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Abstract
In this paper, a human immunodeficiency virus (HIV) infection model that includes a
protease inhibitor (PI), two intracellular delays, and a general incidence function is
derived from biologically natural assumptions. The global dynamical behavior of the
model in terms of the basic reproduction numberR0 is investigated by the methods
of Lyapunov functional and limiting system. The infection-free equilibrium is globally
asymptotically stable ifR0 ≤ 1. IfR0 > 1, then the positive equilibrium is globally
asymptotically stable. Finally, numerical simulations are performed to illustrate the
main results and to analyze thre effects of time delays and the efficacy of the PI onR0.
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1 Introduction
Human immunodeficiency virus (HIV) is one of the most dangerous viruses that continues
to be a major contributor to the global burden of disease [13]. The interactions between the
human immune system and HIV have many highly complex characteristics, most of which
are still not understood. Mathematical models have provided powerful tools for studying
the dynamics of HIV infection, quantifying the effectiveness of drug therapies, and helping
guide treatment strategies. A system of autonomous ordinary differential equations was
developed to investigate the dynamics between HIV pathogens and the targeted CD4+

T-cells; see, e.g., [20–22] and the references therein. These models mainly explored the
dynamics of uninfected target cells, infected target cells, and free virus particles. In [21,
22], the effects of antiretroviral drugs including protease inhibitors (PIs) were considered,
and Perelson and Nelson [22] showed that therapy using a single drug was doomed to fail
because of drug resistance.

In 1996, Perelson et al. [23] assumed that there were two types of delays that occurred
between the administration of drug and the observed decline in viral load: a pharmaco-
logical delay that occurred between the ingestion of drug and its appearance within cells
and an intracellular delay that was between initial infection of a cell by HIV and the release
of new virions. In the same year a discrete intracellular time delay defined as the time be-
tween infection of a cell and production of new virus particles was first introduced into an
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HIV infection model by Herz et al. [8]. Since then delayed HIV models have been studied
by many authors, and we will not attempt to list all related references. Authors in [16] pro-
posed a model for the interaction of HIV-1 with target cells including a gamma distribu-
tion of the intracellular time delay and assuming the density of non-infected target cells to
be constant and studied the effects of protease inhibitor (PI) therapy. A model that allowed
for less than perfect drug effects of a PI and which included a fixed delay in the initiation
of virus production was considered in [18], where detailed analysis of the delay differential
equation model was presented and the results to a model without delay were compared.
Culshaw and Ruan [3] developed a delay-differential equation model of HIV infection of
CD4+ T-cells with discrete intracellular delay and bilinear incidence rate and investigated
the effect of the time delay on local stability of the endemically infected equilibrium. Nel-
son and Perelson [19] generalized the basic ordinary differential model of HIV-1 infection
with a PI by allowing the intracellular delay that varied according to a probability distri-
bution and obtained the local stability results of two steady states. Based on the model
built in [19], paper [12] further established global stability of steady states by constructing
Lyapunov functionals. Li and Ma [9] constructed an HIV-1 infection model with the dis-
crete intracellular delay and Holling type-II functional response term and gave sufficient
criteria for local asymptotic stability of the infected equilibrium and global asymptotic sta-
bility of the viral free equilibrium. Wang et al. [28] considered a delayed HIV-1 infection
model with Beddington–DeAngelis functional response and discussed the global stability
of the infection-free equilibrium and the local stability of the chronic-infection equilib-
rium. The results of the global stability of the positive equilibrium obtained by Cai et al.
[2] enriched and improved the corresponding results in [28]. In paper [2], it was shown
that the global dynamics of the system restudied was completely determined by the basic
reproduction number. Xu [30] investigated an HIV-1 infection model with the discrete in-
tracellular delay and a saturation infection rate and established both the local stability and
the global stability of the infection-free equilibrium and the infected equilibrium of the
model. Pitchaimani and Divya [24] discussed local asymptotic stability of an HIV infec-
tion delay model in which the effects of a PI were considered and the values of three time
delays varied according to the corresponding probability distribution. Bairagi and Adak [1]
modified a basic ordinary differential HIV model with Hill type infection rate and the dis-
crete intracellular time delay, studied local stability and global stability of both the delayed
and non-delayed systems, and showed that multi-blockers drug therapy is more appro-
priate in the treatment of HIV patients in comparison to any mono-blocker drug therapy
by numerical simulating. An epidemic model with free-living pathogens was constructed
by Xing et al. [29] to understand the impact of free-living pathogens on the epidemics.
More general biological models take into account also the diffusion laws of the involved
densities, and the related mathematical formulation is expressed by PDEs or systems of
coupled PDEs [10, 27].

Recently, Guo and Ma [6] first proposed a class of delay differential equations model of
HIV infection dynamics with the intracellular delay, apoptosis induced by infected cells,
and a general incidence function, and then analyzed the global properties of the model.
Considering the effects of a PI on the dynamics of HIV-1 infection, authors in [17] formu-
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lated and studied a model with a PI therapy and three delays as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dT(t)
dt = s – dT T(t) – ke–mτ1 T(t – τ1)VI(t – τ1),

dT∗(t)
dt = ke–mτ T(t – τ )VI(t – τ ) – δT∗(t),

dVI (t)
dt = (1 – εp)Nδe–vτ2 T∗(t – τ2) – cVI(t),

dVNI (t)
dt = εpNδe–vτ2 T∗(t – τ2) – cVNI(t).

(1.1)

In this model, T(t) and T∗(t) denote the concentrations of uninfected target cells and
infected cells that are producing virus (productively infected cells) at time t, respectively.
After PIs are given, virus is classified as either infectious, namely not influenced by the
PI, or as non-infectious due to the action of the PI which prevents virion maturation into
infectious particles. So VI(t) and VNI(t) are introduced to represent the concentrations of
infectious virus and non-infectious virus at time t respectively. In model (1.1), T(t), T∗(t),
VI(t), and VNI(t) are state variables. s is the rate at which new target cells are generated,
dT is their specific death rate, k is the rate constant characterizing their infection, and
c is the viral clearance rate constant. It is assumed that once cells are infected they will
die at rate δ either due to the action of the virus or the immune system, and produce
N new virus particles during their life, which on average has length 1/δ. Thus, virus is
produced at rate Nδ on average. Alternatively, one can view virus as produced in a burst of
N particles when infected cells die; thus, producing virus at rate Nδ. Finally, εp represents
the drug efficacy of a PI. System (1.1) models the dynamics of virus levels in the plasma
during drug treatment. The term (1 – εp) represents the level of leakiness of a PI, a drug
that inhibits the cleaving of viral polyproteins and renders newly produced virions non-
infectious. Thus, if εp = 1, the PI is completely effective and no infectious virus particles
are produced. τ is the time delay between the time a cell becomes infected and the time at
which the infected cell starts producing virus, τ1 is the delay corresponding to the loss of
target cells by infection [4], and τ2 is the delay representing the time necessary for a newly
infected virus to become mature and then infectious. The factor e–mτ is the probability that
an infected cell survives the interval τ , where 1/m is the average lifetime of infected cells
before they become productive, and so the term e–mτ1 [17]. The probability of survival of
immature virions is given by e–vτ2 , where 1/v is the average lifetime of an immature virus.
All the parameters in system (1.1) are positive constants.

