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Abstract

In this paper, a novel dynamical population model of a southern white rhino with
legal and illegal poaching activity is introduced. The model constructed is based on a
predator—prey model with southern white rhinos as prey and humans (hunters) as
predators. We divide the southern white rhino population into three classes based on
their horn condition. We investigate the existence and the stability of the equilibrium
points, which depend on some threshold functions. From an analytical result, it is
trivial that arresting as many hunters as possible helps conserve white rhinos, but it
comes at a high cost. Therefore, an optimal strategy is needed. The optimal control is
then constructed using Pontryagin’s minimum principle and solved numerically with
an iterative forward-backward method. Optimal control simulations are given to
provide additional insight into the dynamics of the model. Analysis of the cost
function effectiveness is conducted using the ACER (Average Cost-Effectiveness
Ratio) and ICER (Incremental Cost-Effectiveness Ratio) indicator method. The results
show that the hunter population can be more easily controlled with a
time-dependent hunter arrest rate rather than by treating it as a constant.

Keywords: Southern white rhino; lllegal hunter; Predator—prey model; Optimal
control problem

1 Introduction

The white rhino (Ceratotherium simum) is one of the five living species of rhinoceros. Two
genetically different subspecies exist. However, only populations of the southern white
rhino (C. s. Simum) remain viable with a total of about 19,600-21,000 individuals inhabit-
ing South Africa, Namibia, Zimbabwe, and Kenya. The northern white rhino (C. s. Cottoni)
is extinct in the wild due to poaching, and only two females remain in captivity [1].

A high demand for rhino horns has led to a poaching crisis in South Africa. Poach-
ing becomes a severe problem that threatens the preservation of southern white rhinos.
Previously in 2007, only 13 rhinos were killed due to poaching, but that number has in-
creased exponentially. During 2007-2014, the country has experienced an increase in
rhino poaching of over 9300% [2, 3].
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In order to increase the population of the rhino, a translocation strategy has been im-
plemented [4]. A study about the impact of human intervention on different translocation
strategies is discussed in [4, 5]. Other efforts can also be applied to preserve white rhinos.
One of the initiatives is to overcome poaching. It involves microchipping rhino horns so
the government can track the horn and arrest the hunters [6]. An overpoaching of white
rhinos could lead to an environmental change. Climate and environmental changes can
also influence the dynamics of rhino population [7-9]. Because of overpoaching, there
has not been any significant increase in the southern white rhino population since 2011
in Kruger National Park, South Africa [10].

According to [11], one way to learn about real-world problems is by constructing a math-
ematical model. The issue of rhino poaching, as described, can be compared to predator—
prey interactions with white rhinos as prey and humans (hunters) as predators. Alfred J.
Lotka in 1925 [12] and Vito Volterra in 1926 [13] proposed a simple model, known as the
Lotka—Volterra model, to understand the interaction involving two species, namely one
predator and one prey. Several previous studies have been constructed a more complex
predator—prey mathematical model based on the Lotka—Volterra model in [14—17].

Optimal control theory is usually applied to control the spread of a disease in an epi-
demiology model, as proposed in [18, 19]. It can also be used in a predator—prey model
with infections among prey or predator populations, known as an eco-epidemiology
model. For example, optimal control is used in [20, 21] to minimize infected prey by har-
vesting or treating the infected population as the control variables.

The authors of [22] discuss the idea of optimal frequency to dehorning the rhinos. Their
result suggests that dehorning should be done annually under some circumstances. The
authors of [5] propose a mathematical model to describe a strategy to harvest rhinos such
that the population can still survive. According to the above explanation and to the best of
our knowledge, there are few mathematical models concerning the dynamics of southern
white rhinos, especially since it was affected by illegal and legal poaching. Hence, unlike
previously mentioned references, the aim of this article is to give an alternative perspective
of the poaching problem of the southern white rhino, which, in this case, is from a mathe-
matical point of view, especially with a dynamical system approach. This paper discusses
how the illegal poaching could affect the dynamics of the southern white rhino. Interven-
tion from the government, to imprison hunters and increase legal hunting, is considered
in this model to counter overpoaching. Mathematical analysis on the model is conducted
rigorously regarding the existence and bifurcation type of the model. An optimal control
problem was analyzed to give the optional strategy against the hunters.

The rest of this paper is organized as follows. In Sect. 2, we present a four-dimensional
system for interaction between white rhinos and hunters based on the Lotka—Volterra
model. Intervention to overcome poaching by arresting hunters is also included in the
model. In Sect. 3, we mainly discuss the existence and stability of the equilibrium points.
An optimal control problem to design hunter arrest rates is formulated using Pontryagin’s
minimum principle in Sect. 4. The goal is to minimize the population of hunters and, at
the same time, minimize the cost of implementing such means of intervention. In Sect. 5,
we provide some numerical simulations based on the analytical results and the optimiza-
tion algorithm. The paper ends with some conclusions and potential future directions in
Sect. 6.
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2 The construction of the mathematical model

A white rhino poaching model with intervention to control the number of hunters will
be constructed carefully in this section. To begin our model construction, we separate
the white rhino population into three classes based on their horn status. The first class
is the juvenile rhino (denoted by Nj(t)), where a rhino in this class has a small horn. We
assume that hunters are not interested in hunting this kind of rhino due to its relatively
small horn, which yields minimal profits. The second class is the adult rhino, which has
a horn that is ready to be hunted (denoted by N;(¢)). In our model, this class is the only
one to be hunted for their horns. In some cases, hunters (mainly from legal hunting) do
not kill the rhino. Instead, they only take the horn and let the rhino live. Therefore, it is
important to introduce the last class of the rhino, which comprises dehorned rhinos. The
adult rhinos in this class have been hunted for their horns but were allowed to live (denoted
by N3(t)). Therefore, we have a total rhino population given by N (¢) = Z?zl N;(t). The other
population that will interact in our model is the hunter (human) population, which will
act as the predator of rhinos, denoted by M(%).

Several assumptions that have been used in this article in the purpose of the model

construction are given as follows:

(e4) Southern white rhinos live in groups. Each group may contain up to 14 rhinos.
Therefore, we assume that the rhino population grows logistically to its carrying
capacity K with a growth rate of r in the absence of hunters.

(2%) Only adult rhinos can produce newborns, which in our case are the N, and N
populations.

(%) A transition from N; to N population is due to the growth of the horn. Therefore,
let o* be the transition rate from juvenile rhino Nj to adult rhino N5.

() Interaction between hunter and adult rhinos is a form of predation. If 8* is the suc-
cess rate of hunters hunting rhinos per hunter, then 8*N,M presents the predation
of hunters on adult rhinos.

(%) As mentioned before, not all hunted rhinos will die. We assume that a fraction p
of them will survive (pB*NoM) after being hunted and transferred to the dehorned
population N3, while the rest ((1 — p)8*N,M) will die.

