
Li and He Advances in Difference Equations        (2020) 2020:686 
https://doi.org/10.1186/s13662-020-03066-1

R E S E A R C H Open Access

Monotone iterative method for fractional
p-Laplacian differential equations with
four-point boundary conditions
Xiaoping Li1 and Minyuan He1*

*Correspondence:
hmy0735@126.com
1College of Mathematics and
Finance, Xiangnan University,
Chenzhou, 423000, Hunan,
P.R. China

Abstract
A four-point boundary problem for a fractional p-Laplacian differential equation is
studied. The existence of two positive solutions is established by means of the
monotone iterative method. An example supporting the abstract result is given.

Keywords: Four-point boundary value problem; Monotone iterative; Fractional
differential equation

1 Introduction
Fractional differential equations (FrDEs) are widely used in many fields: physical chem-
istry, financial mathematics, diffusion theory, transportation theory, chaos and turbu-
lence, viscoelastic mechanics, non-newtonian fluid mechanics, seismic analysis. There-
fore, many scholars have studied fractional differential equations, to mention a few (see,
for example, [1–15]). The standard approach to study boundary value problems (BVPs)
for FrDEs is based on the passage to equivalent integral equations and further application
of the methods and techniques of modern nonlinear analysis. In particular, to study (mul-
tiple) positive solutions, one can combine the classical Green function methods with fixed
point theorems in cones (see, for example, [1–3, 5, 7–9, 11]).

On the other hand, BVPs involving p-Laplacian have attracted a lot of attention during
the last decades (see, for example, [16–19]). Also, we refer to [20–28], where BVPs for
FrDE involving the p-Laplacian were considered. References [22, 25, 28], where the four-
point BVPs were considered, are of our special interest. In [25], Wang et al. considered the
BVP of the form

⎧
⎨

⎩

Dα
0+(φp(Dβ

0+x))(t) + h(t, x(t)) = 0, 0 < t < 1,

x(0) = Dβ
0+x(0) = 0, x(1) = ax(ξ ), Dβ

0+x(1) = bDβ
0+x(η),

(1.1)

with α,β ∈ R; 1 < α,β ≤ 2; 0 ≤ a, b ≤ 1; 0 < ξ ,η < 1. The authors imposed certain mono-
tonicity conditions and applied the upper and lower solutions method.
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In [22] and [28], Tian et al. studied the differential system

Dα
0+

(
φp

(
Dβ

0+x
))

(t) = h
(
t, x(t)

)
, 0 < t < 1,

with the boundary conditions

x(0) = Dβ
0+x(0) = 0, Dγ

0+x(1) = ax(ξ ), Dβ
0+x(1) = bDβ

0+x(η), (1.2)

and

x(0) = Dβ
0+x(0) = 0, Dγ

0+x(1) = aDγ
0+x(ξ ), Dβ

0+x(1) = bDβ
0+x(η), (1.3)

respectively (here 1 < α, β ≤ 2; γ > 0; 1 + γ ≤ β ; a, b > 0; ξ ,η ∈ (0, 1)). To be more spe-
cific, in [22], the existence of multiple positive solutions was established by means of the
Leggett–Williams fixed-point theorem, while in [28], some existence results were obtained
using a monotone iterative method.

In this paper, we study the BVP

⎧
⎨

⎩

Dα
0+(φp(Dβ

0+x(t))) = h(t, x(t)), 0 < t < 1,

x(0) = 0, x(1) = aDγ
0+x(ξ ), Dβ

0+x(0) = 0, Dβ
0+x(1) = bDβ

0+x(η),
(1.4)

where h ∈ C([0, 1]× [0, +∞), [0, +∞)), Dα
0+, Dβ

0+, and Dγ
0+ stand for the standard Riemann–

Liouville differentiations, φp(z) = |z|p–2z, p > 1; 1 < α,β ≤ 2, and γ = β–1
2 ; 0 < ξ ≤ 1

2 ; 0 < η <
1; a, b ∈ [0, +∞) and a�(β)ξ

β–1
2 < �( β+1

2 ); bp–1ηα–1 < 1. By applying a monotone iterative
method, we establish the existence of two positive solutions of (1.4) (see Theorem 3.1) and
support the general result by an example (see Sect. 4).