In system (1.1), the time delays τ and τ2 are necessary. But the delay τ1 associated with
the loss of target cells by infection should be removed. According to [4], when the PI alone
is used, every infected cell still is destined to produce virus, and so the delay τ1 associated
with the loss of target cells by infection vanishes. Hence no delay is associated with the
loss of target cells by infection in system (1.1) in fact because PI action does not prevent
infected cells from becoming productive. In addition, the mass action infection law has
been challenged in various ways since it has some unrealistic features such as the number
of newly infected cells produced by a single virus depends on T and becomes very high
when T is large [1]. Therefore, in order to improve understanding of the mechanisms of
HIV infection model with a PI, we derive a refined model with more general infection
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processes:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dT(t)
dt = s – dT T(t) – f (T(t), VI(t)),

dT∗(t)
dt = e–mτIP f (T(t – τIP), VI(t – τIP)) – δT∗(t),

dVI (t)
dt = (1 – εp)Nδe–vτIM T∗(t – τIM) – cVI(t),

dVNI (t)
dt = εpNδe–vτIM T∗(t – τIM) – cVNI(t).

(1.2)

Here, a PI mono-therapy is considered; the PI is assumed to have variable efficacy and the
drug is less than completely efficacious, i.e., εp ∈ (0, 1); the T cells are allowed to vary; the
function f (T(t), VI(t)) under some prescribed condition indicates the rate of uninfected
target cells becoming infected by the infectious HIV viral particles. τIP and τIM correspond
to, respectively, the time delay between the time a cell becomes infected and the time the
infected cell develops into infectious, and the time required for newly infected virus parti-
cles to mature. All the parameters and variables appearing in system (1.2) have completely
the same biological meanings as those of system (1.1).

In the following, we assume that the incidence function f (T , VI) is continuously differ-
ential in R

2
+ and satisfies the following hypotheses [6, 14]:

(H1) f (T , 0) = f (0, VI) = 0 for all T , VI ≥ 0;
(H2) f (T , VI) > 0 for all T , VI > 0;
(H3) ∂f (T ,VI )

∂T > 0 for all T ≥ 0 and VI > 0;
(H4) ∂f (T ,VI )

∂VI
≥ 0 for all T , VI ≥ 0;

(H5) VI
∂f (T ,VI )

∂VI
– f (T , VI) ≤ 0 for all T , VI ≥ 0.

These assumptions are biologically motivated. One could see that (H1) and (H2) are rea-
sonable. (H3) follows the biological fact: if the total number of virus is constant, the bigger
the amount of cells is, the higher the average number of cells which are infected by each
virus in the unit time will be. The biological significance of (H4) is: if the total number of
cells is constant, the bigger the amount of virus is, the higher the number of cells which
are infected in the unit time will be. And we note that the final assumption ensures that

∂
∂VI

f (T ,VI )
VI

≤ 0 for all positive VI . This has the biological interpretation that the per capita
dependence of new infections on the number of infectious virus particles VI is a decreas-
ing function of VI .

It is possible to check that the incidence rate f (T , VI) generalizes many common forms
such as βTVI , βTVI

T+VI
, βTVI

1+αVI
, βTVI

1+γ T+αVI
, and βTVI

1+γ T+αVI +αγ TVI
, with α,β ,γ > 0.

In the present article, our primary goal is to establish some threshold dynamical results
of system (1.2) in terms of the basic reproduction ratio. The basic reproduction number
R0 for the viral infection is easily obtained. However, Lyapunov functionals constructed
for the whole model system of four differential equations are always imbalance of energy in
and out. So we first use the method of Lyapunov functional and LaSalle’s invariance prin-
ciple for the first three equations of the model to get the global asymptotic stability of the
equilibria for the subsystem; then we use the method of limiting system for the last delay
differential equation; and finally we obtain the global asymptotic stability of the equilibria
for the entire model. The infection-free equilibrium is globally asymptotically stable, and
the HIV viruses are cleared if R0 ≤ 1. If R0 > 1, then the positive equilibrium is globally
asymptotically stable and the infection persists. Furthermore, some interesting numeri-
cal simulations are performed to illustrate the main results on one side, and to explore
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the basic reproduction number R0 on the other side. Within the latter, more specifically,
considering the time lag τIP and the efficacy εp of the PI as parameters, we evaluate the
lowest value of εp which can be such that R0 is less than one by sensitivity analysis of the
basic reproduction number, which show that HIV can be permanently controlled by a PI
mono-therapy only if the PI can keep nearly perfect all the time.

The paper is organized as follows. In Sect. 2, we present some preliminary results such as
the global existence, nonnegativity, and boundedness of the solutions of system (1.2), the
threshold value R0, the existence of equilibria, and the local asymptotic stabilities of the
equilibria. In Sect. 3, by constructing suitable Lyapunov functionals and using established
theories on asymptotically autonomous systems, we obtain the global threshold dynamics
of the model. In Sect. 4, numerical simulations are carried out to demonstrate the main
results and to show some sensitivity analysis on R0. Finally, some biological implications
of our results can be found in the conclusions section.

2 Preliminary results
The preliminary results section includes three subsections. The properties about the well-
posedness of system (1.2) are established in Sect. 2.1. The threshold value R0 and the
existence of equilibria are discussed in Sect. 2.2, and the local asymptotic stabilities of the
infection-free equilibrium and the positive equilibrium are studied in Sect. 2.3.