(%) It takes approximately 3 years for adult rhinos N3 to regrow their horns. Therefore,
there is a transition (denoted by §*) from N3 to N, due to the regrowth of the rhino
horn.

(7)) Let u* be the natural death rate of rhinos in each class.

(%) The recruitment of new hunters comes from the profit of selling the horn from a
dead rhino due to hunting activity, at a rate of ((1 — p)8*No,M). We assume that the
recruitment rate of new hunters is proportional to the economic gain of this form
of hunting. Hence, assuming y* as the conversion parameter from dying rhinos due
to hunting, recruitment of new hunters per unit time is given by y*((1 — p) 8*N.M).

(2%) Hunter population can decrease due to its natural drop-out rate due to increased
awareness, causing the hunters to voluntarily stop hunting (denoted by §*), and also
due to being arrested by the government (denoted by #*).

Based on the above assumptions and the interaction diagram in Fig. 1, the predator—

prey model interaction between southern white rhinos and hunters is given by a four-
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Figure 1 Interaction diagram between white rhinos and hunters. A white rhino poaching model with
intervention to control the number of hunters. The “in-coming” arrows indicate an increase in population,
whereas “out-going" arrows indicate a decrease in population

dimensional nonlinear ordinary differential equation as follows:

B = r(No + N3)(1 - M3285) — "Ny — ',
0 = *Ny — B*NoM + 8*Nj — u*Ny,

d% =pB*NoM — 8*N3 — u*N3,

G = v (L-p)B*NoM — E°M ~ H*M,

which is supplemented by a nonnegative initial condition. Please note that all parameters
in system (1) are assumed to be nonnegative.

A non-dimensionalization process is carried out using the transformations of variables
and parameters in Table 1. The non-dimensional form of system (1) is used to simplify the
analytical calculation for the existence and local stability analysis. Therefore, this form is
only used in some subsections in Sect. 3.

Before we analyzed the model, we non-dimensionalized the parameters first, by substi-
tuting the transformations of parameters and variables in Table 1 to system (1). With this
approach, we can reduce the number of parameters from ten to only seven. We obtain the
non-dimensional form of system (1), where all variables and parameters involved have no

units, which written as follows:

Liiirl = (xg +x3)(1 — (%1 + 22 +x3)) — oy — pxy,

d.

% = aX] — X2y + 0X3 — WX, 2)
d.

T2 = pxoy — 8x3 — a3,

D~ g(1 - pheay —Ey - hy.
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Table 1 Description of variables and parameters used in system (1) and their non-dimensionalizing
transformations. All variables and parameters are assumed to be nonnegative

Var.or par.  Description Unit Non-dimensional
var. or par.

N; total number of rhinos in class i rhino Xi= %

M total number of illegal hunters human y= ﬁtM

t time year T=rt

K carrying capacity of rhinos rhino -

r intrinsic growth rate of rhinos ﬁ -

o transition rate from juvenile rhinos to adult rhinos ready to be = o= g
hunt

B* success rate of hunters rhino m

p proportion of surviving rhinos after being hunted - pel0,1]

&* transition rate due to the regrowth of rhino horn ﬁ 8= g

y* conversion coefficient on the number of rhinos that have been hrmfj” g= m
killed by hunters

w* natural death rate of rhinos ﬁ = “%

E* natural drop-out rate of hunter due to being sufficiently aware ﬁ &= ‘57
to stop hunting

h* hunter arrest rate by the government ﬁ h= @

Consider the nonnegative initial conditions x;(z = 0) > 0, y(r = 0) > 0, and positively
invariant region D = D, x D, where

D, = {(xl,xz,xg)eRi:OExl + X9 +x3 < 1} and D, = {yeR*:O§y<oo}.

Thus, it is trivial to show that the solution for each variable in system (2) will always be
nonnegative in D for all time. So, system (2) is both mathematically and biologically well-
posed. Please see [23, 24] for further examples of the positively invariant region proof.

3 Model analysis
In this section, we will analyze the existence and local stability criteria of equilibrium
points of system (2).

3.1 Equilibrium points
The equilibrium points of system (2) are obtained by making the right-hand side of sys-
tem (2) equal to zero and solving the system with respect to each variable. We get three
equilibrium points as follows:

(61) The extinction equilibrium is given by

&1 = (x1,%2,%3,9) = (0,0,0,0).

This equilibrium describes the extinction of white rhino and hunter populations.
(é2) The hunter-free equilibrium is given by

& = (xl,xz,xs,y) =

2
(@,M(Rl ~1),0, 0),

where

o

Ri=——.
Pl + )
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This equilibrium describes a condition when hunters disappear over time and only
the white rhino population is left in the ecosystem.
(63) The coexistence equilibrium is given by &5 = (x'{,x;,x;, y"), where

(h+&)SA-p)y" +uy" + 8+ u?)

T
= aq(1-p) + 1) ’
x; _ h+é& ’
q(1-p)
x; _ P(h‘Fg)yJr

a1-p)+p)’

and y' is a positive root of the second degree polynomial
P(y) =ayy* +ary+ap =0

with
ar = plh+ 6 (8(1-p) + u +ap),
ay = q(1 - p)*(adle + ) + (8 + u)(h + £)(1 - p)

+2(h + &) (e + ) + ng(1 = p)(a + w)(1 -Ry),
ag = (8 + ) (h+ &)+ w)(ug(l —p) + h+£)(1-Ra),

and

_ aq(l-p) __ g1 -pR 3)
(@+m)(ugl-p)+h+§) (ngl-p)+h+§)

This equilibrium describes a condition when both populations exist in the ecosys-
tem.

Note that all of these equilibrium points will have a biological meaning if £;,&;,&5 > 0.
It is easy to determine the conditions for the existence of £; and &,, while the existence of
&; depends on the positive root of P(y). Therefore, based on the sum and product signs of
the roots of P(y), & has the following possibilities regarding its existence:

1. Unique coexistence equilibrium & whenever R; > 1;

2. Two coexistence equilibrium & whenever R, < 1, a; < 0 and a% —4dasag > 0;

3. No coexistence equilibrium otherwise.

If we consider the second case in the existence conditions of £3, where we have R, < 1,
then

h+&

nq(1-p)’ @)

O0<Ri<1l+

which is positive since all the parameters used in the model are nonnegative. From (4), it
follows that coefficient a; can be written in the form of ani, < @1 < @max, where

amin = q(1 = p)*(ad(cr + 1)) + (8 + p)(h + &)(1 - p)

+(h+&)a+un) >0,

Page 6 of 25



Aldila et al. Advances in Difference Equations

(2020) 2020:605

max = q(1 = p)* (ad(or + ) + (8 + w)(h + £)(1 - p)

+20h+8)(a + p) + ug(l - p)a + 1) > 0.