Our paper is distinguished from [22, 25, 28] in the following three aspects. Firstly, the
boundary condition x(1) = aDγ

0+x(ξ ) in (1.4) is different from the condition x(1) = ax(ξ ) in
(1.1). Next, the condition Dγ

0+x(1) = aDγ
0+x(ξ ) in (1.3) links the values of derivatives of the

same order. At the same time, condition x(1) = aDγ
0+x(ξ ) in (1.4) links the derivatives of

different order (as usual, we regard x(1) as the derivative of order 0 of x at t = 1). Finally, in
(1.2), the authors imposed the boundary condition Dγ

0+x(1) = ax(ξ ), where 1 + γ ≤ β , ξ ∈
(0, 1), and applied the Leggett–Williams fixed-point theorem. This is in a sharp contrast
with the boundary condition x(1) = aDγ

0+x(ξ ), γ = β–1
2 , 0 < ξ ≤ 1

2 , in (1.4), which allows
us to use a monotone iterative method. Summing up: although the methodology that we
use rests on the one developed in [28], our setting is different from the ones considered in
[22, 25, 28].

2 Preliminaries
In this section, we present some preliminary results including estimates for Green func-
tions and solvability of non-homogeneous fractional p-Laplacian BVPs. These results con-
stitute key ingredients of the proof of our main result (Theorem 3.1). All the function
spaces considered below consist of scalar functions. The two lemmas following below are
well known.
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Lemma 2.1 ([29])
(1) If F ∈ L(0, 1) and μ > ν > 0, then

Dν
0+Iμ

0+F(x) = Iμ–ν
0+ F(x), Dν

0+Iν
0+F(x) = F(x).

(2) If μ,ν > 0, then

Dμ
0+xν–1 =

�(ν)
�(ν – μ)

xν–μ–1.

Lemma 2.2 ([11]) Let Ai ∈ R, i = 1, 2, . . . , N , and N = [α] + 1. Then

Iα
0+Dα

0+F(x) = F(x) + A1xα–1 + A2xα–2 + · · · + AN xα–N ,

where α > 0, F ∈ C(0, 1) ∩ L(0, 1), Dα
0+F ∈ C(0, 1) ∩ L(0, 1).

Let B1 = bp–1ηα–1 �= 1, B2 = a�(β)ξ
β–1

2 �= �( β+1
2 ), and denote

G(t, z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�( β+1
2 )[t(1–z)]β–1–(�( β+1

2 )–B2)(t–z)β–1–a�(β)tβ–1(ξ–z)
β–1

2

�(β)(�( β+1
2 )–B2)

, 0 ≤ z ≤ t ≤ 1, z ≤ ξ ,
�( β+1

2 )[t(1–z)]β–1–(�( β+1
2 )–B2)(t–z)β–1

�(β)(�( β+1
2 )–B2)

, 0 < ξ ≤ z ≤ t ≤ 1,

�( β+1
2 )[t(1–z)]β–1–a�(β)tβ–1(ξ–z)

β–1
2

�(β)(�( β+1
2 )–B2)

, 0 ≤ t ≤ z ≤ ξ ≤ 1,
�( β+1

2 )[t(1–z)]β–1

�(β)(�( β+1
2 )–B2)

, 0 ≤ t ≤ z ≤ 1, ξ ≤ z,

(2.1)

M(z, r) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[z(1–r)]α–1–bp–1zα–1(η–r)α–1–(1–B1)(z–r)α–1

�(α)(1–B1) , 0 ≤ r ≤ z ≤ 1, r ≤ η,
[z(1–r)]α–1–(1–B1)(z–r)α–1

�(α)(1–B1) , 0 ≤ η ≤ r ≤ z ≤ 1,
[z(1–r)]α–1–bp–1zα–1(η–r)α–1

�(α)(1–B1) , 0 ≤ z ≤ r ≤ η ≤ 1,
[z(1–r)]α–1

�(α)(1–B1) , 0 ≤ z ≤ r ≤ 1,η ≤ r.

