,+ f
)
(X)

(
κ =

[	(σ )
]

+ 1
)
. (2.16)

Here, we mention these results in form of Corollaries 2.1 to 2.6.

Corollary 2.1 Let σ ,ρ,η,λ ∈C be such that 	(σ ),μ,ν > 0 and 	(λ) > max{	(–sμ),	(ρ –
η – sμ)}. Thereupon, for X > 0,

(
Iσ ,ρ,η

0+
(
t
λ–1Sm

n
[
t
μ
]

p�
(�)
q
[
t
ν
]))

(X)

= X
–ρ+λ–1

[n/m]∑
s=0

(–n)ms

s!
An,sX

sμ

× p+2�
(�)
q+2

[
(a1, A1, x), (λ + sμ,ν), (–ρ + η + λ + sμ,ν), (aj, Aj)2,p;

Xν

(σ + η + λ + sμ,ν), (–ρ + λ + sμ,ν), (bj, Bj)1,q;

]
. (2.17)
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Corollary 2.2 Suppose σ ,η,λ ∈ C to be such that 	(σ ),μ,ν > 0 and 	(λ) > max{	(–sμ),
	(–σ – η – sμ)}. Thereupon, for X > 0,

(
Iσ ,–σ ,η

0+
(
t
λ–1Sm

n
[
t
μ
]

p�
(�)
q
[
t
ν
]))

(X)

= X
σ+λ–1

[n/m]∑
s=0

(–n)ms

s!
An,sX

sμ

× p+1�
(�)
q+1

[
(a1, A1, x), (λ + sμ,ν), (aj, Aj)2,p;

Xν

(σ + λ + sμ,ν), (bj, Bj)1,q;

]
. (2.18)

Corollary 2.3 Let σ ,η,λ ∈ C be such that 	(σ ),μ,ν > 0 and 	(λ) > max{	(–sμ),	(–η –
sμ)}. Thereupon, for X > 0,

(
I+

η,σ
(
t
λ–1Sm

n
[
t
μ
]

p�
(�)
q
[
t
ν
]))

(X)

= X
λ–1

[n/m]∑
s=0

(–n)ms

s!
An,sX

sμ

× p+1�
(�)
q+1

[
(a1, A1, x), (η + λ + sμ,ν), (aj, Aj)2,p;

Xν

(σ + η + λ + sμ,ν), (bj, Bj)1,q;

]
. (2.19)

Corollary 2.4 Let σ ,ρ,η,λ ∈ C be such that μ,ν > 0 and 	(λ) > max{	(–sμ),	(–σ – ρ –
η – sμ)}. Then, for X > 0,

(
Dσ ,ρ,η

0+
(
t
λ–1Sm

n
[
t
μ
]

p�
(�)
q
[
t
ν
]))

(X)

= X
ρ+λ–1

[n/m]∑
s=0

(–n)ms

s!
An,sX

sμ

× p+2�
(�)
q+2

[
(a1, A1, x), (λ + sμ,ν), (σ + ρ + η + λ + sμ,ν), (aj, Aj)2,p;

Xν

(η + λ + sμ,ν), (ρ + λ + sμ,ν), (bj, Bj)1,q;

]
. (2.20)

Corollary 2.5 Let σ ,η,λ ∈ C be such that μ,ν > 0 and 	(λ) > max{	(–sμ),	(–η – sμ)}.
Then, for X > 0,

(
Dσ ,–σ ,η

0+
(
t
λ–1Sm

n
[
t
μ
]

p�
(�)
q
[
t
ν
]))

(X)

= X
–σ+λ–1

[n/m]∑
s=0

(–n)ms

s!
An,sX

sμ

× p+1�
(�)
q+1

[
(a1, A1, x), (λ + sμ,ν), (aj, Aj)2,p;

Xν

(–σ + λ + sμ,ν), (bj, Bj)1,q;

]
. (2.21)
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Corollary 2.6 Let σ ,η,λ ∈ C be such that μ,ν > 0 and 	(λ) > max{	(–sμ),	(–σ – η –
sμ)}. Thereupon, for X > 0,