Since ami, and am,y are positive, a; is always positive whenever R, < 1. Based on the
above analysis, we can conclude that the second case will not happen if we use nonnegative
parameters. Furthermore, from the discussion in this subsection, we have the following
results.

Theorem 3.1 System (2) has three types of equilibrium. The extinction equilibrium &, will
always exist, the hunter-free equilibrium &, can exist only when R, > 1, and the unique
coexistence equilibrium E; exists whenever R, > 1.

From the relation between R; and R, in equation (3), and Theorem 3.1, we have the
following corollary.

Corollary 3.2 The existence of &; is always preceded by the existence of &,.

3.2 Stability of the equilibrium points

Stability analysis of the equilibrium points is conducted using the linearization technique
with the Jacobian matrix approach and then evaluating the eigenvalues of the Jacobian
matrix, which are observed in the equilibrium points. The equilibrium is stable when the
real parts of all the eigenvalues are negative [25]. The Jacobian matrix of system (2) is given
by

[—xy —x3—a— J12 J13 0
o -y — i 8 —%X
j: )
0 w —0—-pu 2223
L 0 yq1-p) 0  ql-pxa—-h-§]

where /15 =J13 =1 —x — 2x5 — 2x3.

3.2.1 Stability of the extinction equilibrium &
Jacobian matrix J evaluated in & is given by

—a—-u 1 1 0
o - 1) 0
Tl =
0 0 -6-pu 0
L O 0 0 —-h-& ]

According to [25], the extinction equilibrium &; is asymptotically stable when all the
eigenvalues from the characteristic polynomial of matrix Jacobian [J|¢, has a negative

Page 7 of 25
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real part (Re(A;) <0, i = 1,2,3,4). Matrix J|¢, has two explicit eigenvalues, A; = —(8 + 1)

and A, = —(1+&). The other two eigenvalues are the roots of the second degree polynomial
Pi(A) = A% + (o + 2u)A + (o + n)(1—Ry) = 0. It is easy to see that P; (1) will have 2 negative

rootsif Ry < 1.

Theorem 3.3 The extinction equilibrium &,
lle <1.

of system (2) is locally asymptotically stable

Note that from Theorem 3.1 we have that &, exists only when R; > 1 which contradicts

the stability of £;. Therefore, we can conclude that the existence of &, causes &; to become

unstable, and vice versa. This result is stated in the following corollary.

Corollary 3.4 The extinction equilibrium &, is stable if and only if the hunter-free equi-

librium &, does not exist.

3.2.2 Stability of the hunter-free equilibrium &,
Next, we analyze the local stability of £. The Jacobian matrix around &, takes the form

]21 ]22
Tle, = ) (5)
J23
where
ot —a ulap+p?-a) aptpl-a
]21 — o+ —ae-pu L+ (a+p)a 2 o+ ,
M1, wlepp®-a) | qoptp’-o
Ty = 1+ et 2 wi 0
22 5 01H+l/-2—0t )
L a+u
i plap+p’-a)
Ja3 = 0 0:| Joa = [_8 s e j|
’ q(1-p)(ep+p--a) )

Matrix J |g, has two explicit eigenvalues, A1 = -8 —p and Ay = —(ug(1—p) + h+ £)(1 -

Ry). Itis clear that A, < 0if R, < 1. The other two eigenvalues are given by the roots of the

second degree polynomial:

Py() = A2 + (1+ ¢
(a +p)

2))\.+(R1 —1),[1,:0.

Polynomial P,(A) will have 2 negative roots if R; > 1. However, based on Theorem 3.1,

&, exists whenever R, > 1. Therefore, A3 and X4 are always negative. From this analysis,

the result is stated in the following theorem.

Theorem 3.5 The hunter-free equilibrium &, of system (2) is locally asymptotically stable

lfR2<1.

Similar to the relation between &; and &,, from Theorem 3.1, the existence of £3 causes

&, to become unstable, and vice versa. This result is stated in the following corollary.

Page 8 of 25
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Corollary 3.6 Whenever &, is stable, then &, and E; do not exist. Furthermore, the hunter-

free equilibrium &, is stable if and only if the coexistence equilibrium Es does not exist.

3.2.3 Stability of the coexistence equilibrium &

Different from &; and &,, the stability analysis for &5 becomes very complex and is not
tractable directly using the previous approach. Therefore, the center manifold theory in
[26] will be used to obtain the local asymptotical behavior of &3 near R = 1.

To conduct the local stability of £3, we will show the existence of a single zero eigenvalue
of the linearization of system (2) around &;. First, let / be the bifurcation parameter, x; =
Y1, X2 = Y2, X3 =3, ¥ = Ya, and denote ) = (yl,yz,yg,)q)T. System (2) can be written in the
form of "% = (h,fo.f3. )T as follows:

‘%1 = (y2 +y3)(1 -1+ +y3)) — oy — uyr=fis
D2 = ay1 —yoya +8y3 — 132 = fo,
D5 = pysys—8ys — 10ys = f,

D8 = 4(1 - p)y2ya — Eya — hys = fi.

(6)

A critical value of / obtained from R, = 1 in equation (3) is given by

B aq(l-p) - (o + w)(ug(l—p) +§)
- o+ ’

The linearization around &, (see (5)) evaluated at /1 = & is

(w1 -R)—a-pn Ji2 i3 0 ]
o - ) u(l="Ry)
A= ,
0 0 -6-u -pp(l-TRi)
i 0 0 0 o |
where
21-R
Ji2=li3=1+ % +2u(1 -Ry).

The characteristic polynomial of matrix A is given by

a2+2au+u2+ak

—a?p = 2au® - 1l + o +0l/,L)
+ =0.

(A+8+M)A<A2+
o+ UL

o+

It is clear that zero is a simple eigenvalue of \A. Hence, we can continue to analyze the local

stability of & of system (6) for /4 near /.

Page 9 of 25
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To compute a right eigenvector w, we consider the system .Aw = 0. We obtained that a
right eigenvector associated with zero eigenvalue is w = (w1, wa, ws, wy)T, where

_ Qo2 p+3op?+p3-a?)1-p)(S+)ws

W1 = appla+p)?(R1-1) ’
Wo = _ e(l-p)@+pu)(@+p+ D+ppla+t)*(R1-1)ws
> upla+u?(Ri-1) ’ 7)
W3 = Ws,
= _(G+wws
Wa = Gup(Ri-1)*

To simplify the expressions for the components, let w3 = aup(a + £)2(R1 — 1). Based on
the existence condition of &, which is R; > 1, we have that ws > 0. So, a right eigenvec-

tor (7) becomes

wy = — (2% + Bap® + 1® — ®) (1 - p)(8 + ),

wy = —a(a(1-p)8 + p)(a +p+1) + upla + w)*(Ry - 1)),
w3 = aup(a + 1)*(R1 - 1),

wa = a8+ p)a+ p)2.