(2.2)

The following technical statement plays an important role in studying Green functions
relevant to our considerations.

Lemma 2.3 Let G and M be defined by (2.1) and (2.2), respectively. If a�(β)ξ
β–1

2 < �( β+1
2 )

and bp–1ηα–1 < 1, then:
(a) G, M ∈ C([0, 1] × [0, 1]);
(b) G(t, z) > 0, M(t, z) > 0 for all t, z ∈ (0, 1);
(c) there exist two positive functions μ,ν ∈ C((0, 1), (0, +∞)) such that, for all z ∈ (0, 1),

one has

μ(z) ≥ max
0≤t≤1

G(t, z), ν(z) ≥ max
0≤t≤1

M(t, z).

Proof (i) This statement follows immediately from (2.1) and (2.2).
(ii) In order to prove that G(t, z) > 0 for all t, z ∈ (0, 1), consider, first, the case

0 ≤ z ≤ t ≤ 1, z ≤ ξ .
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Put

g(t, z) =
tβ–1(1 – z)β–1 – (t – z)β–1

�(β)
. (2.3)

Obviously, in the considered case, g(t, z) > 0.
On the other hand, ∀ξ ∈ (0, 1

2 ], z ∈ [0, ξ ], we have

1 –
z
ξ

≤ (1 – z)2.

Then

(

1 –
z
ξ

) β–1
2 ≤ (1 – z)β–1,

which implies that

(ξ – z)
β–1

2 ≤ ξ
β–1

2 (1 – z)β–1.

Obviously,

g∗(ξ , z) = ξ
β–1

2 (1 – z)β–1 – (ξ – z)
β–1

2 ≥ 0.

Therefore,

G(t, z) =
�( β+1

2 )[t(1 – z)]β–1 – (�( β+1
2 ) – B2)(t – z)β–1 – a�(β)tβ–1(ξ – z)

β–1
2

�(β)(�( β+1
2 ) – B2)

=
1

�(β)

(

1 +
B2

�( β+1
2 ) – B2

)
[
t(1 – z)

]β–1 –
(t – z)β–1

�(β)
–

a�(β)tβ–1(ξ – z)
β–1

2

�(β)(�( β+1
2 ) – B2)

=
tβ–1(1 – z)β–1 – (t – z)β–1

�(β)
+

B2tβ–1(1 – z)β–1 – a�(β)tβ–1(ξ – z)
β–1

2

�(β)(�( β+1
2 ) – B2)

= g(t, z) +
atβ–1

(�( β+1
2 ) – B2)

g∗(ξ , z)

> 0.

The remaining three cases 0 < ξ ≤ z ≤ t < 1 or 0 < t ≤ z ≤ ξ < 1 or 0 ≤ t ≤ z < 1, ξ ≤ z,
can be treated using the similar method, so that we omit the obvious modifications. Thus,
G(t, z) > 0 for all t, z ∈ (0, 1).

Similarly, to prove that M(t, z) > 0, for all t, z ∈ (0, 1), consider, first, the case

0 ≤ z ≤ t ≤ 1, z ≤ η.