2.1 Global existence, nonnegativity, and boundedness of solutions
Let C = C([–τIP , 0],R) be the Banach space of continuous functions mapping the interval
[–τIP, 0] into R with norm ‖φ‖ = sup–τIP≤θ≤0 |φ(θ )| for φ ∈ C, and let C2 = C([–τIM, 0],R)
be the Banach space of continuous functions mapping the interval [–τIM, 0] into R with
norm ‖ϕ‖2 = sup–τIM≤θ≤0 |ϕ(θ )| for ϕ ∈ C2. The nonnegative cone of C and C2 is defined
as C+ = C([–τIP, 0],R+) and C+

2 = C([–τIM, 0],R+), respectively. We assume that the initial
conditions of system (1.2) are (0,ψ) as ψ ∈ C+ × C+

2 × C+ × R+ and T(0) = ψ1(0) = T0,
T∗(0) = ψ2(0) = T∗0, VI(0) = ψ3(0) = V 0

I , VNI(0) = ψ4(0) = V 0
NI . A solution of system (1.2) is

denoted by (T(t), T∗(t), VI(t), VNI(t)). Then about the global existence, nonnegativity, and
boundedness of the solution of system (1.2), we have the following result.

Proposition 2.1 Under the above initial conditions, system (1.2) admits a unique nonneg-
ative solution (T(t), T∗(t), VI(t), VNI(t)), which exists for all time t ≥ 0 and satisfies

lim sup
t→+∞

T(t) ≤ s
dT

, lim sup
t→+∞

T∗(t) ≤ s
gemτIP

,

lim sup
t→+∞

VI(t) ≤ (1 – εp)Nδs
gcemτIP+vτIM

, lim sup
t→+∞

VNI(t) ≤ εpNδs
gcemτIP+vτIM

,
(2.1)

where g = min{dT , δ}.

Proof Obviously, Theorem 3.1 and Remark 3.3 in [26] imply that system (1.2) with the
initial conditions above has a unique solution (T(t), T∗(t), VI(t), VNI(t)) defined on some
interval [0,σ0) where σ0 > 0. Let us first verify that this solution has nonnegative compo-
nents. If T(t) = 0, then s – dT T(t) – f (T(t), VI(t)) = s > 0; if T∗(t) = 0, then

e–mτIP f
(
T(t – τIP), VI(t – τIP)

)
– δT∗(t) = e–mτIP f

(
T(t – τIP), VI(t – τIP)

) ≥ 0;
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if VI(t) = 0, then

(1 – εp)Nδe–vτIM T∗(t – τIM) – cVI(t) = (1 – εp)Nδe–vτIM T∗(t – τIM) ≥ 0;

and if VNI(t) = 0, then εpNδe–vτIM T∗(t – τIM) – cVNI(t) = εpNδe–vτIM T∗(t – τIM) ≥ 0. Hence,
the solution is nonnegative by [25, Theorem 5.2.1]. Next, we show that the solution of (1.2)
is bounded. Define A(t) as follows:

A(t) = e–mτIP T(t – τIP) + T∗(t).

Calculating the time derivative of A(t) along with the solution of (1.2) for t ∈ [0,σ0), we
get

dA(t)
dt

= se–mτIP – dT e–mτIP T(t – τIP) – δT∗(t)

≤ se–mτIP – gA(t),
(2.2)

where g = min{dT , δ}. By the nonnegativity of T(t) and T∗(t), and applying the well-known
comparison principle to the first equation of (1.2) and (2.2), we know that T(t) and T∗(t)
are both bounded on [0,σ0). Let B = supt∈[0,σ0) A(t) < +∞. From the third equation and the
fourth equation of (1.2), it follows that

dVI(t)
dt

≤ (1 – εp)Nδe–vτIM B – cVI(t)

and

dVNI(t)
dt

≤ εpNδe–vτIM B – cVNI(t).

Hence, one can know that VI(t) and VNI(t) are both bounded on [0,σ0). Therefore, by
using Theorem 3.2 and Remark 3.3 of [26], the existence and uniqueness of the solution
(T(t), T∗(t), VI(t), VNI(t)) of (1.2) on [0,σ0) can be extended to [0, +∞). Similarly, we can
obtain that the solution (T(t), T∗(t), VI(t), VNI(t)) of (1.2) with the initial conditions above
is also nonnegative on [0, +∞).

Now we show that (2.1) holds. Firstly, from the first equation of (1.2), one could verify
that lim supt→+∞ T(t) ≤ s

dT
. Secondly, we have from (2.2) that lim supt→+∞ A(t) ≤ s

gemτIP .
From the nonnegativity of T(t) and T∗(t), it follows that lim supt→+∞ T∗(t) ≤ s

gemτIP . Lastly,
again from the third equation and the fourth equation of (1.2), we get lim supt→+∞ VI(t) ≤

(1–εp)Nδs
gcemτIP+vτIM and lim supt→+∞ VNI(t) ≤ εpNδs

gcemτIP+vτIM . This completes the proof. �

Remark 2.1 From the proof of Proposition 2.1 and the method of integration, one can
verify that the solution (T(t), T∗(t), VI(t), VNI(t)) of model (1.2) with the initial conditions
above which satisfy ψi(0) > 0 (i = 1, 2, 3, 4) is positive.

Define

� =
{
(
T , T∗, VI , VNI

) ∈ C+ × C+
2 × C+ ×R+

∣
∣
∣‖T‖ ≤ s

dT
,

∥
∥T∗∥∥

2 ≤ s
gemτIP

,‖VI‖ ≤ (1 – εp)Nδs
gcemτIP+vτIM

, VNI(t) ≤ εpNδs
gcemτIP+vτIM

}

.



Chen et al. Advances in Difference Equations        (2020) 2020:597 Page 7 of 25

If T(0) ≤ s
dT

, from the first equation of system (1.2), we have T(t) ≤ s
dT

for all t > 0. One
can see that � is a positively invariant region with respect to system (1.2).

2.2 Equilibria and basic reproductive number
We can compute the threshold value of model (1.2) as follows:

R0 =
(1 – εp)N
cemτIP+vτIM

∂f ( s
dT

, 0)
∂VI

. (2.3)

R0 is called the basic reproduction number and describes the average number of newly
infected cells generated by a single infected cell in the expected life time when all cells are
uninfected.

The fraction of newly infected cells that survive until they begin to produce virus par-
ticles is e–mτIP . The average time that an infectious cell survives is 1/δ. The productively
infected T-cells produce (1 – εp)Nδ newly virus particles that could mature into their in-

fectious forms per unit time with the effects of the protease inhibitor.
∂f ( s

dT
,0)

∂VI
gives the

incidence response to a small number of infectious virus particles at the beginning of the
infection process. The fraction 1/c gives the average life-span of an infectious virus. Mul-
tiplying these quantities together gives the expected number of newly infected cells pro-
duced by a single newly infected cell; it means that the product is R0.