8)

It can be shown that w, < 0 and wy > 0. The component w; is negative but this is accept-
able, since it corresponds to the positive second entry of &,. Furthermore, we compute
the left eigenvector v by solving v.A = 0. The left eigenvector which is associated with zero
eigenvalue is given by v = (v1,v5,v3,v4) = (0,0,0, v4) where we set v4 > 0. Next, we will com-
pute a and b in Theorem 4.1 of [26].

Since v; = v, = v3 = 0, we only need to compute the partial derivative of f;. For system (6),
the associated nonzero partial derivatives of f; at &, are as follows:

92 92
ﬁ = f;L = q(l _p);
8}’23_)/4 8y48y2 (9)
3f
dysdh

The other second derivatives appearing in the formula for  and b are all zero. From the
right eigenvector (8), left eigenvector, and result (9), algebraic calculations show that:

4
82
a= Z Vkl/V,'Wji
Kij=1 dy:0y;

92 92
= v4<wzw4 Ji + WaWs Ja > = 2v4(wawaq(1 - p)) <0,

8_)/28_)/4 8)148_)12
4
0% 0%y
b= : = =— 0.
kzizzl ViW, 3_yl8h VaWy, 3_)/43]’1 VaWy <

Therefore, based on item (ii) of Theorem 4.1 in [26], we can conclude that we have a
change of stability between &, and £ when R, = 1. To be precise, &; is stable if R, > 1,
while & becomes unstable. This result is stated in Theorem 3.7.

Theorem 3.7 The coexistence equilibrium Es of system (2) is locally asymptotically stable
whenever it exists, that is, when R, > 1.

Page 10 of 25
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Remark From equation (3), if R; < 1, then R < 1. In other words, R1 < 1 < R; is impos-
sible. It implies that the extinction equilibrium &; (stable if R; < 1) and the coexistence
equilibrium &; (stable if R, > 1) cannot be stable at the same time.

3.3 Numerical example on bifurcation diagram of system (2)

Here in this subsection, we show the existence of a forward bifurcation based on previous
results in Theorems 3.5 and 3.7 as shown in Fig. 2, through a numerical example by cre-
ating a bifurcation diagram around R, = 1. To draw the bifurcation diagram (the graph of
yT as a function of p), we substitute K = 1000, r = %, B* = %, §* = %, y* =03, u* = %,
& = %, h*=0,a* = %, into the non-dimensional version of the system. We choose p as
the bifurcation parameter.

As it can be seen in Fig. 2(a), using y* = 0.3, we have that R, = 1 when p = 0.507. Starting
from p = 0, when p is increasing, y in &; exists and is monotonically decreasing until it
reaches p = 0.507. When y exists, at the same time, it is also stable, but y = 0 in &; is
unstable. When p = 0.507, a change of stability occurs. We found that y disappeared when
pleaves p = 0.507 and increases; at the same time, y = 0 in £, becomes stable. On the other
hand, in Fig. 2(b), we use y* = 0.9 to present a larger conversion of poaching profits into
the new recruitment of new hunters. When y* = 0.9, we found that R, = 1 when p = 0.84.
It means that a larger y* can enlarge the interval of the existence of y in &;. It can also be
seen that when y* = 0.9, y becomes non-monotonically decreasing with respect to p. As a
reminder, p presents the proportion of dehorned surviving adult rhinos. This result tells
us that enlarging y* (highly related to the high price of horns in the market, low economic
level of humans which increase the desire for hunting, etc.) will change the interpretation
of p to the coexistence size of y in &5. From Fig. 2(b), starting from p = 0, when p increases,
the size of y in & increases until it reaches a specific point of p, before decreasing to zero
as p approaches 0.84.

Remark When the desire for hunting increases, which may be caused by high prices for
horns, a greater survival rate for rhinos dehorned by legal hunting will increase the number

0.18
0.06
0.16
005 / Stable €3 014 Stable £
004/ 0.12
0.10
y y
003
008
0.02- 0.06
Unstable €, Stable €, Unstable €, Stable €,
0.04
0.014 \
002
04 - - - - = - - . : [ e e e
0 02 0.4 0.6 038 1 0 02 04 06 08 1
I ?
@ Q)
Figure 2 Bifurcation diagram of system (2) in the p—y plane. Figure (a) is presented using y* = 0.3, while (b) is
for y* =0.9. Red and blue curves present £3 and &, respectively. The solid curve presents the stable
equilibrium, while the dotted curve is for the unstable equilibrium
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of hunters in the equilibrium level in p € [0, peitical), and decrease when p € [periticals 1],
where peritical is p such that g—ﬁ = 0. Therefore, when the price of horns is high enough,
increasing legal hunting can be counterproductive on the number of hunters in the field.

3.4 Summary of the existence and local stability for system (1)
Until this stage, we have obtained the results of existence and local stability of all equi-
librium points for system (2). Based on Theorem 3.1, the existence of equilibrium points
depend on R; and R,. From Theorem 3.3, £, which describes the extinction of white
rhino and hunter populations, is stable if R; < 1. From Theorem 3.5, £, which describes
the extinction of hunter populations, will exist if R; > 1 and stable if R, < 1. From The-
orem 3.7, &, which describes both populations existing in ecosystem, will exist and be
stable if R, > 1.

Note that the parameters of systems (1) and (2) have the same description. However,
system (1) is more easily interpreted than system (2). Therefore, in this subsection, we
will consider system (1). The dimensional forms of Ry and R, are denoted by R} and Rj,

respectively, and are given by:

oa*r
L A 10
R = @ s ) (102)
R oy BK (- p)r on

(o + u)KB*y* (1= p) + r(h* + %))

Each threshold (R;,R;) for system (2) is being substituted with transformation in Ta-
ble 1 to get the dimensional form of these thresholds, which are related to the original
model (1). The summary of the existence and local stability conditions of system (1) is
given in Table 2 and will be interpreted in this subsection.

Based on Table 2, the extinction equilibrium &; condition tells us that if R is less than
1, then the system cannot sustain the southern white rhino population, which also has an
impact on the extinction of the hunter population. From (10a), we can see that the value of
R} depends on the transition rate from juvenile to adult rhino (¢*), intrinsic growth rate
* OR: IR:

o

. IR
(r), and the natural death rate (1+*). Furthermore, since 53 >0, —* >0, and 53 <0, we

can conclude that the slower the juvenile white rhinos mature into adults («*), the slower

the growth rate of white rhinos (r), and the faster the white rhinos die (u*), the easier it
becomes for both populations to become extinct (£; is locally stable).