Put

m(t, z) =
(1 – z)α–1tα–1 – (t – z)α–1

�(α)
. (2.4)
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Obviously, m(t, z) > 0 for 0 ≤ z ≤ t ≤ 1 in the considered case. So

M(t, z) =
[t(1 – z)]α–1 – bp–1tα–1(η – z)α–1 – (1 – B1)(t – z)α–1

�(α)(1 – B1)

=
1

�(α)

(

1 +
B1

1 – B1

)
[
t(1 – z)

]α–1 –
(t – z)α–1

�(α)
–

bp–1tα–1(η – z)α–1

�(α)(1 – B1)

=
tα–1(1 – z)α–1 – (t – z)α–1

�(α)
+

bp–1tα–1[ηα–1(1 – z)α–1 – (η – z)α–1]
�(α)(1 – B1)

= m(t, z) +
bp–1tα–1

1 – B1
m(η, z)

> 0.

One can apply a similar argument in order to treat the remaining three cases 0 < η ≤ z ≤
t < 1 or 0 < t ≤ z ≤ η < 1 or 0 ≤ t ≤ z < 1, η ≤ z. Thus, M(t, z) > 0 for t, z ∈ (0, 1).

(iii) Obviously, for a fixed z, the functions g and m, given by (2.3) and (2.4), respectively,
are increasing in t for t ≤ z and decreasing in t for t ≥ z. Therefore,

max
0≤t≤1

g(t, z) = g(z, z) =
zβ–1(1 – z)β–1

�(β)
, z ∈ (0, 1);

max
0≤t≤1

m(t, z) = m(z, z) =
zα–1(1 – z)α–1

�(α)
, z ∈ (0, 1).

Put

μ(z) = g(z, z) +
B2(1 – z)β–1

�(β)(�( β+1
2 ) – B2)

, z ∈ (0, 1);

ν(z) = m(z, z) +
B2(1 – z)β–1

�(β)(�( β+1
2 ) – B2)

, z ∈ (0, 1).

It is clear that μ,ν ∈ C((0, 1), (0, +∞)).
Consider four cases.
If 0 ≤ z ≤ t ≤ 1, z ≤ ξ , then

max
0≤t≤1

G(t, z) = max
0≤t≤1

(

g(t, z) +
B2tβ–1(1 – z)β–1 – a�(β)tβ–1(ξ – z)

β–1
2

�(β)(�( β+1
2 ) – B2)

)

≤ g(z, z) +
B2(1 – z)β–1

�(β)(�( β+1
2 ) – B2)

= μ(z).

If 0 < ξ ≤ z ≤ t ≤ 1, then

max
0≤t≤1

G(t, z) = max
0≤t≤1

�( β+1
2 )[t(1 – z)]β–1 – (�( β+1

2 ) – B2)(t – z)β–1

�(β)(�( β+1
2 ) – B2)

= max
0≤t≤1

(
tβ–1(1 – z)β–1

�(β)
+

B2tβ–1(1 – z)β–1

�(β)(�( β+1
2 ) – B2)

–
(t – z)β–1

�(β)

)
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≤ g(z, z) +
B2(1 – z)β–1

�(β)(�( β+1
2 ) – B2)

= μ(z).

If 0 ≤ t ≤ z ≤ ξ < 1, then

max
0≤t≤1

G(t, z) = max
0≤t≤1

�( β+1
2 )[t(1 – z)]β–1 – a�(β)tβ–1(ξ – z)

β–1
2

�(β)(�( β+1
2 ) – B2)

= max
0≤t≤1

(
tβ–1(1 – z)β–1

�(β)
+

B2tβ–1(1 – z)β–1 – a�(β)tβ–1(ξ – z)
β–1

2

�(β)(�( β+1
2 ) – B2)

)

≤ g(z, z) +
B2(1 – z)β–1

�(β)(�( β+1
2 ) – B2)

= μ(z).

If 0 ≤ t ≤ z ≤ 1, ξ ≤ z, then

max
0≤t≤1

G(t, z) = max
0≤t≤1

�( β+1
2 )[t(1 – z)]β–1

�(β)(�( β+1
2 ) – B2)

= max
0≤t≤1

(
tβ–1(1 – z)β–1

�(β)
+

B2tβ–1(1 – z)β–1

�(β)(�( β+1
2 ) – B2)

)

≤ g(z, z) +
B2(1 – z)β–1

�(β)(�( β+1
2 ) – B2)

= μ(z).

