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1 Introduction
Quantum calculus (or, q-calculus) is the study of calculus without limits. Many extensions
of q-calculus have been developed and applied as one of the most active areas of research
in mathematics and physics. These new extensions have proved to be very useful in var-
ious fields such as physics, engineering, statistics, actuarial sciences, economics, survival
analysis, life checking out and telecommunications, and many others (see for example
[17, 23, 24, 31, 33]). The applications have largely stimulated our present study. One of the
most important branches of q-calculus is q-special functions. Jackson [19, 20], Andrews
[4, 5], Gupta [16], Agarwal [2, 3], Ismail and Libis [18], Jain [21, 22], Jain and Vertna [23],
Mishra [24], Sahai and Verma [25–27], Srivastava [30], Srivastava and Jain [31], Swarttouw
[33], Verma and Sahai [34] introduced and discussed some interesting properties for var-
ious families of the basic Appell series, basic hypergeometric series, and q-Lauricella se-
ries by applying certain operators of q-calculus and its applications. Acikgoz et al. [1] and
Araci et al. [6, 7] introduced a class of q-Euler, q-Frobenius–Euler, and q-Bernoulli poly-
nomials based on q-exponential functions. Duran et al. [13, 14] introduced q-Bernoulli,
q-Euler, and q-Genocchi polynomials and obtained the q-analogues of familiar earlier for-
mulas and identities. In [8], Bagdasaryan et al. constructed Apostol q-Bernoulli, Apostol
q-Genocchi, and Apostol q-Euler polynomials. Bansal and Choi [9], Bansal and Kumar
[10], and Bansal et al. [11, 12] introduced and investigated the Pathway fractional integral
formulas, fractional integral operators and integral transform of incomplete H-functions,
incomplete ℵ-functions, incomplete I-functions, and S-generalized Gauss hypergeomet-
ric function. In [28, 29], Shehata investigated and discussed the generating functions for
(p, q)-Bessel and (p, q)-Humbert functions.
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Throughout this paper, we observe the following notations 0 < |q| < 1, q ∈ C – {1}. Let
N and C be the sets of natural numbers and complex numbers, respectively.

The q-number (basic or quantum number) [β]q is defined by [5, 15, 17]

[β]q =
1 – qβ

1 – q
, β ∈ C, 0 < |q| < 1, q ∈C – {1}. (1.1)

The q-number and q-factorial are given by

[n]q =

⎧
⎨

⎩

1–qn

1–q , n ∈N, 0 < |q| < 1, q ∈ C – {1};
1, n = 0,

(1.2)

and

[n]q! =

⎧
⎪⎪⎨

⎪⎪⎩

∏n
r=1[r]q = [n]q[n – 1]q . . . [2]q[1]q = (q;q)n

(1–q)n ,

n ∈N, 0 < |q| < 1, q ∈C – {1};
1, n = 0, 0 < |q| < 1, q ∈C – {1},

(1.3)

where (β ; q)n is the q-shifted factorial (q-Pochhammer symbol) which is definoted as fol-
lows: for n ∈N, β ∈C \ {1, q–1, q–2, . . . , q1–n}, 0 < |q| < 1, q ∈C – {1};

(β ; q)n =
n–1∏

r=0

(
1 – βqr) = (1 – β)(1 – βq) . . .

(
1 – βqn–1),

(β ; q)0 = 1, β ∈C, 0 < |q| < 1, q ∈C – {1}.
(1.4)

Note that taking limit as tends to (1.1) in the above relations gives the shifted factorial (β)n

(see [32])

lim
q−→1–

(qβ ; q)n

(1 – q)n = (β)n.

We recall some notations and defifinitions from q-calculus for β ∈ C, n ∈ N, 0 < |q| < 1,
q ∈C – {1}, which are essential in the sequel (see [15]):

(βq; q)n =
1 – βqn

1 – β
(β ; q)n

=
(
1 – βqn–1)(β ; q)n–1,

(1.5)

(
βq–1; q

)

n =
1 – βq–1

1 – βqn–1 (β ; q)n

=
(
1 – βq–1)(β ; q)n–1,

(1.6)

and

(β ; q)n+k = (β ; q)n
(
βqn; q

)

k

= (β ; q)k
(
βqk ; q

)

n.
(1.7)
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Definition 1.1 Based on q-Pochhammer’ symbol (1.4), we define the basic Horn hyper-
geometric functions H3 and H4 as follows:

H3(a, b; c; q, x, y) =
∞∑

m,n=0

(a; q)2m+n(b; q)n

(c; q)m+n(q; q)m(q; q)n
xmyn, c �= 1, q–1, q–2, . . . , (1.8)

and

H4(a, b; c, d; q, x, y)

=
∞∑

m,n=0

(a; q)2m+n(b; q)n

(c; q)m(d; q)n(q; q)m(q; q)n
xmyn, c, d �= 1, q–1, q–2, . . . . (1.9)

Remark 1.1 If q → 1, the basic Horn hypergeometric functions reduce to the Horn hy-
pergeometric functions defined in [[32], p. 56, Eq. (27), p. 57, Eq. (28)].

To simplify the notation, we write H3 for the series H3(a, b; c; q, x, y), H3(aq±1) for the
series H3(aq±1, b; c; q, x, y), H4 for the series H4, . . . , and H4(cq±1) stands for the series
H4(a; b, cq±1; q, x, y).