Ideally, we want a hunter-free equilibrium &, in the real world. We need &, to exist and
be locally stable. Based on Table 2, to achieve this, the condition R} < 1 < R} must be sat-
isfied, where hunters disappear over time and only white rhinos remain in the ecosystem.

Based on Table 2, the coexistence equilibrium &£; condition tells us that if R, is greater
than 1, then hunters remain and rhino poaching still occurs. From (10b), the value of R}
depends on almost all parameters (see Table 1) except for the transition rate due to the

Table 2 Summary of the existence and local stability conditions of each equilibrium points of
system (1). The results are based on those of system (2) as stated in Theorems 3.1, 3.3, 3.5, and 3.7

Extinction equilibrium Hunter-free equilibrium Coexistence equilibrium
&1 =(0,0,0,0 &> =(N1,N5,0,0) &3 = (Nq1,Ny, N3, M)
Existence v Ri>1 R3>1

Local stability Ry <1 R; <1 R >1




Aldila et al. Advances in Difference Equations (2020) 2020:605 Page 13 of 25

Table 3 Sensitivity of R3. A positive sign (+) means that the curve of the parameter toward R is
monotonically increasing, so a larger parameter value will lead to greater R5. Meanwhile, a negative
sign (=) means the exact opposite

Parameter K r o* B* p y* u* £* h*

R; + + + + + - - -

. IRY .
regrowth of rhino horns (§*). For example, from -2 > 0, we know that whenever a* in-

. . ORE .
creases, R} also increases. On the other hand, since -2 < 0, we know that as /* increases,

o
R; decreases. So, the faster the juveniles mature («*) and the fewer hunters are arrested
by the government (/1*), the easier it is for both populations to exist. Table 3 gives the rest
of the sensitivity results of Rj.

From the sensitivity results of R} and R}, a similar interpretation can be applied to
determine the conditions when R} < 1 < Rj is fulfilled, so that the hunter-free equilibrium
&, of system (1) is locally stable. If R} < 1 < R is not fulfilled, then either the extinction
equilibrium &; or the coexistence equilibrium &3 will be locally stable. For an additional

insight of these results, autonomous simulations are conducted in Sect. 5.

4 Optimal control problem

One of the obstacles in arresting hunters by microchipping rhino horns or increasing the
number of forest rangers is the high cost of such means of intervention. Therefore, to
overcome the problem, system (1) can be developed into an optimal control problem. The
intervention parameter /¥, which was previously set as a constant, now changes into a
control variable that depends on time, denoted by 4#*(¢). The purpose is to minimize the
population of hunters (y(¢)) and also minimize the cost incurred from implementing such
intervention (/*(t)).

First, assume that the incurred cost from hunters (wys) is directly proportional to the
numbers of hunters M(¢), so the cost can be represented as a linear function. However,
since a wider area of intervention leads to a nonlinear cost increase, the cost (wy,) of inter-
vention /*(¢) is represented by a quadratic function. Therefore, we consider the objective

function of system (1) with arresting hunters as follows:

f 2

- mi *

7 = n}gn/(; {a)MM(t)} + {whh (¥) } dt, (11)
Cost due to the number of hunters ~ Cost for arresting the hunters

where wy > 0, wj, > 0 are weighted constants, and ¢ is the final time of simulation.

Next, we construct the Hamiltonian function H = g + z - f based on Pontryagin’s min-
imum principle [27]. The Hamiltonian consists of the sum of the integrand function (g)
of the objective function (11) and the inner products of the state system (f) in system (1)

with the adjoint variables z;(¢), k = 1,2, 3,4. The Hamiltonian function (#) can be stated
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as follows:
H = (0uM(£) + wph*(2)%)
N(t)
21(0) <V(Nz(t) <N (0) (1 , 7) "Ny - M*Nl(t)>

+ 25(8) (" N1 (£) — B*No())M(t) + 8*N3(£) — " Na(2))
+ z3(t) (PB*Na(t)M(t) — 8*N3(t) — *Ns(t))
(

+24(0)(y*(1 - p)B*Na()M(t) — £*M(2) - " () M(2)). (12)

Differentiating the Hamiltonian function H with respect to the state variables yields the
adjoint system given by:

Z1(f) = (DK ONO) (1) — o*z(1),
Zy(t) = —("EO2RONO ), (1) 4 (M(8)B* + 10%)2s(8)
~M(t)pB*z3(t) + B*y*(p — DM (D)za(t),
Z3(t) = (MO0 7, (1) — 5725 (8) + (8* + p*)z3(2),
Z4(t) = —wp + No(£) B*22(t) — pNo(8) B z3(2)
+((p -1y *No(€)B* + h*(t) + £%)z4(2),

(13)

with the transversality condition for adjoint variables zx(¢;) =0, k = 1,2, 3,4.
To obtain the optimal conditions, we differentiate the Hamiltonian (12) with respect to
the control variable and set the equation to zero:

oH
ah(t)

=~z ()M(E) + 2wph*(£) = 0. (14)

Solving (14) with respect to the control variable, we obtain

za()M(2)

W (t) =
() 20,

which must satisfy /imin < #*(t) < lyay for all £ € [£o,Z/]. Since the admissible control vari-
able should be bounded by /i, and /1., the optimal control variable }At(t) can be written
as:

}At(t) = min (hmax, max (hmin, M)), (15)

2wy,

where /i, and fpax are the lower and upper bounds of allowed intervention, which are
related to the limitations of budget, resources, etc.

The computations of the optimal control and state values are performed using a Runge—
Kutta method. The algorithm used is the iterative forward—backward method, which is
summarized as follows: An initial estimate for the control #* should be determined. The
next steps require the solution of a system of ordinary differential equations by any suit-
able numerical scheme. The state variables are solved forward in time using system (1),
integrating from £, to #r. The results obtained for the state variables are plugged into the
adjoint equations (13). Solving these adjoint equations requires backward integration from
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tr down to Zy, which is supplemented with the final time condition of the adjoint. Both the
state and adjoint values are then used to update the control (15). By applying this updated
control value to replace the initial guess of control, the method afterwards is repeated until

the current value of the control variable converges [27].

5 Numerical simulations
In this section, several scenarios are implemented in numerical simulations to confirm

and illustrate the results from the previous sections.

5.1 Autonomous simulations
To understand the role of the model parameters to R}, R, and the dynamics of system (1),
we perform autonomous simulations to illustrate the results given in Sect. 3. Note that in
this section, we only focus on the long-term effects to see the stability tendency of sys-
tem (1).