Thus,

max
0≤t≤1

G(t, z) ≤ μ(z), z ∈ (0, 1).

Similarly, consider four cases for the function ν .
If 0 ≤ z ≤ t ≤ 1, z ≤ η, then

max
0≤t≤1

M(t, z) = max
0≤t≤1

(

m(t, z) +
bp–1tα–1[ηα–1(1 – z)α–1 – (η – z)α–1]

�(α)(1 – B1)

)

≤ m(z, z) +
B1(1 – z)α–1

�(α)(1 – B1)
= ν(z).

If 0 < η ≤ z ≤ t ≤ 1, then

max
0≤t≤1

M(t, z) = max
0≤t≤1

(
[t(1 – z)]α–1 – (1 – B1)(t – z)α–1

�(α)(1 – B1)

)

= max
0≤t≤1

(

h(t, z) +
B1tα–1(1 – z)α–1

�(α)(1 – B1)

)

≤ m(z, z) +
B1(1 – z)α–1

�(α)(1 – B1)
= ν(z).
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If 0 ≤ t ≤ z ≤ η < 1, then

max
0≤t≤1

M(t, z) = max
0≤t≤1

(
[t(1 – z)]α–1 – bp–1zα–1(η – z)α–1

�(α)(1 – B1)

)

= max
0≤t≤1

(
tα–1(1 – z)α–1

�(α)
+

bp–1tα–1[ηα–1(1 – z)α–1 – (η – z)α–1]
�(α)(1 – B1)

)

≤ m(z, z) +
B1(1 – z)α–1

�(α)(1 – B1)
= ν(z).

If 0 ≤ t ≤ z ≤ 1, η ≤ z, then

max
0≤t≤1

M(t, z) = max
0≤t≤1

[t(1 – z)]α–1

�(α)(1 – B1)

= max
0≤t≤1

(
tα–1(1 – z)α–1

�(α)
+

B1[t(1 – z)]α–1

�(α)(1 – B1)

)

≤ m(z, z) +
B1(1 – z)α–1

�(α)(1 – B1)
= ν(z).

Thus,

max
0≤t≤1

M(t, z) ≤ ν(z), z ∈ (0, 1).

The proof of Lemma 2.3 is complete. �

The next statement provides the existence and uniqueness result for the non- homoge-
neous problems of our interest.

Lemma 2.4 Assume that
(i) φp(z) = |z|p–2z, p > 1;
(ii) φq = (φp)–1, 1

p + 1
q = 1;

(iii) 1 < α,β ≤ 2 and γ = β–1
2 ;

(iv) 0 < ξ ≤ 1
2 , 0 < η < 1, a, b ∈ [0, +∞).

Then, for any y ∈ C[0, 1], the problem

⎧
⎨

⎩

Dα
0+(φp(Dβ

0+x(t))) = y(t), 0 < t < 1,

x(0) = 0, x(1) = aDγ
0+x(ξ ), Dβ

0+x(0) = 0, Dβ
0+x(1) = bDβ

0+x(η),
(2.5)

admits the unique solution

x(t) =
∫ 1

0
G(t, z)φq

(∫ 1

0
M(z, r)y(r) dr

)

dz. (2.6)

Proof By Lemma 2.2, one has

φp
(
Dβ

0+x(t)
)

= Iα
0+y(t) + A1tα–1 + A2tα–2, (2.7)
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where A1, A2 ∈ R. Combining (2.7) with Dβ
0+x(0) = 0 (cf. (2.5)), we have A2 = 0. Then

φp
(
Dβ

0+x(t)
)

= Iα
0+y(t) + A1tα–1, (2.8)

from which it follows that

φp
(
Dβ

0+x(t)
)

=
1

�(α)