For a wide variety of other investigations involving basic Horn hypergeometric func-
tions, see, for instance, [2, 3, 5, 30]. Motivated by the previous works in q-analysis (see
[25, 26, 34]), in this paper we introduce a class of new extended forms of the basic Horn
hypergeometric function. Our study can be detailed as follows: In Sect. 2, we introduce
and study some contiguous functions relations and q-differential formulas for our consid-
ered basic Horn hypergeometric functions H3 by permuting parameters. We discuss some
family relations between basic Horn hypergeometric functions H4 in Sect. 3. Finally, we
discuss our main results and related results involving contiguous relations for H3 and H4

in Sect. 4.

2 Contiguous functions for H3(a, b; c; q, x, y)
Here we derive several properties as well as the contiguous function relations for H3 with
c �= 1, q–1, q–2, . . . .

Theorem 2.1 For c �= 1, the contiguous relations of H3 hold true for the numerator param-
eter a:

H3(aq) = H3 +
ax(1 – aq)

1 – c
H3

(
aq2, b; cq; q, x, y

)

+
axq(1 – aq)

1 – c
H3

(
aq2, b; cq; q, xq, y

)

+
ay(1 – b)

1 – c
H3

(
aq, bq; cq; q, xq2, y

)
,

(2.1)

H3(aq) = H3 +
ay(1 – b)

1 – c
H3(aq, bq; cq; q, x, y)

+
ax(1 – aq)

1 – c
H3

(
aq2, b; cq; q, x, yq

)

+
axq(1 – aq)

1 – c
H3

(
aq2, b; cq; q, xq, yq

)
,

(2.2)
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H3
(
aq–1) = H3 –

ax(1 – a)
q(1 – c)

H3(aq, b; cq; q, x, y)

–
ax(1 – a)

1 – c
H3(aq, b; cq; q, xq, y) –

ay(1 – b)
q(1 – c)

H3
(
a, bq; cq; q, xq2, y

)
,

(2.3)

and

H3
(
aq–1) = H3 –

ay(1 – b)
q(1 – c)

H3(a, bq; cq; q, x, y)

–
ax(1 – a)
q(1 – c)

H3(aq, b; cq; q, x, yq)

–
ax(1 – a)

1 – c
H3(aq, b; cq; q, xq, yq).

(2.4)

Proof Replacing a by aq in (1.8), we get

H3(aq) – H3 =
∞∑

m,n=0

(b; q)n

(c; q)m+n(q; q)m(q; q)n

[
(aq; q)2m+n – (a; q)2m+n

]
xmyn.

The relations

(a; q)2m+n = (1 – a)(aq; q)2m+n–1

and

(aq; q)2m+n =
(
1 – aq2m+n)(aq; q)2m+n–1,

imply

H3(aq) – H3

=
∞∑

m,n=0

a(1 – q2m+n)(aq; q)2m+n–1(b; q)n

(c; q)m+n(q; q)m(q; q)n
xmyn

=
∞∑

m,n=0

a(1 – qm + qm(1 – qm) + q2m(1 – qn))(aq; q)2m+n–1(b; q)n

(c; q)m+n(q; q)m(q; q)n
xmyn

=
∞∑

m=1,n=0

a(aq; q)2m+n–1(b; q)n

(c; q)m+n(q; q)m–1(q; q)n
xmyn +

∞∑

m=1,n=0

aqm(aq; q)2m+n–1(b; q)n

(c; q)m+n(q; q)m–1(q; q)n
xmyn

+
∞∑

m=0,n=1

aq2m(aq; q)2m+n–1(b; q)n

(c; q)m+n(q; q)m(q; q)n–1
xmyn

=
ax(1 – aq)

1 – c

∞∑

m,n=0

(aq2; q)2m+n(b; q)n

(cq; q)m+n(q; q)m(q; q)n
xmyn

+
axq(1 – aq)

1 – c

∞∑

m,n=0

qm(aq2; q)2m+n(b; q)n

(cq; q)m+n(q; q)m(q; q)n
xmyn

+
ay(1 – b)

1 – c

∞∑

m,n=0

q2m(aq; q)2m+n(bq; q)n

(cq; q)m+n(q; q)m(q; q)n
xmyn
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=
ax(1 – aq)

1 – c
H3

(
aq2, b; cq; q, x, y

)
+

axq(1 – aq)
1 – c

H3
(
aq2, b; cq; q, xq, y

)

+
ay(1 – b)

1 – c
H3

(
aq, bq; cq; q, xq2, y

)
, c �= 1.