System (1.2) always has an infection-free equilibrium E0 = (s/dT , 0, 0, 0), corresponding
to the extinction of free virus. Generally, if R0 > 1, in addition to the infection-free equi-
librium E0, there is a positive (infection) equilibrium E∗ = (T , T∗, V I , V NI) which satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

s = dT T + f (T , V I),

δT∗ = e–mτIP f (T , V I),

(1 – εp)Nδe–vτIM T∗ = cV I ,

εpNδe–vτIM T∗ = cV NI .

(2.4)

Under this state, virus persists in host. More concretely, about the existence of positive
equilibria, we have the following results.

Theorem 2.1 If R0 > 1, then system (1.2) has a unique positive equilibrium E∗ =
(T , T∗, V I , V NI).

Proof Let the right-hand sides of the four equations in (1.2) equal zero. A short calculation
gives

s – dT T – δemτIP T∗ = 0,

f (T , VI) = δemτIP T∗,

VI =
(1 – εp)Nδ

cevτIM
T∗,

VNI =
εpNδ

cevτIM
T∗.

(2.5)
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This means that in order to have T ≥ 0 and T∗ > 0 at an equilibrium, we must have T∗ ∈
(0, s

δemτIP ]. From (2.5) we obtain

f ( s–δemτIP T∗
dT

, (1–εp)NδT∗
cevτIM )

T∗ – δemτIP = 0.

Let

P
(
T∗) =

f ( s–δemτIP T∗
dT

, (1–εp)NδT∗
cevτIM )

T∗ – δemτIP .

Positive equilibria of (1.2) are given by zeros of P in the interval (0, s/δemτIP ]. It is clear
from R0 > 1 that

lim
T∗→0+

P
(
T∗) = δemτIP (R0 – 1) > 0

and

P
(

s
δemτIP

)

= –δemτIP < 0.

Therefore, it follows from the continuity of the function P(T∗) on (0, s/δemτIP ] that there
exists at least one T∗ ∈ (0, s/δemτIP ] such that P(T∗) = 0. Consequently, by (2.5), it follows
that T > 0, V I > 0, and V NI > 0. So there exists at least one positive equilibrium E∗.

Taking derivative of P(T∗) yields

dP
dT∗ =

Q(T∗)
(T∗)2 ,

where

Q
(
T∗) = – T∗ δemτIP

dT

∂f ( s–δemτIP T∗
dT

, (1–εp)NδT∗
cevτIM )

∂T

+ T∗ (1 – εp)Nδ

cevτIM

∂f ( s–δemτIP T∗
dT

, (1–εp)NδT∗
cevτIM )

∂VI

– f
(

s – δemτIP T∗

dT
,

(1 – εp)NδT∗

cevτIM

)

.

According to (2.5), and notice that VI
∂f (T ,VI )

∂VI
– f (T , VI) ≤ 0, it follows that

T∗ (1 – εp)Nδ

cevτIM

∂f ( s–δemτIP T∗
dT

, (1–εp)NδT∗
cevτIM )

∂VI

– f
(

s – δemτIP T∗

dT
,

(1 – εp)NδT∗

cevτIM

)

≤ 0,

and from ∂f (T ,VI )
∂T > 0 one could know that

–T∗ δemτIP

dT

∂f ( s–δemτIP T∗
dT

, (1–εp)NδT∗
cevτIM )

∂T
< 0.
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Hence it follows easily that Q(T∗) < 0 for T∗ ∈ (0, s/δemτIP ]. In consequence, dP
dT∗ < 0

for T∗ ∈ (0, s/δemτIP ]. On the other hand, it can be seen that limT∗→0+ P(T∗) > 0, and
P(s/δemτIP ) < 0. Therefore, P(T∗) = 0 has only one root in (0, s/δemτIP ], and the positive
equilibrium E∗ is unique. The proof is complete. �

Remark 2.2 From the proof of Theorem 2.1, one can see that if R0 ≤ 1, then model (1.2)
has no positive equilibrium.

2.3 Local stability
In this subsection, we explore local and global asymptotic stability of equilibria E0, E∗. To
study the local asymptotic stability, we analyze the roots of the characteristic equations
associated with the linearization of system (1.2) at E0 and E∗.

First, we study the local stability of equilibria of system (1.2). For simplicity, τIP + τIM is
denoted by τ .

Theorem 2.2 If R0 < 1, then E0 is locally asymptotically stable; if R0 > 1, then E0 is un-
stable.

Proof At equilibrium E0, the characteristic equation for the corresponding linearized sys-
tem of (1.2) is

(λ + c)(λ + dT )
[
(λ + δ)(λ + c) – R0δce–λτ

]
= 0. (2.6)

Two roots of equation (2.6) are λ1 = –c and λ2 = –dT , and the equilibrium E0 is asymptot-
ically stable if all roots of

(λ + δ)(λ + c) – R0δce–λτ = 0 (2.7)

have negative real parts.
Assume that equation (2.7) has a complex root λ̄ = l + im with real part l ≥ 0. Filling into

equation (2.7) and separating the real and imaginary parts, we obtain

⎧
⎨

⎩

m2 – l2 – (δ + c)l – δc = –R0δce–lτ cos(mτ ),

(2l + δ + c)m = –R0δce–lτ sin(mτ ).

Squaring and adding these equations together gives

m4 + ω2m2 + ω0 = 0,

where

ω2 = (δ + c)2 + 2(δ + c)l + 2l2 – 2δc

and

ω0 = l4 + 2(δ + c)l3 +
[
(δ + c)2 + 2δc

]
l2 + 2(δ + c)δcl + δ2c2 – R0δ

2c2e–2lτ .
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This is quadratic in m2 ≥ 0, and so solutions will be ruled out if ω2 > 0 and ω0 > 0. Just
note that

⎧
⎪⎪⎨

⎪⎪⎩

(i) l ≥ 0,

(ii) both ω2 and ω0 are increasing with respect to l,

(iii) ω2|l=0 = δ2 + c2 > 0,ω0|l=0 = δ2c2(1 – R0e–2lτ ) > 0.

Thus, equation (2.7) has no root with nonnegative real part. Therefore, when R0 < 1, all
the eigenvalues of equation (2.6) have negative real parts, and hence, equilibrium E0 is
locally asymptotically stable.

If R0 > 1, we also consider characteristic equation (2.6). Let

f (λ) = (λ + δ)(λ + c) – R0δce–λτ .