(
D+

η,σ
(
t
λ–1Sm

n
[
t
μ
]

p�
(�)
q
[
t
ν
]))

(X)

= X
λ–1

[n/m]∑
s=0

(–n)ms

s!
An,sX

sμ

× p+1�
(�)
q+1

[
(a1, A1, x), (σ + η + λ + sμ,ν), (aj, Aj)2,p;

Xν

(η + λ + sμ,ν), (bj, Bj)1,q;

]
. (2.22)

3 Integral transforms
In this part, several integral transforms such as Jacobi, Gegenbauer (or ultraspherical),
Legendre, Laplace, Mellin, Hankel, and Euler’s beta transforms of a product of a general
polynomial class and incomplete Fox–Wright function p�

(�)
q (t) are presented.

3.1 Jacobi and related integral transforms
The classical orthogonal Jacobi polynomial P(h,g)

n (t) is given by the following (see, for ex-
ample, [33]):

P(h,g)
n (t) = (–1)n(–t) =

(
h + n

n

)
2F1

[
–n,h + g + n + 1

h + 1

∣∣∣∣ 1 – t

2

]
, (3.1)

where 2F1 is the Gauss hypergeometric function [25].

Definition 2 The Jacobi transformation of a f (t) function is set as follows (see, e.g., [13,
p. 501]):

J
(h,g)[f (t); n

]
=
∫ 1

–1
(1 – t)h(1 + t)gP(h,g)

n (t)f (t) dt (3.2)

(
min

{	(h),	(g)
}

> –1; n ∈ N0
)
,

provided that the f (t) function seems to be so limited that only the integral exists in (3.2).

The Jacobi transform of the power function tρ–1 is given by (see, e.g., [37, p. 128, Eq. (18)])

J
(h,g)[

t
ρ–1; n

]
=
∫ 1

–1
(1 – t)ξ–1(1 + t)η–1P(h,g)

n (t)tρ–1 dt

= 2ξ+η–1
(
h + n

n

)
B(ξ ,η)F1:2;1

1:1;0

[
ξ : –n,h + g + n + 1; 1 – ρ;
ξ + η : h + 1; ;

1, 2

]
(3.3)

(
min

{	(ξ ),	(η)
}

> 0;ρ ∈C; n ∈N0
)
,

where Fq:m;ν
p:l;μ corresponds to Kampé de Fériet’s function in two variables (see, e.g., [32,

p. 22, Eq. 1.3(2)] and [32, p. 37, Eq. 1.4(21)]). In fact, this last integral formula (3.3) will be
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reduced instantly to the preceding form when specifying ξ = h + 1 and η = g + 1:

J
(h,g)[

t
ρ–1; n

]
=
∫ 1

–1
(1 – t)h(1 + t)gP(h,g)

n (t)tρ–1 dt

= 2h+g+1
(
h + n

n

)
B(h + 1,g + 1)

× F1:2;1
1:1;0

[
h + 1 : –n,h + g + n + 1; 1 – ρ;
h + g + 2 : h + 1; ;

1, 2

]
(3.4)

(
min

{	(h),	(g)
}

> –1;ρ ∈C; n ∈N0
)
.

However, in its additional limited case where ρ = m + 1 (m ∈ N0), (3.4) brings the estab-
lished consequence about the tm (m ∈N0) Jacobi transform studied by [25, p. 261, Eq. (14)
along with (15)]:

J
(h,g)[

t
m; n

]
=
∫ 1

–1
(1 – t)h(1 + t)gP(h,g)

n (t)tm dt

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 (m = 0, 1, 2, . . . , n – 1),

2h+g+n+1B(h + n + 1,g + n + 1) (m = n),

2h+g+n+1(m
n
)
B(h + n + 1,g + n + 1)

· 2F1
[ n–m,h+n+1
h+g+2n+2 | 2

]
, (m = n + 1, n + 2, n + 3, . . .)

(3.5)

(
min

{	(h),	(g)
}

> –1; m, n ∈N0
)
.