By using the relation 1 – q2m+n = 1 – qn + qn(1 – qm) + qm+n(1 – qm), we get (2.2). Performing
the replacement a → aq–1 in the contiguous relations (2.1) and (2.2), we obtain (2.3) and
(2.4). �

Theorem 2.2 For c �= 1, H3 satisfies the derivative equations

θx,qH3 = x
(1 – a)(1 – aq)
(1 – c)(1 – q)

H3
(
aq2, b; cq; q, x, y

)
(2.5)

and

θy,qH3 = y
(1 – a)(1 – b)
(1 – c)(1 – q)

H3(aq, bq; cq; q, x, y). (2.6)

Proof From (1.8), we consider the operators θx,q = x ∂
∂x = xDx,q and θy,q = y ∂

∂y = yDy,q to get

θx,qH3 =
∞∑

m,n=0

[
1 – qm

1 – q

]
(a; q)2m+n(b; q)n

(c; q)m+n(q; q)m(q; q)n
xmyn

=
∞∑

m=1,n=0

[
1

1 – q

]
(a; q)2m+n(b; q)n

(c; q)m+n(q; q)m–1(q; q)n
xmyn

=
∞∑

m,n=0

[
1

1 – q

]
(a; q)2m+n+2(b; q)n

(c; q)m+n+1(q; q)m(q; q)n
xm+1yn

= x
(1 – a)(1 – aq)
(1 – c)(1 – q)

H3
(
aq2, b; cq; q, x, y

)
, c �= 1,

and

θy,qH3 =
∞∑

m,n=0

[
1 – qn

1 – q

]
(a; q)2m+n(b; q)n

(c; q)m+n(q; q)m(q; q)n
xmyn

=
∞∑

m=0,n=1

[
1

1 – q

]
(a; q)2m+n(b; q)n

(c; q)m+n(q; q)m(q; q)n–1
xmyn

=
∞∑

m,n=0

[
1

1 – q

]
(a; q)2m+n+1(b; q)n+1

(c; q)m+n+1(q; q)m(q; q)n
xmyn+1

= y
(1 – a)(1 – b)
(1 – c)(1 – q)

H3(aq, bq; cq; q, x, y), c �= 1. �

Theorem 2.3 H3 satisfies the difference equations

[

aθx,q +
1 – a
1 – q

]

H3 + aθx,qH3(xq) + aθy,qH3
(
xq2) =

1 – a
1 – q

H3(aq), (2.7)

[

aθy,q +
1 – a
1 – q

]

H3 + aθx,qH3(yq) + aθx,qH3(xq, yq) =
1 – a
1 – q

H3(aq), (2.8)
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[

aq–1θx,q +
1 – aq–1

1 – q

]

H3
(
aq–1) + aq–1θy,qH3

(
aq–1, xq

)
+ aq–1θy,qH3

(
aq–1, xq, yq

)

=
1 – aq–1

1 – q
H3, (2.9)

and

[

aq–1θy,q +
1 – aq–1

1 – q

]

H3
(
aq–1) + aq–1θx,qH3

(
aq–1, yq

)

+ aq–1θx,qH3
(
aq–1, xq, yq

)

=
1 – aq–1

1 – q
H3. (2.10)

Proof With the help of the above differential operators and using (2.5) and (2.6) for H3,
we get the results (2.7)–(2.10). �

Theorem 2.4 For c �= 1, the contiguous function relations of H3 with the numerator pa-
rameter b give

H3(bq) = H3 +
by(1 – a)

1 – c
H3(aq, bq; cq; q, x, y) (2.11)

and

H3
(
bq–1) = H3 –

by(1 – a)
q(1 – c)

H3(aq, b; cq; q, x, y). (2.12)

Proof If we replace b by bq in (1.8), we get

H3(bq) – H3 =
∞∑

m,n=0

(a; q)2m+n

(c; q)m+n(q; q)m(q; q)n

[
(bq; q)n – (b; q)n

]
xmyn.

Using the relations

(b; q)n = (1 – b)(bq; q)n–1

and

(bq; q)n =
(
1 – bqn)(bq; q)n–1,

we have

H3(bq) – H3 =
∞∑

m,n=0

b(1 – qn)(a; q)2m+n(bq; q)n–1

(c; q)m+n(q; q)m(q; q)n
xmyn

=
∞∑

m=0,n=1

b(a; q)2m+n(bq; q)n–1

(c; q)m+n(q; q)m(q; q)n–1
xmyn
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=
by(1 – a)

1 – c

∞∑

m,n=0

(aq; q)2m+n(bq; q)n

(cq; q)m+n(q; q)m(q; q)n
xmyn

=
by(1 – a)

1 – c
H3(aq, bq; cq; q, x, y), c �= 1.

Replacing b → bq–1 in relation (2.11), we obtain (2.12). �

Theorem 2.5 The difference equations hold true for H3:

[

bθy,q +
1 – b
1 – q

]

H3 =
1 – b
1 – q

H3(bq) (2.13)

and

[

bq–1θy,q +
1 – bq–1

1 – q

]

H3
(
bq–1) =

1 – bq–1

1 – q
H3. (2.14)

Proof From (2.5) and (2.6), we get (2.13) and (2.14). �

Theorem 2.6 For c �= 1, b �= q, the formulas hold true for H3:

H3
(
aq, bq–1; c; q, x, y

)

= H3 +
ay

1 – c
H3(aq, b; c, dq; q, x, y)

+
ax(1 – aq)
1 – bq–1 H3

(
aq2, bq–1; cq; q, x, yq

)

+
axq(1 – aq)

1 – bq–1 H3
(
aq2, bq–1; cq; q, xq, yq

)

–
abq–1x(1 – aq)

(1 – bq–1)(1 – c)
H3

(
aq2, bq–1; cq; q, x, yq

)

–
abx(1 – aq)

(1 – bq–1)(1 – c)
H3

(
aq2, bq–1; cq; q, xq, yq

)