The first analysis is conducted to determine the effects of the transition rate from juve-
nile to adult rhinos («*) to the dynamics of system (1). We use three different variations

of o*, namely ﬁ, %, and % A set of the other parameters are given as follows:

1 .08 o1
K=1000, r=—, f'=——)  p=02, & =-,
32 1000 3
1 1
*203, fo I A
Y e YT

From (10a) and (10b), R} and R} depend on parameter o*. From Table 2, the value of R}
determines the stability of £&; and the existence of &, while &, determines the stability of £,
and &;. For the set of parameters in these simulations, the result on the stable equilibrium
points of system (1) is given in Table 4.

It can be seen in Table 4 that for the smallest value of a*, the extinction equilibrium &
will be stable. For the biggest value of o*, the coexistence equilibrium &; is the stable one.
This confirms the analysis in Sect. 3.4 of the sensitivity results of R} and R} towards o*.

To be precise, the condition of o* to guarantee the existence and stability of hunter-free
equilibrium &, is given by oin < ¢* < &max, where

M*Z /L*(K,B*J/*M*(l—p)+r(h*+§*))

T KB - p)r— ) — 1 €)

Qmin =

In our numerical experiment, we get that opin = 0.1 and omax = 0.1835. It means that, for
the set of parameters in this simulation, the transition from a juvenile white rhino to an
adult white rhino needs to take at least 5.45 years and no more than 10 years for system (1)

for the hunter-free equilibrium &, to be stable.

Table 4 Result of stable equilibrium points for autonomous simulation with various values of
parameter o

Cases RY RS Stable equilibrium Type

Ny N N3 M
o* = % 0.9803 0.8911 0 0 0 0 Extinction (&)
o* = 7 1.0638 0.9669 8.94 51.06 0 0 Hunter-free (&)
o* = % 1.1628 1.0569 6.39 80.13 0.09 243 Coexistence (&3)
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Figure 3 The effects of the changes in parameter a*. The blue curve (stable to &) represents that it takes 11
years for white rhino to become adult, the black curve (stable to &) represents that it takes 7 years, while the
red curve (stable to &) represents that it takes 3 years
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stable to Trivial Equilibrium
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Figure 4 Autonomous simulation of a*. The dynamic of N,, N3, and M of system (1) with two different initial
values, (N, N3, M) = (70,0,5) and (140, 1, 10). For both initial values, the blue curve (with a* = %) tends to
extinction equilibrium &7 = (0,0,0), the black curve (with a* = %) tends to hunter-free equilibrium

&> =(51.06,0,0), and the red curve (with a* = %) tends to coexistence equilibrium &3 = (80.13,0.09,2.43)

The illustrations for these autonomous simulations are given in Figs. 3 and 4. Fig-
ure 3 shows the results for each compartment with the initial values (N7, N, N3, M) =
(30,70,0,5) and shows that for each value of a*, system (1) will approach different equi-
librium points.

From Fig. 3(a), we can see that in the beginning, the slower rate of the transition from
juvenile to adult is causing a higher number of juvenile white rhinos. However, the repro-
duction of white rhinos depends only on adult rhinos. Thus, for a longer time, the slowest
rate (represented by the blue curve) prevents white rhinos from reproducing. This is why
the blue curve is stable to &;.

Further, Fig. 4 shows the dynamics of adult white rhino (N;), dehorned white rhinos (N3),
and hunters (M) populations using two different initial values, (N2, N3, M) = (70,0, 5) and
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(140, 1,10). This figure tells us that if all parameters remain the same but have different
initial values, system (1) does not lead to different equilibrium points.

Next, we conduct a simulation to determine how the numbers of hunted white rhinos
that survived (the changes in parameter p) and hunters arrested by the government (the
changes in parameter /*) affect the dynamics of system (1). From (10a), parameters p and
h* do not change the value of R}. So, we will see how R} can be determined by relying on
p and K*, qualitatively. A set of the other parameters are given as follows:

1 1 .08
K=1000, r=—,  a*==, Bf=—o
16 7 1000
1 1 1
8*:_y *20.3, *I—, *:—,
37 7 e Ve

such that R} =2.1276 > 1.

Based on Table 2, for any value of p € [0, 1] and /#* with this set of parameters, system (1)
will never reach a stable extinction equilibrium &;. When we substitute all parameter val-
ues into R = 1, we have

-0.0128(1 -
h; 12 L (16)
0.006p — % —0.0069

which is illustrated in Fig. 5.

From Fig. 5, when p > 0.8579, the population always achieves a hunter-free situation
(R} < 1), and thus it is unnecessary to arrest hunters. When p < 0.8579, we must arrest
hunters to achieve the condition R} < 1, with the minimum rate of #* is given by lipin =
0.0929 - 0.1083p.

This condition indicates that there is a possibility that arresting hunters is not needed
to eliminate illegal hunting. It is done by stocking up on horns. It means that we need to
cut the horns and let the rhino live (higher values of p). Then, the number of dehorned
rhinos (N3) will increase, which reduces the chance of illegal hunters hunting and killing
adult white rhino with horns (N;). Note that, when the price of horns is high enough,
increasing legal hunting can be counterproductive on the number of hunters in the field
as explained in Sect. 3.3.

Finally, we compare the effects of different values of p and 4* to each compart-
ment in system (1) with the values from Fig. 5 taken into consideration. The result of
this autonomous simulation is given in Fig. 6 with the initial values (N1, N3, N3, M) =
(100, 600, 0, 10).

From Fig. 6, the red curve with p = 0.2, #* = 0 yields R} = 1.7725 > 1 and, according to
Table 2, system (1) will reach a stable coexistence equilibrium &s. For the blue curve, we
increase the value of p, which becomes p = 0.9, i#* = 0. The blue curve is a stable hunter-
free equilibrium &, with R3 = 0.8175 < 1. Meanwhile, for the black curve, we increase the
value of #*, which becomes p = 0.2, i* = 0.4, yielding R% = 0.3319 < 1 and a stable &;.

To make it clearer, we compare the red and blue curves (the changes in parameter p) in
Fig. 7, while the red and black curves (the changes in parameter /#*) are compared in Fig. 8.
Both figures show the dynamics of adult white rhino (N3), dehorned white rhino (N3),
and hunter (M) populations using two different initial values, (N3, N3, M) = (600, 0, 10)
and (400, 10,5). These figures illustrate the analysis in Table 3 about the sensitivity of R}
towards p and /*, which is that as p and #* increase, R decreases.
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Figure 5 R’ sensitivity diagram towards parameters p and h*, in the sense of continuous contour plot (a)
and discrete contour plot (b). Figure (a) confirms sensitivity analysis in Table 3 that larger p and h* will reduce
R>.The dashed red line in (b) is the critical line when R3 = 1 based on (16). The red area defines the
coexistence condition, while the blue area defines an ecosystem with no hunters

Further, the condition of p to guarantee the existence and stability of hunter-free equi-

librium &, is given by

KB @y (r—u*) - KBy u™ - r(h” + §) (@ + )
I(,B*)/*(}"Ol* —afut - M*Z) :

In our numerical experiment (when we set #* = 0), we get that p > 0.8579. It means that,
for the set of parameters in this simulation, the hunter needs to let as much as 85.79% of
the total of adult white rhinos that were successfully hunted live, for system (1) to tend to
a hunter-free equilibrium &,.