One could obtain that, when R0 > 1,

f (0) = (1 – R0)δc < 0, lim
λ→+∞ f (λ) = +∞.

Therefore, f (λ) has at least one positive real root. Thus, if R0 > 1, equilibrium E0 of (1.2)
is unstable. This completes the proof. �

Then we investigate the local stability of the positive equilibrium E∗ and have the fol-
lowing results.

Theorem 2.3 If R0 > 1, then the positive equilibrium E∗ of system (1.2) is absolutely stable;
that is, E∗ is locally asymptotically stable for all τ ≥ 0.

Proof The characteristic equation at E∗ reads

(λ + c)
[(

λ + dT +
∂f (T , V I)

∂T

)

(λ + δ)(λ + c)

–
(λ + dT )(1 – εp)Nδe–λτ

emτIP+vτIM

∂f (T , V I)
∂VI

]

= 0.

(2.8)

One of the characteristic roots of equation (2.8) is λ1 = –c, and the equilibrium (T , T∗,
V I , V NI) is asymptotically stable for all τ ≥ 0 if all roots of

(

λ + dT +
∂f (T , V I)

∂T

)

(λ + δ)(λ + c)

–
(λ + dT )(1 – εp)Nδe–λτ

emτIP+vτIM

∂f (T , V I)
∂VI

= 0

(2.9)

have negative real parts for all τ ≥ 0.
Returning to (2.4), we find that 1

emτIP+vτIM = c
(1–εp)N

V I
f (T ,V I ) . So equation (2.9) can be written

as

λ3 + Dλ2 +
(
E + Fe–λτ

)
λ +

(
G + Ie–λτ

)
= 0,
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where

D = dT + δ + c +
∂f (T , V I)

∂T
,

E = δc + (δ + c)
(

dT +
∂f (T , V I)

∂T

)

,

F = –δc
V I

f (T , V I)
∂f (T , V I)

∂VI
,

G = δc
(

dT +
∂f (T , V I)

∂T

)

,

and

I = –dTδc
V I

f (T , V I)
∂f (T , V I)

∂VI
.

Let

H(λ, τ ) = λ3 + Dλ2 +
(
E + Fe–λτ

)
λ +

(
G + Ie–λτ

)
. (2.10)

For τ = 0, equation (2.10) can be written as

H(λ, 0) = λ3 + Dλ2 + (E + F)λ + (G + I). (2.11)

Notice that

D = dT + δ + c +
∂f (T , V I)

∂T
> 0,

E + F =
δc

f (T , V I)

(

f (T , V I) – V I
∂f (T , V I)

∂VI

)

+ (δ + c)
(

dT +
∂f (T , V I)

∂T

)

> 0,

G + I =
dTδc

f (T , V I)

(

f (T , V I) – V I
∂f (T , V I)

∂VI

)

+ δc
∂f (T , V I)

∂T
> 0,

and

D(E + F) – (G + I)

=
δc

f (T , V I)

(

δ + c +
∂f (T , V I)

∂T

)(

f (T , V I) – V I
∂f (T , V I)

∂VI

)

+
(

δ2 + dTδ + δ
∂f (T , V I)

∂T
+ δc + c2 + cdT + c

∂f (T , V I)
∂T

)

·

·
(

dT +
∂f (T , V I)

∂T

)

+ dTδc > 0.
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Using the Routh–Hurwitz criterion, we know that all roots of equation (2.11) have negative
real parts. Then we show that, for all real q and τ ≥ 0, H(iq, τ ) 	= 0. Note that

H(iq, τ ) =
(
–q3 + Eq + Fq cos qτ – I sin qτ

)
i

– Dq2 + Fq sin qτ + G + I cos qτ .

When q = 0, H(0, τ ) = G + I > 0. If q 	= 0, then separating real and imaginary parts of
H(iq, τ ) = 0, we get

q3 – Eq = Fq cos qτ – I sin qτ (2.12)

and

Dq2 – G = Fq sin qτ + I cos qτ . (2.13)

Squaring and adding the two equations, (2.12) and (2.13), we can obtain

q6 +
(
D2 – 2E

)
q4 +

(
E2 – 2DG – F2)q2 + G2 – I2 = 0. (2.14)

Since

D2 – 2E > 0, E2 – 2DG – F2 > 0, and G2 – I2 > 0,

one can know that equation (2.14) has no real roots, and so H(iq, τ ) 	= 0 for q 	= 0. Thus, all
roots of equation (2.9) have negative real parts for all τ ≥ 0 by [11, Theorem 5.2.1]. The
proof is complete. �

3 Global threshold dynamics
Motivated by the work of Gourley and Lou [5], we establish the global asymptotic stability
of E0 and E∗ by constructing suitable Lyapunov functionals and using established theories
on asymptotically autonomous systems in [15].

First, we show that when R0 ≤ 1, E0 is globally asymptotically stable. Note that the T(t)
equation, the T∗(t) equation, and the VI(t) equation are independent of the variable of
non-infectious virus VNI(t). Thus we can first study the globally asymptotic stability of the
infection-free equilibrium E0 = (s/dT , 0, 0) of the following model:

⎧
⎪⎪⎨

⎪⎪⎩

dT(t)
dt = s – dT T(t) – f (T(t), VI(t)),

dT∗(t)
dt = e–mτIP f (T(t – τIP), VI(t – τIP)) – δT∗(t),

dVI (t)
dt = (1 – εp)Nδe–vτIM T∗(t – τIM) – cVI(t).

(3.1)

Then, using established theories on asymptotically autonomous systems, we can obtain
the globally asymptotical stability of equilibrium E0 of system (1.2). Correspondingly, the
positively invariant region for model (3.1) is

� =
{
(
T , T∗, VI

) ∈ C+ × C+
2 × C+

∣
∣
∣‖T‖ ≤ s

dT
,

∥
∥T∗∥∥

2 ≤ s
gemτIP

,‖VI‖ ≤ (1 – εp)Nδs
gcemτIP+vτIM

}

.
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Theorem 3.1 Suppose R0 ≤ 1. Then the infection-free equilibrium E0 of system (1.2) is
globally asymptotically stable in �.

Proof We consider the global stability of the infection-free equilibrium E0 of model (3.1)
first. Define a Lyapunov functional

U(t) = emτIP T∗(t) +
emτIP+vτIM

(1 – εp)N
VI(t) +

∫ t

t–τIP

f
(
T(θ1), VI(θ1)

)
dθ1

+ δemτIP

∫ t

t–τIM

T∗(θ2) dθ2.