–
bq–1y
1 – c

H3(aq, b; cq; q, x, y)

(2.15)

and

H3
(
aq, bq–1; c; q, x, y

)

= H3 +
ax(1 – aq)

(1 – c)(1 – bq–1)
H3

(
aq2, bq–1; cq; q, x, y

)

+
axq(1 – aq)

1 – bq–1 H3
(
aq2, bq–1; cq; q, xq, y

)

+
ay

1 – bq–1 H3
(
aq2, bq; cq; q, xq2, y

)
(2.16)

–
abxq(1 – aq)

(1 – bq–1)(1 – c)
H3

(
aq2, bq–1; cq; q, x, yq

)
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–
abx(1 – aq)

(1 – bq–1)(1 – c)
H3

(
aq2, bq–1; cq; q, xq, yq

)

–
bq–1(1 – aq)y

1 – c
H3

(
aq2, b; cq; q, x, y

)
.

Proof Using (1.8), (1.5), (1.6), (1.7) and the relation (bq–1; q)n = (1 – bq–1)(b; q)n–1 implies

H3
(
aq, bq–1; c; q, x, y

)
– H3

=
∞∑

m,n=0

(aq; q)2m+n–1(b; q)n–1

(c; q)m+n(q; q)m(q; q)n

[
abq2m+n–1 – bq–1 – aq2m+n + a – abqn–1 + bqn–1]xmyn

= a
∞∑

m=0,n=1

(aq; q)2m+n–1(b; q)n–1

(c; q)m+n(q; q)m(q; q)n–1
xmyn + a

∞∑

m=1,n=0

qn(aq; q)2m+n–1(b; q)n–1

(c; q)m+n(q; q)m–1(q; q)n
xmyn

+ a
∞∑

m=1,n=0

qm+n(aq; q)2m+n–1(b; q)n–1

(c; q)m+n(q; q)m–1(q; q)n
xmyn

– ab
∞∑

m=1,n=0

qn–1(aq; q)2m+n–1(b; q)n–1

(c; q)m+n(q; q)m–1(q; q)n
xmyn

– ab
∞∑

m=1,n=0

qm+n–1(aq; q)2m+n–1(b; q)n–1

(c; q)m+n(q; q)m–1(q; q)n
xmyn

– bq–1
∞∑

m=0,n=1

(aq; q)2m+n–1(b; q)n–1

(c; q)m+n(q; q)m(q; q)n–1
xmyn

=
a

1 – c

∞∑

m,n=0

(aq; q)2m+n(b; q)n

(cq; q)m+n(q; q)m(q; q)n
xmyn+1

+
a(1 – aq)

(1 – bq–1)(1 – c)

∞∑

m,n=0

qn(aq2; q)2m+n(bq–1; q)n

(cq; q)m+n(q; q)m(q; q)n
xm+1yn

+
a(1 – aq)

(1 – bq–1)(1 – c)

∞∑

m,n=0

qm+n+1(aq2; q)2m+n(bq–1; q)n

(cq; q)m+n(q; q)m(q; q)n
xm+1yn

–
ab

(1 – bq–1)(1 – c)

∞∑

m,n=0

qn–1(aq2; q)2m+n(bq–1; q)n

(cq; q)m+n(q; q)m(q; q)n
xm+1yn

–
ab(1 – aq)

(1 – bq–1)(1 – c)

∞∑

m,n=0

qm+n(aq2; q)2m+n(bq–1; q)n

(cq; q)m+n(q; q)m(q; q)n
xm+1yn

–
bq–1

1 – c

∞∑

m,n=0

(aq; q)2m+n(b; q)n

(cq; q)m+n(q; q)m(q; q)n
xmyn+1

=
ay

1 – c
H3(aq, b; cq; q, x, y) +

ax(1 – aq)
1 – bq–1 H3

(
aq2, bq–1; cq; q, x, yq

)

+
axq(1 – aq)

1 – bq–1 H3
(
aq2, bq–1; cq; q, xq, yq

)

–
abq–1x(1 – aq)

(1 – bq–1)(1 – c)
H3

(
aq2, bq–1; cq; q, x, yq

)
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–
abx(1 – aq)

(1 – bq–1)(1 – c)
H3

(
aq2, bq–1; cq; q, xq, yq

)

–
bq–1y
1 – c

H3(aq, b; cq; q, x, y), c �= 1, b �= q.

Using the relation a(1 – q2m+n) – abqn–1(1 – q2m) – bq–1(1 – qn) = a(1 – qm) + aqm(1 – qm) +
aq2m(1 – qn) – abqn–1(1 – qm) – abqm+n–1(1 – qm) – bq–1(1 – qn), we obtain (2.16). �

Theorem 2.7 Each of the following properties for H3 in (1.8) holds true:

b(1 – a)H3(aq) – a(1 – b)H3(bq)

= (b – a)H3 +
abx(1 – a)(1 – aq)

1 – c
H3

(
aq2, b; cq; q, x, yq

)
(2.17)

+
abxq(1 – a)(1 – aq)

1 – c
H3

(
aq2, b; cq; q, xq, yq

)
, c �= 1.