∫ t

0
(t – r)α–1y(r) dr + A1tα–1. (2.9)

Hence,

φp
(
Dβ

0+x(1)
)

=
1

�(α)

∫ 1

0
(1 – r)α–1y(r) dr + A1 (2.10)

and

φp
(
Dβ

0+x(η)
)

=
1

�(α)

∫ η

0
(η – r)α–1y(r) dr + A1η

α–1. (2.11)

Next, combining (2.10) and (2.11) with Dβ
0+x(1) = bDβ

0+x(η) (cf. once again (2.5)), we obtain

A1 = –
∫ 1

0

(1 – r)α–1

�(α)(1 – bp–1ηα–1)
y(r) dr +

∫ η

0

bp–1(η – r)α–1

�(α)(1 – bp–1ηα–1)
y(r) dr.

So

φp
(
Dβ

0+x(t)
)

=
1

�(α)

∫ t

0
(t – r)α–1y(r) dr –

∫ 1

0

tα–1(1 – r)α–1

�(α)(1 – bp–1ηα–1)
y(r) dr

+
∫ η

0

bp–1tα–1(η – r)α–1

�(α)(1 – bp–1ηα–1)
y(r) dr

= –
∫ 1

0
M(t, r)y(r) dr.

Then

Dβ
0+x(t) = –φq

(∫ 1

0
M(t, r)y(r) dr

)

. (2.12)

Applying now Lemma 2.2 to (2.12), we have

x(t) = –Iβ
0+φq

(∫ 1

0
M(z, r)y(r) dr

)

+ C1tβ–1 + C2tβ–2. (2.13)

where C1, C2 ∈ R. Since x(0) = 0 (see (2.5), we have C2 = 0. Therefore, (2.13) reduces to

x(t) = –Iβ
0+φq

(∫ 1

0
M(z, r)y(r) dr

)

+ C1tβ–1. (2.14)
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Applying Dγ
0+ to both sides of (2.14), and by Lemma 2.1, we have

Dγ
0+x(t) = –Dγ

0+Iβ
0+φq

(∫ 1

0
M(z, r)y(r) dr

)

+ C1Dγ
0+tβ–1

= –Iβ–γ
0+ φq

(∫ 1

0
M(z, r)y(r) dr

)

+ C1
�(β)

�(β – γ )
tβ–γ –1.

= –
∫ t

0

(t – z)
β–1

2

�( β+1
2 )

φq

(∫ 1

0
M(z, r)y(r) dr

)

dz + C1
�(β)

�( β+1
2 )

t
β–1

2 .

So

x(1) = –
∫ 1

0

(1 – z)β–1

�(β)
φq

(∫ 1

0
M(z, r)y(r) dr

)

dz + C1, (2.15)

Dγ
0+x(ξ ) = –

∫ ξ

0

(ξ – z)
β–1

2

�( β+1
2 )

φq

(∫ 1

0
M(z, r)y(r) dr

)

dz + C1
�(β)

�( β+1
2 )

ξ
β–1

2 . (2.16)

Combining (2.15) and (2.16) with x(1) = aDγ
0+x(ξ ) (see again (2.5)), we have

C1 =
�( β+1

2 )
�( β+1

2 ) – B2

{∫ 1

0

(1 – z)β–1

�(β)
φq

(∫ 1

0
M(z, r)y(r) dr

)

dz

– a
∫ ξ

0

(ξ – z)
β–1

2

�( β+1
2 )

φq

(∫ 1

0
M(z, r)y(r) dr

)

dz
}

.

Thus, we obtain the unique solution of problem (2.5):

x(t) = –
∫ t

0

(t – z)β–1

�(β)
φq

(∫ 1

0
M(z, r)y(r) dr

)

dz

+
tβ–1�( β+1

2 )
�( β+1

2 ) – B2

{∫ 1

0

(1 – z)β–1

�(β)
φq

(∫ 1

0
M(z, r)y(r) dr

)

dz

– a
∫ ξ

0

(ξ – z)
β–1

2

�( β+1
2 )

φq

(∫ 1

0
M(z, r)y(r) dr

)

dz
}

=
∫ 1

0
G(t, z)φq

(∫ 1

0
M(z, r)y(r) dr

)

dz.