Specifying the parameters h and g, the Jacobi polynomials P(h,g)
n (t) exhibit, like in their

individual cases, other such recognized orthogonal polynomials being the Gegenbauer
(or ultraspherical) polynomials Cν

n(t), the Legendre (or spherical) polynomials Pn(t), and
the Tchebycheff polynomials Tn(t) and Un(t) of the first kind and second kind (see, for
details, [33]). In addition, we have the accompanying established connections with the
Gegenbauer polynomials Cν

n(t) as well as the Legendre polynomials Pn(t):

Cν
n(t) =

(
ν + n – 1

2
n

)–1(2ν + n – 1
n

)
P(ν– 1

2 ,ν– 1
2 )

n (t) (3.6)

and

Pn(t) = C
1
2

n (t) = P(0,0)
n (t), (3.7)

respectively, which, in conjunction with (3.2), brings the Gegenbauer transform G
(ν)[f (t);

n] as follows:

G
(ν)[f (t); n

]
=
(

ν + n – 1
2

n

)–1(2ν + n – 1
n

)
J

(ν– 1
2 ,ν– 1

2 )[f (t); n
]

=
∫ 1

–1

(
1 – t

2)ν– 1
2 Cν

n(t)f (t) dt
(

	(ν) > –
1
2

; n ∈N0

)
, (3.8)
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and the resulting Legendre transform L[f (t); n] which is described by

L
[
f (t); n

]
= G

( 1
2 )[f (t); n

]
=
∫ 1

–1
Pn(t)f (t) dt (n ∈N0). (3.9)

We are now generating three new results that provide the relations between Jacobi, Gegen-
bauer, and Legendre transforms with the following incomplete Fox–Wright function p�

(�)
q

(1.2).

Theorem 3 The preceding formula for Jacobi transform is valid under the condition stated
in (1.2):

J
(h,g){

t
ρ–1Sm′

n′ [ωt]p�
(�)
q [ωt]; n

}
= 2h+g+1

(
h + n

n

)
B(h + 1,g + 1)

×
[n′/m′]∑

s=0

(–n′)m′s
s!

An′ ,sω
s

∞∑
�=0

�(a1 + A1�, x)
∏p

j=2 �(aj + Aj�)∏q
j=1 �(bj + Bj�)

× F1:2;1
1:1;0

[
h + 1 : –n,h + g + n + 1; 1 – ρ – s – �;

h + g + 2 : h + 1; ;
1, 2

]
ω�

�!
(3.10)

(
x � 0; n ∈N0; min

{	(h),	(g)
}

> –1;ρ ∈C; p, q ∈N0
)
,

where the Jacobi transform into (3.4) is assumed to exist.

Proof By employing the concept of (3.2) together with (1.2), we get

J
(h,g){

t
ρ–1Sm′

n′ [ωt]p�
(�)
q [ωt]; n

}
=
∫ 1

–1
t
ρ–1(1 – t)h(1 + t)gP(h,g)

n (t)Sm′
n′ [ωt]p�

(�)
q [ωt] dt

=
∫ 1

–1
t
ρ–1(1 – t)h(1 + t)gP(h,g)

n (t)
[n′/m′]∑

s=0

(–n′)m′s
s!

An′ ,s(ωt)s

×
∞∑
�=0

�(a1 + A1�, x)
∏p

j=2 �(aj + Aj�)∏q
j=1 �(bj + Bj�)

(ωt)�

�!
dt, (3.11)

where, when adjusting the order of integration and summation (that might be easily ex-
plained by absolute convergence), we make use of the Jacobi transform formula (3.4) along
with the parameter ρ substituted by ρ + k (ρ ∈ C; k ∈ N0). �

By employing the Jacobi transform formula (3.5), we can simplify the assertion (3.10)
of Theorem 3 in their limiting case when ρ = m + 1 (m ∈ N0). Furthermore, in light
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of connection (3.6), Theorem 3 gives the subsequent corollary by considering h = g =
ν – 1

2 .

Corollary 3.1 The following Gegenbauer transform formula holds true under the condi-
tion stated in (1.2):

G
(ν)[

t
ρ–1Sm′

n′ [ωt]p�
(�)
q [ωt]; n

]
= 22ν

(
2ν + n – 1

n

)
B
(

ν +
1
2

,ν +
1
2

)

×
[n′/m′]∑

s=0

(–n′)m′s
s!