Proof From (1.8), we have

b(1 – a)H3(aq) – a(1 – b)H3(bq)

=
∞∑

m,n=0

b(1 – a)(aq; q)2m+n(b; q)n – a(1 – b)(a; q)2m+n(bq; q)n

(c; q)m+n(q; q)m(q; q)n
xmyn.

By using the equation

(1 – a)(aq; q)2m+n =
(
1 – aq2m+n)(a; q)2m+n

and

(1 – b)(bq; q)n =
(
1 – bqn)(b; q)n,

we get

b(1 – a)H3(aq) – a(1 – b)H3(bq)

=
∞∑

m,n=0

(a; q)2m+n(b; q)n[b(1 – aq2m+n) – a(1 – bqn)]
(c; q)m+n(q; q)m(q; q)n

xmyn

= (b – a)
∞∑

m,n=0

(a; q)2m+n(b; q)n

(c; q)m+n(q; q)m(q; q)n
xmyn

+ ab
∞∑

m,n=0

qn(1 – qm)(a; q)2m+n(b; q)n

(c; q)m+n(1 – qm)(q; q)m–1(q; q)n
xmyn

+ ab
∞∑

m,n=0

qn+m(1 – qm)(a; q)2m+n(b; q)n

(c; q)m+n(1 – qm)(q; q)m–1(q; q)n
xmyn

= (b – a)H3 + ab
∞∑

m,n=0

qn(a; q)2m+n+2(b; q)n

(c; q)m+n+1(q; q)m(q; q)n
xm+1yn
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+ ab
∞∑

m,n=0

qn+m+1(a; q)2m+n+2(b; q)n

(c; q)m+n+1(q; q)m(q; q)n
xm+1yn

= (b – a)H3 +
abx(1 – a)(1 – aq)

1 – c
H3

(
aq2, b; cq; q, x, yq

)

+
abxq(1 – a)(1 – aq)

1 – c
H3

(
aq2, b; cq; q, xq, yq

)
, c �= 1. �

Theorem 2.8 The contiguous function relations of H3 with denominator parameter c are
valid:

H3
(
cq–1) = H3 +

cx(1 – a)(1 – aq)
(q – c)(1 – c)

H3
(
aq2, b; cq; q, x, y

)

+
cy(1 – a)(1 – b)

(q – c)(1 – c)
H3(aq, bq; cq; q, xq, y), c �= 1, q,

(2.18)

H3
(
cq–1) = H3 +

cy(1 – a)(1 – b)
(q – c)(1 – c)

H3(aq, bq; cq; q, x, y)

+
cx(1 – a)(1 – aq)(1 – b)

(q – c)(1 – c)
H3

(
aq2, b; cq; q, x, yq

)
, c �= 1, q,

(2.19)

H3(cq) = H3 –
cx(1 – a)(1 – aq)

(1 – cq)(1 – c)
H3

(
aq2, b; cq2; q, x, y

)

–
cy(1 – a)(1 – b)
(1 – cq)(1 – c)

H3
(
aq, bq; cq2; q, xq, y

)
, c �= 1, q–1,

(2.20)

and

H3(cq) = H3 –
cy(1 – a)(1 – b)
(1 – cq)(1 – c)

H3
(
aq, bq; cq2; q, x, y

)

–
cx(1 – a)(1 – aq)

(1 – cq)(1 – c)
H3

(
aq2, b; cq2; q, x, yq

)
, c �= 1, q–1.

(2.21)

Proof By the definition of basic Horn function, we get

H3
(
cq–1) – H3 =

∞∑

m,n=0

(a; q)2m+n(b; q)n

(q; q)m(q; q)n

[
1

(cq–1; q)m+n
–

1
(c; q)m+n

]

xmyn

=
∞∑

m,n=0

(a; q)2m+n(b; q)n

(q; q)m(q; q)n

(c; q)m+n – (cq–1; q)m+n

(cq–1; q)m+n(c; q)m+n
xmyn.

Using

(
cq–1; q

)

m+n =
(
1 – cq–1)(c; q)m+n–1

and

(c; q)m+n =
(
1 – cqm+n–1)(c; q)m+n–1,



Shehata Advances in Difference Equations        (2020) 2020:595 Page 11 of 29

we can rewrite the above equation as follows:

H3
(
cq–1) – H3

=
∞∑

m,n=0

(a; q)2m+n(b; q)n

(q; q)m(q; q)n

[1 – qm+n]cq–1(c; q)m+n–1

[1 – cq–1](c; q)m+n–1(c; q)m+n
xmyn

= c
∞∑

m,n=0

1 – qm

q – c
(a; q)2m+n(b; q)n

(c; q)m+n(q; q)m(q; q)n
xmyn

+ c
∞∑

m,n=0

qm 1 – qn

q – c
(a; q)2m+n(b; q)n

(c; q)m+n(q; q)m(q; q)n
xmyn

=
c

q – c

∞∑

m,n=0

(1 – a)(1 – aq)(aq2; q)2m+n(b; q)n

(1 – c)(cq; q)m+n(q; q)m(q; q)n
xm+1yn

+
c

q – c

∞∑

m,n=0

qm (1 – a)(a; q)2m+n(1 – b)(b; q)n

(1 – c)(c; q)m+n+1(q; q)m(q; q)n
xmyn+1

=
cx(1 – a)(1 – aq)

(q – c)(1 – c)
H3

(
aq2, b; cq; q, x, y

)

+
cy(1 – a)(1 – b)

(q – c)(1 – c)
H3(aq, bq; cq; q, xq, y), c �= 1, q,

which is the desired result. The proof of Eq. (2.19) can run parallel to Eq. (2.18), so details
are omitted here.