Meanwhile, the condition of /#* to guarantee the existence and stability of hunter-free

&, is given by

. KBrary (1 -p)r— p) KB wy*(1-p) - ré*(@” + p*)

h
rla* + u*)
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Figure 6 The effects of the changes in parameters p and h*. The red curve (stable to £3) represents that the
proportion of hunted rhino being left alive is p = 0.2 with no intervention or no hunters being arrested (h = 0),
the blue curve (stable to &,) represents the proportion of p=0.9 and h =0, and the black curve (stable to &)
indicates that the proportion is p = 0.2 and the intervention is carried out with constant rate h* = 0.4
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Figure 7 Autonomous simulation of p. The dynamic of N, N3, and M of system (1) with two different initial
values, (N, N3, M) = (600,0, 10) and (400, 10, 5). For both initial values, the blue curve (with p = 0.9) tends to

hunter-free equilibrium &, = (451.06,0,0), and the red curve (with p = 0.2) tends to coexistence equilibrium
£3=(80.13,1.27,35.59)

In our numerical experiment (when we set p = 0.2), we get that /#* > 0.0712. It means
that, for the set of parameters in this simulation, we need to use intervention to arrest the

hunters with minimum constant rate #* = 0.0712, for system (1) to tend to a hunter-free
equilibrium &,.

5.2 Optimal control simulations

Here, the optimal control simulations are conducted to determine an optimal hunter arrest
rate as a time-dependent variable which is based on the results and algorithm in Sect. 4. We
choose the interval value of intervention (/*(t)) to be 0 < &*(¢) < 1 with the time interval
of 0 <t <10 years in these simulations. To find a balance between each component in the

objective function (11), we choose the weighted parameter values used on the objective
function to be wy; = 10 and wy, = 1.
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Figure 8 Autonomous simulation of h*. The dynamic of Ny, N3, and M of system (1) with two different initial
values, (N>, N3, M) = (600,0, 10) and (400, 10, 5). For both initial values, the black curve tends to hunter-free
equilibrium &, = (451.06,0,0), and the red curve tends to coexistence equilibrium &; =(80.13,1.27,35.59)

Table 5 Average populations in the cases of constant (h*), time-dependent (h*(t)), and without

control

Population Ny Ny N3 M Cost
Without control 85.5662 562.3740 2.7990 16.6829 1668.2890
Constant h* = 0.6908 85.0596 583.7860 04183 1.6842 173.1947
(*4) 1059% 1 381% 1 85.06% 189.90%

Time-dependent h*(t) 85.0038 585.3283 0.2828 1.1182 117.8970
“*d) 1066% 1 4.08% 1 89.89% 193.29%

First, for the purpose of comparing the reduction of hunters and killed rhinos, the sim-
ulations are conducted without control (#* = 0), with constant control (4*), and with
time-dependent control (/*(¢)). The initial values of each compartment are N;(0) = 100,
N,(0) = 600, N5(0) = 0, M(0) = 10, with a set of parameters given as follows:

1 .1 . 08
K =1000, r=—, o= -, B =——1, p=0.2,
16 7 1000
1 1 1
5 =2, *20.3, te—, t=—,
3 7 ST s

Several reduction results are given in Table 5 with the illustrations in Fig. 9. We have cho-
sen the constant control #* = 0.6908 which is equivalent to the average of time-dependent
control /#*(t) for these simulations.

From Table 5, a large number of hunters without intervention causes the most cost,
that is, 1668.2890. The result of the intervention carried out as a time-dependent variable
successfully reduced the average total hunter population by 93.29%. Meanwhile, the con-
stant control reduced the average total hunter population by 89.90%. In addition, the cost
of time-dependent control (117.8970) is less than that of constant control (173.1947).

The dynamics of the time-dependent (/4*(£)) control is shown in the blue curve of
Fig. 9(f). Some form of intervention is required if hunters are present. In this simulation,
for about 5 years, this intervention is carried out in the upper bound rate which is higher
than a constant rate (red curve of Fig. 9(f)). However, when few hunters remain, the in-
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Figure 9 Control optimal simulation. The dynamic of each compartments, killed white rhino, and the
intervention. The black curve represents no intervention, h* = 0, the red curve represents the intervention is
carried out with constant rate, h* = 0.6908, and the blue curve represents the time-dependent intervention,
h*(0)

tervention gradually decreasing over time to the lower bound at the end of the simulation
period.

In both constant and time-dependent control cases, the decrease in the number of
hunters (Fig. 9(e)) reduces the risk of white rhinos being hunted and killed (Fig. 9(d)),
thereby leading to fewer dehorned white rhinos (Fig. 9(c)) and eventually resulting in a
white rhino population which is dominated by adult rhinos that still have horns (Fig. 9(b)).
From both Table 5 and Fig. 9, we can conclude that time-dependent control is more effec-
tive at reducing costs and hunter population than constant control. So, starting from this,
we only consider the time-dependent control (/*(t)).

Next, we investigate the effect of varying was and wy,. These coefficients are the balancing
cost factors or weights on the costs caused by hunters M and the costs of implementing the
controls /*(£). Weighted parameter wj, represents the cost of buying weapons or providing
security personnel, while wy, is the cost due to the existence of hunters such as media
campaigns, efforts to strengthen the law, etc. We consider the following combination of
weighted parameters making up three control strategies:

1. Strategy A: the baseline, war = 10 and wy, = 1.

2. Strategy B: cheaper costs of implementing control, wy = 10 and wy, = 0.5.

3. Strategy C: cheaper costs caused by hunters, wy = 5 and oy, = 1.

The results of the optimal control simulations using three strategies are shown in Fig. 10.
We only show the effect of the given controls (Fig. 10(c)) on dead white rhinos (Fig. 10(a))
and the illegal hunter populations (Fig. 10(b)). The solutions for other compartments in
system (1) are similar to the ones portrayed in the blue curves of Fig. 9.

Agusto and Leite in [23] used cost-effectiveness analysis to determine the vaccination
and personal protection control strategies and the benefits gained from implementing
these controls in the meningitis model. Here, we will using the same approach to deter-
mine the most cost-effective strategy to reduce the number of illegal hunters and dead
rhinos.