Calculating the time derivative of U(t) along a solution of (3.1), we obtain

dU(t)
dt

= f
(
T(t – τIP), VI(t – τIP)

)
– δemτIP T∗(t)

+ δemτIP T∗(t – τIM) –
cemτIP+vτIM

(1 – εp)N
VI(t)

+ f (T , VI) – f
(
T(t – τIP), VI(t – τIP)

)

+ δemτIP T∗(t) – δemτIP T∗(t – τIM)

= f (T , VI) –
cemτIP+vτIM

(1 – εp)N
VI(t).

Since T(t) ≤ s/dT and ∂f (T ,VI )
∂T > 0, we have f (T(t), VI(t)) ≤ f (s/dT , VI(t)). Meanwhile,

VI
∂f (T ,VI )

∂VI
– f (T , VI) ≤ 0, which indicates f (T ,VI )

VI
is decreasing for VI . Therefore,

dU(t)
dt

=
cemτIP+vτIM

(1 – εp)N
VI(t)

(
(1 – εp)N
cemτIP+vτIM

f (T(t), VI(t))
VI(t)

– 1
)

≤ cemτIP+vτIM

(1 – εp)N
VI(t)

(
(1 – εp)N
cemτIP+vτIM

f ( s
dT

, VI(t))
VI(t)

– 1
)

≤ cemτIP+vτIM

(1 – εp)N
VI(t)

(
(1 – εp)N
cemτIP+vτIM

lim
VI→0+

f ( s
dT

, VI(t))
VI(t)

– 1
)

=
cemτIP+vτIM

(1 – εp)N
VI(t)

(
(1 – εp)N
cemτIP+vτIM

∂f ( s
dT

, 0)
∂VI

– 1
)

=
cemτIP+vτIM

(1 – εp)N
VI(t)(R0 – 1).

Thus, we have dU(t)
dt ≤ 0 whenever R0 ≤ 1. Now we show that if dU(t)

dt = 0, then either
VI(t) = 0, or R0 = 1 and T(t) = s/dT . It follows that the largest invariant set M0 ⊆ M =
{(T(t), T∗(t), VI(t))| dU(t)

dt = 0.} is the singleton {E0}. By the Lyapunov–LaSalle invariance
principle [7], the infection-free equilibrium E0 of (3.1) is globally asymptotically stable
when R0 ≤ 1. Then the VNI(t) equation of (1.2) can be considered as an asymptotically
autonomous equation with the following limit equation:

dVNI(t)
dt

= –cVNI(t),
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the solution of which tends to 0. This argument can be justified using established theories
on asymptotically autonomous systems; see, for example, Mischaikow et al. [15]. Thus,
when R0 ≤ 1, equilibrium E0 of (1.2) is globally asymptotically stable. This completes the
proof. �

Then, we focus on the globally asymptotic stability of the positive equilibrium E∗. Cor-
respondingly, if R0 > 1, we know that model (3.1) has a unique positive equilibrium
E∗ = (T , T∗, V I). In addition, it is important to demonstrate that solutions of system (1.2)
are sufficiently bounded away from zero so that the Lyapunov functional is well defined.
Hence the uniform persistence of model (1.2) should be established. Using the following
conditions and the approach introduced by [31, Sect. 1.3], we can obtain the results about
uniform persistence:

(H6) There exists η > 0 such that f (T , VI) ≤ ηT for all T , VI ≥ 0;
(H7) ∂

∂T
f (T ,VI )

T ≤ 0 for all T > 0 and VI ≥ 0.
(H6) is reasonable since the virus cannot infect cells without restriction in the host. (H7)
has the biological interpretation that the per capita dependence of new infections on the
number of cells T is a decreasing function of T .

Theorem 3.2 Assume that (H6) and (H7) are also satisfied. If R0 > 1, then the positive
equilibrium E∗ of system (1.2) is globally asymptotically stable with respect to all solutions
in � with the initial conditions T0 > 0, T∗0 > 0, V 0

I > 0.

Proof First, we explore the global stability of the positive equilibrium E∗ of model (3.1).
Define the following Lyapunov functional:

W (t) = T(t) – T –
∫ T(t)

T

f (T , V I)
f (θ1, V I)

dθ1 + emτIP T∗Z
(

T∗(t)
T∗

)

+
∫ t

t–τIP

f (T , V I)Z
(

f (T(θ2), VI(θ2))
f (T , V I)

)

dθ2

+
emτIP+vτIM V I

(1 – εp)N
Z
(

VI(t)
V I

)

+ δemτIP

∫ t

t–τIM

T∗Z
(

T∗(θ3)
T∗

)

dθ3,

where Z(x) = x – 1 – ln x, x ∈ (0, +∞), has the global minimum at x = 1 and Z(1) = 0. Cal-
culating the derivative of W (t) along the solutions of (3.1) gives

dW (t)
dt

= dT
(
T – T(t)

)
(

1 –
f (T , V I)

f (T(t), V I)

)

+ f (T , V I)

– f (T , V I)
f (T , V I)

f (T(t), V I)
+ f

(
T(t), VI(t)

) f (T , V I)
f (T(t), V I)

–
T∗

T∗(t)
f
(
T(t – τIP), VI(t – τIP)

)
+ δemτIP T∗

–
cemτIP+vτIM

(1 – εp)N
VI(t) – δemτIP

V I

VI(t)
T∗(t – τIM)
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+
cemτIP+vτIM

(1 – εp)N
V I – δemτIP T∗

ln
T∗(t)

T∗(t – τIM)

– f (T , V I) ln
f (T(t), VI(t))

f (T(t – τIP), VI(t – τIP))
.

Notice that δemτIP T∗ = cemτIP+vτIM
(1–εp)N V I = f (T , V I) and T∗ = cevτIM

(1–εp)Nδ
V I , we get

dW (t)
dt

= dT
(
T – T(t)

)
(

1 –
f (T , V I)

f (T(t), V I)

)

– f (T , V I)
(

f (T , V I)
f (T(t), V I)

– 1 – ln
f (T , V I)

f (T(t), V I)

)

– f (T , V I)
(

T∗f (T(t – τIP), VI(t – τIP))
T∗(t)f (T , V I)

– 1

– ln
T∗f (T(t – τIP), VI(t – τIP))

T∗(t)f (T , V I)

)

– f (T , V I)

×
(

(1 – εp)Nδ

cevτIM

T∗(t – τIM)
VI(t)

– 1 – ln
(1 – εp)NδT∗(t – τIM)

cevτIM VI(t)

)

– f (T , V I)
(

VI(t)f (T(t), V I)
V If (T(t), VI(t))

– 1 – ln
VI(t)f (T(t), V I)
V If (T(t), VI(t))

)

+
f (T , V I)VI(t)

f (T(t), V I)f (T(t), VI(t))
(
f
(
T(t), V I

)
– f

(
T(t), VI(t)

))

×
(

f (T(t), V I)
V I

–
f (T(t), VI(t))

VI(t)

)

.