An′ ,sω
s

∞∑
�=0

�(a1 + A1�, x)
∏p

j=2 �(aj + Aj�)∏q
j=1 �(bj + Bj�)

× F1:2;1
1:1;0

[
ν + 1

2 : –n, 2ν + n; 1 – ρ – �;
2ν + 1 : ν + 1

2 ; ;
1, 2

]
ω�

�!
(3.12)

(x � 0; n ∈N0;ρ ∈C; p, q ∈N0),

where it is assumed that the Gegenbauer transform in (3.12) exists.

A special case of Theorem 3 when h = g = 0 (or, alternatively, Corollary 3.1 with ν = 1
2 )

gives the following result for the Legendre transform described by (3.9).

Corollary 3.2 The subsequent Legendre transform formula holds true under the condition
stated in (1.2):

L
[
t
ρ–1Sm′

n′ [ωt]p�
(�)
q [ωt]; n

]

= 2
[n′/m′]∑

s=0

(–n′)m′s
s!

An′ ,sω
s

∞∑
�=0

�(a1 + A1�, x)
∏p

j=2 �(aj + Aj�)∏q
j=1 �(bj + Bj�)

× F1:2;1
1:1;0

[
1 : –n, n + 1; 1 – ρ – �;

2 : 1; ;
1, 2

]
ω�

�!
(3.13)

(x � 0; n ∈N0;ρ ∈C; p, q ∈N0),

where it is assumed that the Legendre transform in (3.13) exists.

3.2 Laplace transform
The Laplace transform of a given function f (t) is defined as follows [13, 29]:

L
{

f (t);ω
}

=
∫ ∞

0
e–ωtf (t) dt

(	(ω) > 0
)
, (3.14)

if the improper integral exists.
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Theorem 4 If � > 0, α > 0, β > 0, and 	(ω) > 0, then the Laplace transform of incomplete
Fox–Wright function p�

(�)
q is given as follows:

L
{
t
λ–1Sm

n
[
t
α
]

p�
(�)
q
[
t
β
]
;ω
}

=
1
ωλ

[n/m]∑
s=0

(–n)ms

s!
An,s

1
ωsα

× p+1�
(�)
q

⎡
⎣(a1, A1, x), (λ + sα,β), (aj, Aj)2,p; 1

ωβ(bj, Bj)1,q;

⎤
⎦ . (3.15)

Proof Using the definition of (1.2) and (1.6) in the left-hand side of (3.15) and applying
the definition of Laplace transform (3.14), we obtain

L
{
t
λ–1Sm

n
[
t
α
]

p�
(�)
q
[
t
β
]
;ω
}

= L

{
t
λ–1

[n/m]∑
s=0

(–n)ms

s!
An,st

sα
∞∑
�=0

�(a1 + A1�, x)
∏p

j=2 �(aj + Aj�)∏q
j=1 �(bj + Bj�)

t�β

�!
;ω

}

=
[n/m]∑
s=0

(–n)ms

s!
An,s

∞∑
�=0

�(a1 + A1�, x)
∏p

j=2 �(aj + Aj�)∏q
j=1 �(bj + Bj�)�!

∫ ∞

0
e–ωt

t
λ+sα+�β–1 dt

=
[n/m]∑
s=0

(–n)ms

s!
An,s

∞∑
�=0

�(a1 + A1�, x)
∏p

j=2 �(aj + Aj�)∏q
j=1 �(bj + Bj�)�!

�(λ + sα + �β)
ωλ+sα+�β

.

Now, employing the gamma function formula [25]

�(η)ξ–η =
∫ ∞

0
e–ξt

t
η–1 dt, 	(ξ ) > 0,	(η) > 0, (3.16)

and then using (1.2), we arrive at the desired result in Theorem 4. �

3.3 Mellin transform
The Mellin transform of a given function f (t) is represented as follows [13, 29]:

M
{

f (t);ω
}

=
∫ ∞

0
t
ω–1f (t) dt

(	(ω) > 0
)
, (3.17)

given that the improper integral exists.