The proof of Lemma 2.4 is complete. �

We complete this section with the following simple observation.

Lemma 2.5 Let E = C[0, 1] be the space of continuous functions equipped with the stan-
dard sup-norm ‖x‖ = max0≤t≤1 |x(t)| and denote by P = {x ∈ E | x(t) ≥ 0, 0 ≤ t ≤ 1} the
corresponding cone. Let T : P → E be given by

Tx(t) =
∫ 1

0
G(t, z)φq

(∫ 1

0
M(z, r)h

(
r, x(r)

)
dr

)

dz,

where h ∈ C([0, 1] × [0, +∞), [0, +∞)) and G and M are defined by (2.1) and (2.2), respec-
tively. Then T takes P into itself, and as such is completely continuous.
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Proof Since G, M and h are nonnegative and continuous, one has T(P) ⊂ P and T is con-
tinuous. To prove the complete continuity of T , one needs to use the standard argument
based on the Arzela–Ascoli theorem and Lebesgue dominated convergence theorem (see,
for example, [23]). �

3 Main result
We are now in a position to formulate our main result. To this end, denote

J–1 =
∫ 1

0
μ(z)φq

(∫ 1

0
ν(r) dr

)

dz,

where μ and ν are provided by Lemma 2.3(iii).

Theorem 3.1 Let h ∈ C([0, 1] × [0, +∞), [0, +∞)) and assume that there exists a positive
constant k satisfying the following conditions:

(S1) if 0 ≤ t ≤ 1 and 0 ≤ s1 ≤ s2 ≤ k, then h(t, s1) ≤ h(t, s2);
(S2) max0≤t≤1 h(t, k) ≤ φp(kJ);
(S3) h(t, 0) �= 0 for all 0 ≤ t ≤ 1.
Then problem (1.4) admits two positive solutions x∗ and y∗ such that:
(i) 0 < ‖x∗‖ ≤ k and limn→∞ Tnx0 = x∗, where x0(t) = k for all 0 ≤ t ≤ 1;
(ii) 0 < ‖y∗‖ ≤ k and limn→∞ Tny0 = y∗, where y0(t) = 0 for all 0 ≤ t ≤ 1.

Proof Let 
 = {x ∈ P | ‖x‖ ≤ k}. Assume x ∈ 
. Obviously, 0 ≤ x(t) ≤ ‖x‖ ≤ k. From (S1)
and (S2) it follows immediately that

0 ≤ h
(
t, x(t)

) ≤ h(t, k) ≤ max
0≤t≤1

h(t, k) ≤ φp(kJ).

We claim that T(
) ⊆ 
. In fact, for any x ∈ 
, we have Tx ∈ P, and by Lemma 2.3, one
has

‖Tx‖ = max
0≤t≤1

∣
∣
∣
∣

∫ 1

0
G(t, z)φq

(∫ 1

0
M(s, r)h

(
r, x(r)

)
dr

)

dz
∣
∣
∣
∣

≤
∫ 1

0
μ(z)φq

(∫ 1

0
ν(r)φp(kJ) dr

)

dz

= kJ
∫ 1

0
μ(z)φq

(∫ 1

0
ν(r) dr

)

dz

= k.

Hence, Tx ∈ 
 and the claim follows.
Let us show the existence of the required x∗. Take the function x0 equal to k identically

on 0 ≤ t ≤ 1. Clearly, ‖x0‖ = k (in particular, x0 ∈ 
). Also, x1(t) = Tx0(t) ∈ 
. Define

xn+1 = Txn = Tn+1x0, (n = 0, 1, 2, . . .).