Since ∂f (T ,VI )
∂T > 0, one could obtain

dT
(
T – T(t)

)
(

1 –
f (T , V I)

f (T(t), V I)

)

≤ 0.

Notice that ∂f (T ,VI )
∂VI

≥ 0, which indicates f is increasing with respect to VI . Meanwhile,
f (T , VI) – VI

∂f (T ,VI )
∂VI

≥ 0, which indicates f (T ,VI )
VI

is decreasing with respect to VI . Therefore,

(
f
(
T(t), V I

)
– f

(
T(t), VI(t)

))
(

f (T(t), V I)
V I

–
f (T(t), VI(t))

VI(t)

)

≤ 0.

Hence, T , T∗, V I > 0 ensures dW (t)
dt ≤ 0 and dW (t)

dt = 0 if and only if

(
T(t), T∗(t), VI(t)

)
=

(
T , T∗, V I

)
.

By LaSalle’s invariance principle [7], equilibrium E∗ of (3.1) is globally asymptotically sta-
ble. Then, using theories on asymptotically autonomous systems [15], the VNI(t) equation
of (1.2) can be considered as an asymptotically autonomous equation with the following
limit equation:

dVNI(t)
dt

= εpNδe–vτIM T∗ – cVNI(t),
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the solution of which tends to V NI . Thus, equilibrium E∗ of (1.2) is globally asymptotically
stable if R0 > 1. Now we complete the proof. �

4 Numerical simulations
In this section we apply the main results obtained in the last section to three special infec-
tion functions of the generalized model (1.2), i.e., the bilinear incidence function investi-
gated by Monica and Pitchaimani [17], the saturation response incidence rate studied by
Xu [30], and the Beddington–DeAngelis function explored by Wang et al. [28]. We also
present the results of sensitivity analysis on R0 by numerical simulating, especially the
estimated value of εp which can such that R0 < 1.

4.1 Simulation of the basic results
To verify the above analytic results, we introduce three specific infection functions to per-
form: bilinear incidence function βTVI which is proposed in [17], saturation response
incidence rate βTVI

1+αVI
in [30], and Beddington–DeAngelis function βTVI

1+γ T+αVI
in [28]. In all

of these papers [17, 30], and [28], an HIV infection model with the intracellular delay was
studied. Following [24], we fix the following coefficients: s = 5 mm–3 day–1, dT = 0.03 day–1,
β = 0.002 mm3 day–1, α = 1 × 10–6 mm3, γ = 0.5 × 10–6 mm3, m = 0.03 day–1, δ = 0.32
day–1, N = 480, v = 0.03 day–1, c = 3 day–1. We will regard τIP , τIM , and εp as parameters
to verify the analytic results in Theorem 3.1 and Theorem 3.2. Notice that τIP is expected
to last between a few hours and three days and τIM ≈ 0.15τIP as mentioned in [4]. In this
subsection, each graph has red dotted line, green solid line, and blue dashed line. They
represent three solution curves with different initial values, respectively.

First, we consider the case of bilinear response incidence rate. The corresponding basic
reproduction number is given by

R01 =
(1 – εp)sβN

cdT emτIP+vτIM
,

the infection-free equilibrium E0
1 = (s/dT , 0, 0, 0), and the positive equilibrium

E∗
1 =

(
cemτIP+vτIM

βN(1 – εp)
,

(1 – εp)sβNe–mτIP – cdT evτIM

δβN(1 – εp)
,

(1 – εp)sβNe–mτIP–vτIM – cdT

cβ
,
εp[(1 – εp)sβNe–mτIP–vτIM – cdT ]

cβ(1 – εp)

)

.

Let εp = 0.98, τIP = 3, τIM = 0.45, then R01 = 0.9618 < 1 and the virus eventually dies
out. Numerical simulation demonstrates the theoretical result of Theorem 3.1 that the
infection-free equilibrium E0

1 is globally asymptotically stable if R01 < 1, as shown in
Fig. 1. With the decrease of the parameter εp, the basic reproduction number R01 in-
creases. So, we choose εp = 0.9792, τIP = 3, τIM = 0.45, then R01 = 1. According to Theo-
rem 3.1, the infection-free equilibrium E0

1 is globally asymptotically stable. Figure 2 shows
that the infection-free equilibrium E0

1 is globally asymptotically stable when R01 = 1. Fur-
thermore, we can verify the analytic result in Theorem 3.2. Direct calculation shows that
R01 = 18.9154 > 1 when εp = 0.62, τIP = 2, and τIM = 0.3. Therefore, by Theorem 3.2, the
positive equilibrium E∗

1 is globally asymptotically stable. Figure 3 illustrates this fact.
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Figure 1 The infection-free equilibrium E01 = (166.6667, 0, 0, 0) is globally asymptotically stable when
R01 = 0.9618 < 1

Figure 2 The infection-free equilibrium E01 = (166.6667, 0, 0, 0) is globally asymptotically stable whenR01 = 1
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Figure 3 The positive equilibrium E∗
1 = (8.8112, 13.9371, 268.7313, 438.4563) is globally asymptotically stable

whenR01 = 18.9154 > 1

We further consider the case of saturation response function. Similarly, one gets

R02 =
(1 – εp)sβN

cdT emτIP+vτIM
= R01,

the infection-free equilibrium E0
2 = (s/dT , 0, 0, 0), and the positive equilibrium

E∗
2 =

(
(1 – εp)αsN + cemτIP+vτIM

N(1 – εp)(β + αdT )
,

(1 – εp)sβNe–mτIP – cdT evτIM

δN(1 – εp)(β + αdT )
,

(1 – εp)sβNe–mτIP–vτIM – cdT

c(β + αdT )
,
εp[(1 – εp)sβNe–mτIP–vτIM – cdT ]

c(1 – εp)(β + αdT )

)

.