Theorem 5 If � > 0, h > 0, g > 0, α > 0, β > 0, and 	(ω) > 0, then the Mellin transform of
incomplete Fox–Wright function p�

(�)
q is given as follows:

M
{

Sm
n

[
h

(1 + t)α

]
p�

(�)
q

[
g

(1 + t)β

]
;ω
}

= �(ω)
[n/m]∑
s=0

(–n)ms

s!
An,sh

s

× p+1�
(�)
q+1

[
(a1, A1, x), (–ω + sα,β), (aj, Aj)2,p;

g
(sα,β), (bj, Bj)1,q;

]
. (3.18)
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Proof Using the definition of (1.2), (1.6) and applying Mellin transform (3.17) in the left-
hand side of (3.18) and then employing the beta function formula [25]

B(α,β) =

⎧⎨
⎩
∫∞

0
tα–1

(1–t)α+β dt (	(α) > 0;	(β) > 0),
�(α)�(β)
�(α+β) (α,β /∈ Z

–
0 ),

(3.19)

after using definition (1.2), we obtain the desired formula in Theorem 5. �

3.4 Hankel transform
The Hankel transform of a given function f (t) is characterized as follows [13, 29]:

Hν

{
f (t);ω

}
=
∫ ∞

0
tJν(ωt)f (t) dt

(	(ω) > 0
)
, (3.20)

provided that the improper integral exists, Jν(ωt) is the Bessel function of order ν .

Theorem 6 If � > 0, α > 0, β > 0, λ > 0, and 	(ω) > 0, then the Hankel transform of in-
complete Fox–Wright function p�

(�)
q is given as follows:

Hν

{
t
λ–1Sm

n
[
t
α
]

p�
(�)
q
[
t
β
]
;ω
}

=
2
ωλ

[n/m]∑
s=0

(–n)ms

s!
An,s

(
2
ω

)sα

× p+1�
(�)
q+1

[
(a1, A1, x), ( λ+ν+sα

2 , β

2 ), (aj, Aj)2,p; (
2
ω

)β

( 2+ν–λ–sα
2 , – β

2 ), (bj, Bj)1,q;

]
. (3.21)

Proof Using the definition of (1.2), (1.6) and applying Hankel transform (3.20) in the left-
hand side of (3.21) and then employing the formula (Prudnikov, Brychkov, and Marichev
[24, (2.44)])

∫ ∞

0
tλ–1Jν(at) dt = 2λ–1a–λ

�( λ+ν
2 )

�(1 + ν–λ
2 )

(
a > 0, –	(ν) < 	(λ) < 3/2

)
, (3.22)

we are led easily to the right-hand side of the assertion (3.21) of Theorem 6. The details
are omitted here. �

3.5 Euler’s beta transform
The integral transform of Euler’s beta type for a given function f (t) is characterized as
follows [13, 29]:

B
{

f (t) : α,β
}

=
∫ 1

0
t
α–1(1 – t)β–1f (t) dt

(	(α) > 0,	(β) > 0
)
. (3.23)
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Theorem 7 If � > 0, h > 0, g > 0, μ > 0, ν > 0, ξ > 0, η > 0, and 	(α),	(β) > 0, then Euler’s
beta type transform of incomplete Fox–Wright function p�

(�)
q is given as follows:

B
{

Sm
n
[
ht

μ(1 – t)ν
]

p�
(�)
q
[
gt

ξ (1 – t)η
]

: α,β
}

=
[n/m]∑
s=0

(–n)ms

s!
An,sh

s

× p+2�
(�)
q+1

[
(a1, A1, x), (α + sμ, ξ ), (β + sν,η), (aj, Aj)2,p;

g
(α + β + s(μ + ν), ξ + η), (bj, Bj)1,q;

]
. (3.24)

Proof Using the definition of (1.2), (1.6) and applying Euler’s beta transform (3.23) in the
left-hand side of (3.24) and then employing the beta function formula [25]