Then, for all n = 0, 1, 2, . . . , one has xn ∈ 
.
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Also, using (S2) and the formula for T , and Lemma 2.3, one obtains for any t ∈ [0, 1]:

x1(t) = Tx0(t) =
∫ 1

0
G(t, z)φq

(∫ 1

0
M(z, r)h

(
r, x0(r)

)
dr

)

dz

≤
∫ 1

0
μ(z)φq

(∫ 1

0
ν(r)φp(kJ) dr

)

dz

≤ kJ
∫ 1

0
μ(z)φq

(∫ 1

0
ν(r) dr

)

dz

= k = x0(t).

Hence,

x2(t) = Tx1(t) ≤ Tx0(t) = x1(t), 0 ≤ t ≤ 1.

By induction, one has

xn+1(t) ≤ xn(t), 0 ≤ t ≤ 1, n = 0, 1, 2, . . .

Moreover, by Lemma 2.5, T is completely continuous, we know that T(
) is a compact
set.

Hence, there exists a subsequence {xni}∞i=1 of {xn}∞n=1 convergent to x∗ ∈ 
. Since {xn}∞n=1

is monotone, one has xn → x∗. Combining the continuity of T with Txn = xn+1 → x∗ yields
Tx∗ = x∗.

Below, using a similar approach, we prove Ty∗ = y∗. Take the function y0 equal to 0 iden-
tically on 0 ≤ t ≤ 1. Clearly, ‖y0‖ = 0, and y0 ∈ 
. Also, y1 = Ty0 ∈ 
. Define

yn+1 = Tyn = Tn+1y0, n = 0, 1, 2, . . .

Then, for all n = 0, 1, 2, . . . , one has yn ∈ 
. By the same computation as above,

yn+1(t) ≥ yn(t), 0 ≤ t ≤ 1, n = 0, 1, 2, . . .

Hence, there exists a subsequence {yni}∞i=1 of {yn}∞n=1 convergent to y∗ ∈ 
. Since {yn}∞n=1 is
monotone, one has yn → x∗. Combining the continuity of T with Tyn = yn+1 → y∗ yields
Ty∗ = y∗. It remains to observe that, by assumption (S3), the zero function is not a solution
of problem (1.4). So ‖x∗‖ > 0, and ‖y∗‖ > 0. The proof is completed. �

4 Example
Consider the following BVP:

⎧
⎨

⎩

D
3
2
0+(φ 3

2
(D

3
2
0+x(t))) = x2

15 + tx
12 + 1

20 , 0 < t < 1,

x(0) = 0, x(1) = 1
4 D

1
4
0+x( 1

2 ), D
3
2
0+x(0) = 0, D

3
2
0+x(1) = 1

2 D
3
2
0+x( 1

2 ).
(4.1)

A simple computation gives

J ≈ 3.2218,
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�

(
β + 1

2

)

– a�(β)ξ
β–1

2 = �

(
5
4

)

–
(

1
4

)

�

((
3
2

))(
1
2

) 1
4

> 0,

1 – bp–1ηα–1 = 1 –
(

1
2

) 1
2
(

1
2

) 1
2

= 0.5 > 0.

Take k = 8. Then:
(1) For any 0 ≤ t ≤ 1, 0 ≤ s1 ≤ s2 ≤ 8, h(t, s1) ≤ h(t, s2);
(2) max0≤t≤1 h(t, k) = h(1, 8) ≈ 4.9834 < φp(kJ) ≈ 5.0768;
(3) h(t, 0) = 0.05 �= 0, for 0 ≤ t ≤ 1.

Then problem (1.4) has two positive solutions, x∗ and y∗, such that
0 < ‖x∗‖ ≤ 8 and limn→∞ Tnx0 = x∗, where x0(t) = 8,
0 < ‖y∗‖ ≤ 8 and limn→∞ Tny0 = y∗, where y0(t) = 0.
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