The cost-effectiveness analysis implemented in [23] uses three approaches, namely, the
infection averted ratio (IAR), the average cost-effectiveness ratio (ACER), and the incre-
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Figure 10 Simulations of varying weighted parameters associated with objective function (11). The dynamic
of the time-dependent control using different weighted parameters in three strategies is shown in (c), while
(a) and (b) are its effect towards the number of killed white rhinos and the illegal hunters

Table 6 Total killed averted, total cost, and ACER for the intervention strategies A, B, and C

Strategies  Total killed averted  Total cost ~ ACER

A 55.0966 117.8970 2.1398
B 55.1131 114.7180 2.0815
C 55.0625 61.8180 1.1227

mental cost-effectiveness ratio (ICER). However, since this model in system (1) does not
have a recovered compartment, we will not take IAR into consideration.

The ACER is calculated against the non-intervention scenarios. The total cost produced
by the intervention is estimated using the objective function given in (11). Instead of total
number of infections averted, we use the total number of rhinos that were prevented from
being killed. It means the difference between the total of white rhinos killed in the absence
of control compared to that with time-dependent control. With some adjustments, ACER
formula in Sect. 4 of [23] becomes

Total cost produced by the intervention

ACER = .
Total number of rhinos that have been prevented from being killed

The ACER for each strategy is determined and the results are given in Table 6. According
to Table 6, the cheapest way will be to employ Strategy C, while the best policy in terms
of preventing the loss of white rhinos is Strategy B. The most cost-effective strategy, with
the smallest ACER, will be Strategy C, followed by Strategy B, and the least cost-effective
strategy is Strategy A.

For more clarity, we can also calculate the ICER of all strategies. The ICER is the addi-
tional cost per additional health outcome. In this model, health outcome is defined by the
number of rhinos that avoided being killed. To compare two or more competing interven-
tion strategies incrementally, one intervention is compared with the next-least-effective
alternative [23]. Thus, the ICER formula is given by

Difference costs in strategies i and j

ICER = .
Difference in total number of rhino deaths averted in strategies i and j

Page 22 of 25
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The ICER calculation start from the strategy which given the least number of averted
killed white rhinos. Using these simulation results in Table 6, we have that Strategy C
prevented the fewest rhino deaths, followed by Strategy A, and Strategy B which prevented
the most rhino deaths. The ICER is computed as follows:

61.8180
55.0625

117.8970 — 61.8180
ICER (A;C) = = 1649.3824, (17b)
55.0966 — 55.0625

114.7180 - 117.8970
ICER (B;A) = =—-198.6875. (17¢)
55.1131 - 55.0966

ICER (C) =

=1.1227, (17a)

From (17a)—17c, ICER values for Strategies A and C are positive. The comparison (17b)
shows a cost saving of 1649.3824 for Strategy A over Strategy C, obtained by comparing
Strategies C and A. The lower ICER for Strategy C implies that Strategy A will be more
expensive to implement compared to Strategy C. Thus, Strategy A is excluded from further

analysis and we will compare the two remaining strategies as follows:

61.8180
ICER (C) = = 1.1227, (18a)
55.0625
114.7180 — 61.8180
ICER (B;C) = = 1058. (18b)

55.1131 - 55.0625

The comparison (18b) shows a cost saving of 1058 for Strategy B over Strategy C. Using
the same reasoning, Strategy B will be more costly and less effective to implement com-
pared to Strategy C. Following this analysis, we conclude that Strategy C (cheaper costs
caused by hunters) is the most cost-effective strategy.

Repeating the entire process, we can determine the next most cost-effective strategy
between Strategies A and B. The ICER in (17c) is obtained by comparing Strategies A and
B. From the negative ICER value, Strategy B strongly dominates Strategy A. This analysis
implies that Strategy B (cheaper costs of implementing the control) is the next most cost-
effective strategy after Strategy C.

6 Conclusions

This paper proposed a white rhino poaching model with intervention to control the num-
ber of hunters in the system (1) and obtained a non-dimensional model in system (2).
Firstly, the existence and stability of the equilibrium were discussed. System (1) has extinc-
tion (&), hunter-free (£;), and coexistence (&3) equilibria, along with their local stability
conditions. We do not want any illegal hunting to happen, so we need system (1) to have
a stable hunter-free equilibrium &,. The results show that to guarantee the existence and
local stability of &, the condition R} < 1 < R} must be achieved.

The analytical result regarding the dependency of the final size of the hunter population
in the coexistence equilibrium with proportion parameter (p), could trigger a counter-
productive effect on controlling the hunter population. We find that it is possible for any
increase in this proportion to increase the number of hunters, whenever the lure of being
a hunter is also high. This trend is presented by y* (the conversion parameter), which can
be related to the high price of horns, lack of security, high demand of horns, etc.
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To reduce the cost caused by the hunter population and intervention, system (1) was
developed into an optimal control problem. The hunter arrest rate parameter, which was
previously set as constant, is changed into control variables that depended on time. An
optimal control problem to investigate hunter arrest rates has been formulated in the ob-
jective function (11). We have derived a Hamiltonian function to solve the optimization
problem numerically. Our optimal control simulation states that the time-dependent con-
trol is much more effective rather than constant control. To give a better understanding on
the effect of weight parameters in the objective function, we performed three simulation
scenarios regarding the composition of the weight parameters and analyzed them using
the concept of ACER and ICER. We found that reducing the weighted cost which presents
a cost that is related to the high number of hunters will give a better result in controlling
the number of hunters in the field. This cost is probably related to media campaign on the
dangers of illegal hunting, effort to strengthen the law, etc.

To sum up our results, intervention by the government must consider conditions in the
field such as intervention costs, sale prices for rhino horns, hunter populations, etc., so that
the expenses incurred are optimal. Controlling the number of hunters as a time-dependent
variable gave lower costs and succeeded in reducing the total number of hunters better
than the constant control or without any control at all. Based on numerical simulations,
when hunters are present, some form of intervention is required. However, when the num-
ber of hunters begins to decrease, the rate of intervention must be reduced. All of our op-
timal control simulations suggest exerting maximum effort to imprison the hunters since
the beginning of simulation, and starting to decrease it when the number of hunters is
already small enough.

Despite all contributions of our article to the problem of illegal poaching in the south-
ern white rhino population, some limitations need to be stated. One limitation is that the
continuous time-dependent control in our article is hard to be implemented directly in
the field. To implement the intervention directly in the field, it is easier to do it as a con-
stant effort for a specific time interval. Several authors have been implementing this in
epidemiological models [19, 28]. Another limitation is that we do not consider the gov-
ernment’s possibility to open up the privatization of rhino hunting. In some cases, this
private conservation may permit rhinos to be hunted if they meet certain conditions, but
only to cut rhino horns, not to kill the rhinos. This consideration can be accommodated by
adding variables in the model. Besides, the influence of media campaigns, the availability
of horns on the market, and fluctuations in the price of horns are very influential on the in-
tensity of hunting. Therefore, awareness-based models can be considered as modification

of this article.
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