If we replace c → cq in relation (2.18), we obtain

H3(cq) = H3 –
cx(1 – a)(1 – aq)

(1 – cq)(1 – c)
H3

(
aq2, b; cq2; q, x, y

)

–
cy(1 – a)(1 – b)
(1 – cq)(1 – c)

H3
(
aq, bq; cq2; q, xq, y

)
, c �= 1, q–1.

The proof of Eq. (2.21) would run parallel to Eq. (2.20), so we may skip the involved de-
tails. �

Theorem 2.9 The derivative formulas for H3 are satisfied:

H3
(
cq–1) =

c
c – q

H3(a, b; c; q, xq, yq) –
q

c – q
H3, c �= q, (2.22)

H3(cq) + (c – 1)H3 = cH3(a, b; cq; q, xq, yq), (2.23)
[

cq–1θx,q +
1 – cq–1

1 – q

]

H3 + cq–1θy,qH3(xq) =
1 – cq–1

1 – q
H3

(
cq–1), (2.24)

and

[

cq–1θy,q +
1 – cq–1

1 – q

]

H3 + cq–1θx,qH3(yq) =
1 – cq–1

1 – q
H3

(
cq–1). (2.25)
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Proof Using the definition H3 in (1.8) with the relation 1
(cq–1;q)m+n

= 1
(c;q)m+n

[ c
c–q qm+n – q

c–q ],
we get

H3
(
cq–1) =

∞∑

m,n=0

[
c

c – q
qm+n –

q
c – q

]
(a; q)2m+n(b; q)n

(c; q)m+n(q; q)m(q; q)n
xmyn

=
c

c – q
H3(a, b; c; q, xq, yq) –

q
c – q

H3, c �= q.

Replacing c = cq in (2.22) implies the contiguous relation

H3(cq) + (c – 1)H3 = cH3(a, b; cq; q, xq, yq).

By using Eqs. (2.5) and (2.6), we obtain the required results (2.23) and (2.24). �

Theorem 2.10 For c �= 1 and cq �= 1, the following formulas are valid:

H3(aq, b; cq; q, x, y) – H3

=
ax(1 – aq)

(1 – c)(1 – cq)
H3

(
aq2, b; cq2; q, x, y

)

+
cx(1 – aq)

(1 – c)(1 – cq)
H3

(
aq2, b; cq2; q, x, y

)

+
axq(1 – aq)

(1 – c)(1 – cq)
H3

(
aq2, b; cq2; q, xq, y

)

+
cy(1 – b)

(1 – c)(1 – cq)
H3

(
aq, bq; cq2; q, xq, y

)

+
ay(1 – b)

(1 – c)(1 – cq)
H3

(
aq, bq; cq2; q, xq2, y

)

–
acxq(1 – aq)

(1 – c)(1 – cq)
H3

(
aq2, bq; cq2; q, xq, yq

)
,

(2.26)

H3(aq, b; cq; q, x, y) – H3

=
ax(1 – aq)

(1 – c)(1 – cq)
H3

(
aq2, b; cq2; q, x, y

)

+
axq(1 – aq)

(1 – c)(1 – cq)
H3

(
aq2, b; cq2; q, xq, y

)

+
cy(1 – b)

(1 – c)(1 – cq)
H3

(
aq, bq; cq2; q, xq2, y

)

+
ay(1 – b)

(1 – c)(1 – cq)
H3

(
aq, bq; cq2; q, xq2, y

)

+
cx(1 – aq)

(1 – c)(1 – cq)
H3

(
aq2, b; cq2; q, x, yq

)

–
acxq(1 – aq)

(1 – c)(1 – cq)
H3

(
aq2, b; cq2; q, xq, yq

)
,

(2.27)
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H3(aq, b; cq; q, x, y) – H3

=
ax

(1 – c)(1 – cq)
H3

(
aq, bq; cq2; q, x, y

)

+
axq(1 – aq)

(1 – c)(1 – cq)
H3

(
aq2, b; cq2; q, x, yq

)

+
ax(1 – aq)

(1 – c)(1 – cq)
H3

(
aq2, b; cq2; q, xq, yq

)

+
cy(1 – aq)

(1 – c)(1 – cq)
H3

(
aq2, b; cq2; q, x, y

)

+
ay(1 – b)

(1 – c)(1 – cq)
H3

(
aq, bq; cq2; q, xq, y

)

–
acxq(1 – aq)

(1 – c)(1 – cq)
H3

(
aq2, bq; cq2; q, xq, yq

)
,

(2.28)

and

H3(aq, b; cq; q, x, y) – H3

=
ay(1 – b)

(1 – c)(1 – cq)
H3

(
aq, bq; cq2; q, x, y

)

+
ax(1 – aq)

(1 – c)(1 – cq)
H3

(
aq2, b; cq2; q, x, yq

)

+
axq(1 – aq)

(1 – c)(1 – cq)
H3

(
aq2, b; cq2; q, xq, yq

)

+
cy(1 – b)

(1 – c)(1 – cq)
H3

(
aq, bq; cq2; q, x, y

)

+
cx(1 – aq)

(1 – c)(1 – cq)
H3

(
aq2, b; cq2; q, x, yq

)

–
acxq(1 – aq)

(1 – c)(1 – cq)
H3

(
aq2, bq; cq2; q, xq, yq

)
.