B(α,β) =

⎧⎨
⎩
∫ 1

0 tα–1(1 – t)β–1 dt (	(α) > 0;	(β) > 0),
�(α)�(β)
�(α+β) (α,β /∈ Z

–
0 ),

(3.25)

after using definition (1.2), we arrive at the desired formula in Theorem 7. �

4 Concluding remarks and observations
In our present study, with the aid of the incomplete Fox–Wright functions p�

(γ )
q (t) and

p�
(�)
q (t), we have studied several interesting properties, such as Marichev–Saigo–Maeda

left-handed fractional integral and differential operators, which include Saigo hyperge-
ometric fractional integral and differential operators, Riemann–Liouville, and Erdélyi–
Kober fractional integral and differential operators as particular cases for various choices
of parameter. In a similar pattern, one can derive results for right-hand-sided Marichev–
Saigo–Maeda, Saigo hypergeometric fractional, Riemann–Liouville, and Erdélyi–Kober
fractional integral and differential operators. Furthermore, we derive several integral
transforms such as Jacobi, Gegenbauer (or ultraspherical), Legendre, Laplace, Mellin,
Hankel, and Euler’s beta transforms. Specific cases of derived findings can be developed
by suitably specializing the coefficient An,s to obtain a large number of spectrum of the
known polynomials (see, e.g. [30]). Here we give three main results, and we left the re-
maining ones for interested readers. If we set n = 0 and A0,0 (the polynomial family Sm

0 will
reduce to unity) in Theorems 1, 2, and 3, we get the following corollaries.

Corollary 7.1 Let σ ,σ ′,ρ,ρ ′,η,λ ∈C be such that 	(η),μ,ν > 0 and 	(λ) > max{0,	(σ ′ –
ρ ′),	(σ + σ ′ + ρ – η)}. Thereupon, for X > 0,

(
Iσ ,σ ′ ,ρ,ρ′ ,η

0+
(
t
λ–1

p�
(�)
q
[
t
ν
]))

(X)

= X
λ–σ–σ ′+η–1

p+3�
(�)
q+3

[
(a1, A1, x), (λ,ν), (–σ ′ + ρ ′ + λ,ν),

(ρ ′ + λ,ν), (–σ – σ ′ + η + λ,ν),

(–σ – σ ′ – ρ + η + λ,ν), (aj, Aj)2,p;
(–σ ′ – ρ + η + λ,ν), (bj, Bj)1,q;

X
ν

]
. (4.1)
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Corollary 7.2 Let σ ,σ ′,ρ,ρ ′,η,λ, c ∈ C be such that μ,ν > 0 and 	(λ) > max{0,	(–σ +
ρ),	(–σ – σ ′ – ρ ′ + η)}. Then, for X > 0,

(
Dσ ,σ ′ ,ρ,ρ′ ,η

0+
(
t
λ–1

p�
(�)
q
[
t
ν
]))

(X)

= X
λ+σ+σ ′–η–1

p+3�
(�)
q+3

[
(a1, A1, x), (λ,ν), (σ – ρ + λ,ν),
(–ρ + λ,ν), (σ + σ ′ – η + λ,ν),

(σ + σ ′ + ρ ′ – η + λ,ν), (aj, Aj)2,p;
(σ + ρ ′ – η + λ,ν), (bj, Bj)1,q;

X
ν

]
. (4.2)

Corollary 7.3 The coming Jacobi transform formula holds true under the condition stated
in (1.2):

J
(h,g){

t
ρ–1

p�
(�)
q [ωt]; n

}
= 2h+g+1

(
h + n

n

)
B(h + 1,g + 1)

∞∑
�=0

�(a1 + A1�, x)
∏p

j=2 �(aj + Aj�)∏q
j=1 �(bj + Bj�)

× F1:2;1
1:1;0

[
h + 1 : –n,h + g + n + 1; 1 – ρ – �;

h + g + 2 : h + 1; ;
1, 2

]
ω�

�!
(4.3)

(
x � 0; n ∈N0; min

{	(h),	(g)
}

> –1;ρ ∈C; p, q ∈N0
)
,

where it is considered that the Jacobi transform in (3.4) exists.

Remark 1 It is important to note that the particular cases of the results obtained in this
paper for x = 0 would give the corresponding new results for the product of a more general
class of polynomials and Fox–Wright hypergeometric functions p�q(t).
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