Let εp = 0.9848, τIP = 0.5, τIM = 0.075, then R02 = 0.796 < 1. Numerical simulation re-
sults are shown in Fig. 4. We choose εp = 0.9803, τIP = 1.5, τIM = 0.225, then R02 = 1. Fig-
ure 5 shows that the infection-free equilibrium E0

2 is globally asymptotically stable when
R02 = 1. R02 = 36.0673 > 1 when we choose εp = 0.3, τIP = 1, and τIM = 0.15. Therefore, by
Theorem 3.2, the positive equilibrium E∗

2 is globally asymptotically stable. Figure 6 illus-
trates this fact.

Last, we consider the case of Beddington–DeAngelis functional response. The basic re-
production number is given by

R03 =
(1 – εp)sβN

c(dT + γ s)emτIP+vτIM
,
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Figure 4 The infection-free equilibrium E02 = (166.6667, 0, 0, 0) is globally asymptotically stable when
R02 = 0.796 < 1

Figure 5 The infection-free equilibrium E02 = (166.6667, 0, 0, 0) is globally asymptotically stable whenR02 = 1
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Figure 6 The positive equilibrium E∗
2 = (4.6234, 14.7426, 526.0016, 225.4292) is globally asymptotically stable

whenR02 = 36.0673 > 1

the infection-free equilibrium E0
3 = (s/dT , 0, 0, 0), and the positive equilibrium

E∗
3 =

(
(1 – εp)αsN + cemτIP+vτIM

N(1 – εp)(β + αdT ) – γ cemτIP+vτIM
,

(1 – εp)sβNe–mτIP – c(dT + γ s)evτIM

δ[N(1 – εp)(β + αdT ) – γ cemτIP+vτIM ]
,

N(1 – εp)[(1 – εp)sβNe–mτIP–vτIM – c(dT + γ s)]
c[N(1 – εp)(β + αdT ) – γ cemτIP+vτIM ]

,

εpN[(1 – εp)sβNe–mτIP–vτIM – c(dT + γ s)]
c[N(1 – εp)(β + αdT ) – γ cemτIP+vτIM ]

)

.

Taking εp = 0.99, τIP = 1.4, and τIM = 0.21, then R03 = 0.5081 < 1. Numerical simulation
results are performed in Fig. 7. Taking εp = 0.9805, τIP = 1.1, and τIM = 0.165, then R03 = 1.
Numerical simulation results are shown in Fig. 8. Taking εp = 0.4, τIP = 1.2, and τIM = 0.18,
then R03 = 30.6997 > 1. Numerical simulation results are performed in Fig. 9.

4.2 Simulation of the basic reproduction number
Recall the expression of (2.3). Then it follows from the formula of R0 that the basic repro-
duction number is decreasing with respect to εp, τIP , and τIM . But we want to see how R0

varies with the change of εp, τIP , and τIM in quantity. R01 (R02) and R03 are also selected
to simulate.
R0 decreases linearly with increasing εp and exponential decay with respect to τIP . But

as both m and v are very small parameters, the effect of τIP changes on the value of R0 is
much less significant than that of εp. From Fig. 10 we can get this conclusion.
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Figure 7 The infection-free equilibrium E03 = (166.6667, 0, 0, 0) is globally asymptotically stable when
R03 = 0.5081 < 1

Figure 8 The infection-free equilibrium E03 = (166.6667, 0, 0, 0) is globally asymptotically stable whenR03 = 1
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Figure 9 The positive equilibrium E∗
3 = (5.4309, 14.5814, 445.5270, 297.0180) is globally asymptotically stable

whenR03 = 30.6997 > 1

Figure 10 Contour maps ofR01 (R02) (subgraph (a)) andR03 (subgraph (b)) as functions of εp and τIP
(τIM = 0.15τIP ). All other parameters are as part 4.1. Each subfigure has contour lines that label the current
contours

It is clear to see that, from Fig. 11, only a very small domain of the τIPεp-plane can be
such that the basic reproduction numbers are less than unity. The domain is a very small
particular area and is especially strict with εp.

Furthermore, in order to find out exact minimum values of εp which can be such that
R01,R02, andR03 are less than one, some numerical simulations are also performed. From
the numerical simulation results, Fig. 12, it can be concluded that the lowest value we need
is about 0.98.
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Figure 11 Graphs ofR01 (R02) (subfigure (a)) andR03 (subfigure (b)) as a function of εp and τIP
(τIM = 0.15τIP ). All other parameters are as part 4.1. The white contour line in (a) corresponds toR01 (R02) = 1
and in (b) (R03) = 1

Figure 12 Graphs ofR01 (R02) (subfigure (a)) andR03 (subfigure (b)) as functions of εp . All other
parameters are as part 4.1. In subfigure (a), when τIP = τIM = 0 andR01 (R02) = 1, εp is about 0.982. In
subfigure (b), when τIP = 3, τIM = 0.45 andR03, εp is also about 0.980

5 Conclusions
Improved understanding of the mechanisms of latent infection and the importance of
reservoirs of infection might eventually lead to a cure [13]. In this paper, we have carried
out complete analysis for a delayed HIV infection model with a protease inhibitor (PI)
mono-therapy and a general incidence function, system (1.2). The transmission dynamics
of the system are studied and the global dynamics of system (1.2) are established. Based
on the obtained theoretical results and simulation results, we conclude that the threshold
(R0) can provide much insight into the biological events underlying the disease process.
If R0 is less than or equal to unity, then the virus is cleared from the T-cell population
and CD4+ T-cell count returns to normal, i.e., the virus is controlled and even cured and
the disease dies out. If R0 is greater than unity, then the infection persists in the host and
the viral concentration remains at a constant level. The global stability result rules out the
possibility of periodic oscillations and Hopf bifurcations. Moreover, the numerical simula-
tion results demonstrate that the value of the basic reproductive number R0 is dominated
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by the efficacy of the PI drug and is very weakly dependent on the intracellular delays.
More importantly, due to the simulation results, we note that HIV can be permanently
controlled by a PI mono-therapy only if the efficacy of the PI can keep reaching very high
levels (at least 98%), namely the PI are nearly perfect all the time during therapy. However,
it is nearly impossible to make the effectiveness of the drug always close to 100% because
of the ability of the virus to mutate into a drug-resistant form and HIV-infected patients’
dynamic health conditions. Therefore, the numerical simulation results of the discrete de-
lay models for HIV infection with a PI drug suggest that therapy using a single PI drug is
also doomed to fail compared with the analysis results of the ordinary differential equa-
tion models with a single drug in [22]. In order to eradicate HIV from an infected patient
or help the body control the infection during therapy, as experience has borne out, chang-
ing different anti-HIV drugs such as PIs in time for HIV-positive individual patient and
combining highly effective drugs for patients are needed.
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