(2.29)

Proof Replacing a and c by aq and cq in (1.8), we get

H3(aq, b; cq; q, x, y) – H3

=
∞∑

m,n=0

[
(aq; q)2m+n(b; q)n

(cq; q)m+n(q; q)m(q; q)n
–

(a; q)2m+n(b; q)n

(c; q)m+n(q; q)m(q; q)n

]

xmyn

=
∞∑

m,n=0

(aq; q)2m+n–1(cq; q)m+n–1(b; q)n

(q; q)m(q; q)n

×
[

(1 – aq2m+n)(1 – c) – (1 – a)(1 – cqm+n)
(1 – cqm+n)(cq; q)m+n–1(c; q)m+n

]

xmyn

=
ax(1 – aq)

(1 – c)(1 – cq)
H3

(
aq2, b; cq2; q, x, y

)
+

axq(1 – aq)
(1 – c)(1 – cq)

H3
(
aq2, b; cq2; q, xq, y

)

+
cx(1 – aq)

(1 – c)(1 – cq)
H3

(
aq2, b; cq2; q, x, y

)
+

cy(1 – b)
(1 – c)(1 – cq)

H3
(
aq, bq; cq2; q, xq, y

)
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+
ay(1 – b)

(1 – c)(1 – cq)
H3

(
aq, bq; cq2; q, xq2, y

)

–
acxq(1 – aq)

(1 – c)(1 – cq)
H3

(
aq2, bq; cq2; q, xq, yq

)
, c �= 1, q–1.

By using the relations

a
(
1 – q2m+n) + c

(
1 – qm+n) – acqm+n(1 – qm)

= a
(
1 – qm)

+ aqm(
1 – qm)

+ aq2m(
1 – qn) + c

(
1 – qn)

+ cqn(1 – qm)
– acqm+n(1 – qm)

,

= a
(
1 – qn) + aqn(1 – qm)

+ aqm+n(1 – qm)
+ c

(
1 – qm)

+ cqm(
1 – qn) – acqm+n(1 – qm)

,

= a
(
1 – qn) + aqn(1 – qm)

+ aqm+n(1 – qm)
+ c

(
1 – qn)

+ cqn(1 – qm)
– acqm+n(1 – qm)

.

The proof of Eqs. (2.27)–(2.29) would run parallel to Eq. (2.26) by using the above relations,
so we omit the involved details. �

Theorem 2.11 For H3 defined by (1.8), each of the formulas holds:

H3(a, bq; cq; q, x, y)

= H3 +
by(1 – a)

(1 – c)(1 – cq)
H3

(
aq, bq; cq2; q, x, y

)

+
cx(1 – a)(1 – aq)

(1 – c)(1 – cq)
H3

(
aq2, b; cq2; q, x, y

)

+
cy(1 – a)

(1 – c)(1 – cq)
H3

(
aq, bq; cq2; q, xq, y

)

+
cbx(1 – a)(1 – aq)

(1 – c)(1 – cq)
H3

(
aq2, b; cq2; q, x, yq

)

(2.30)

and

H3(a, bq; cq; q, x, y)

= H3 +
(b + c)y(1 – a)
(1 – c)(1 – cq)

H3
(
aq, bq; cq2; q, x, y

)

+
c(b + 1)x(1 – a)(1 – aq)

(1 – c)(1 – cq)
H3

(
aq2, b; cq2; q, x, yq

)

(2.31)

for c �= 1 and cq �= 1.
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Proof From (1.8), we have

H3(a, bq; cq; q, x, y) – H3

=
∞∑

m,n=0

(a; q)2m+n

(q; q)m(q; q)n

[
(bq; q)n

(cq; q)m+n
–

(b; q)n

(c; q)m+n

]

xmyn

=
∞∑

m,n=0

(a; q)2m+n(cq; q)m+n–1(bq; q)n–1

(q; q)m(q; q)n

[
(1 – bqn)(1 – c) – (1 – b)(1 – cqm+n)

(1 – cqm+n)(cq; q)m+n–1(c; q)m+n

]

xmyn

=
∞∑

m,n=0

(a; q)2m+n(bq; q)n–1

(q; q)m(q; q)n

[
b(1 – qn) + c(1 – qm+n) + bcqn(1 – qm)

(1 – c)(cq; q)m+n

]

xmyn

=
by(1 – a)

(1 – c)(1 – cq)
H3

(
aq, bq; cq2; q, x, y

)
+

cx(1 – a)(1 – aq)
(1 – c)(1 – cq)

H3
(
aq2, b; cq2; q, x, y

)

+
cy(1 – a)

(1 – c)(1 – cq)
H3

(
aq, bq; cq2; q, xq, y

)

+
cbx(1 – a)(1 – aq)

(1 – c)(1 – cq)
H3

(
aq2, b; cq2; q, x, yq

)
, c �= 1, cq �= 1.

Hence, we obtain (2.30), one can derive the result (2.31) by a similar way. �

3 Contiguous functions for H4

Relying on a similar procedure as the one used in the previous section, we obtain the
following list of results for basic Horn function H4(a, b; c, d; q, x, y) with c, d �= 1, q–1, q–2, . . . .

Theorem 3.1 For c �= 1 and d �= 1, the contiguous function relations of H4 with numerator
parameter a hold true:

H4(aq) = H4 +
ax(1 – aq)

1 – c
H4

(
aq2, b; cq, d; q, x, y

)

+
axq(1 – aq)

1 – c
H4

(
aq2, b; cq, d; q, xq, y

)

+
ay(1 – b)

1 – d
H4

(
aq, bq; c, dq; q, xq2, y

)
,

(3.1)

H4(aq) = H4 +
ay(1 – b)

1 – d
H4(aq, bq; c, dq; q, x, y)

+
ax(1 – aq)

1 – c
H4

(
aq2, b; cq, d; q, x, yq

)

+
axq(1 – aq)

1 – c
H4

(
aq2, b; cq, d; q, xq, yq

)
,

(3.2)

H4
(
aq–1) = H4 –

aq–1x(1 – a)
1 – c

H4(aq, b; cq, d; q, x, y)

–
ax(1 – a)

1 – c
H4(aq, b; cq, d; q, xq, y)

–
aq–1y(1 – b)

1 – d
H4

(
a, bq; c, dq; q, xq2, y

)
,

(3.3)
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and

H4
(
aq–1) = H4 –

ay(1 – b)
1 – d

H4(a, bq; c, dq; q, x, y)

–
aq–1x(1 – a)

1 – c
H4(aq, b; cq, d; q, x, yq)

–
ax(1 – a)

1 – c
H4(aq, b; cq, d; q, xq, yq).

(3.4)

Proof In (1.9), replacing a by aq, we get

H4(aq) – H4 =
∞∑

m,n=0

(b; q)n

(c; q)m(d; q)n(q; q)m(q; q)n

[
(aq; q)2m+n – (a; q)2m+n

]
xmyn.

Using the relations

(a; q)2m+n = (1 – a)(aq; q)2m+n–1

and

(aq; q)2m+n =
(
1 – aq2m+n)(aq; q)2m+n–1,

we get

H4(aq) – H4 =
∞∑

m,n=0

a(1 – q2m+n)(aq; q)2m+n–1(b; q)n

(c; q)m(d; q)n(q; q)m(q; q)n
xmyn

=
∞∑

m,n=0

a(aq; q)2m+n+1(b; q)n

(c; q)m+1(d; q)n(q; q)m(q; q)n
xm+1yn

+
∞∑

m,n=0

aqm+1(aq; q)2m+n+1(b; q)n

(c; q)m+1(d; q)n(q; q)m(q; q)n
xm+1yn

+
∞∑

m,n=0

aq2m(aq; q)2m+n(b; q)n+1

(c; q)m(d; q)n+1(q; q)m(q; q)n
xmyn+1

=
ax(1 – aq)

1 – c
H4

(
aq2, b; cq, d; q, x, y

)

+
axq(1 – aq)

1 – c
H4

(
aq2, b; cq, d; q, xq, y

)

+
ay(1 – b)

1 – d
H4

(
aq, bq; c, dq; q, xq2, y

)
, c �= 1, d �= 1.

The proof of Eq. (3.2) would run parallel to Eq. (3.2), so details are omitted here. Perform-
ing the replacement a → aq–1 in the contiguous relations (3.1) and (3.2), we get (3.3) and
(3.4). �

Theorem 3.2 The q-derivatives of H4 defined in (1.9) are valid:

Dr
x,qH4 =

(a; q)2r

(c; q)r(1 – q)r H4
(
aq2r , b; cqr , d; q, x, y

)
, c �= 1, q–1, q–2, . . . (3.5)
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and

Dr
y,qH4 =

(a; q)r(b; q)r

(d; q)r(1 – q)r H4
(
aqr , bqr ; c, dqr ; q, x, y

)
, d �= 1, q–1, q–2, . . . . (3.6)

Proof In (1.9), we apply the operators ∂
∂x = Dx,q and ∂

∂y = Dy,q to get

Dx,qH4 =
∞∑

m,n=0

[
1 – qm

1 – q

]
(a; q)2m+n(b; q)n

(c; q)m(d; q)n(q; q)m(q; q)n
xm–1yn

=
(1 – a)(1 – aq)
(1 – q)(1 – c)

∞∑

m,n=0

(aq2; q)2m+n(b; q)n

(cq; q)m(d; q)n(q; q)m(q; q)n
xmyn

=
(1 – a)(1 – aq)
(1 – c)(1 – q)

H4
(
aq2, b; cq, d; q, x, y

)
, c �= 1

and

Dy,qH4 =
∞∑

m,n=0

[
1 – qn

1 – q

]
(a; q)2m+n(b; q)n

(c; q)m(d; q)n(q; q)m(q; q)n
xmyn–1

=
(1 – a)(1 – b)
(1 – q)(1 – c)

∞∑

m,n=0

(aq; q)2m+n(bq; q)n

(c; q)m(dq; q)n(q; q)m(q; q)n
xmyn

=
(1 – a)(1 – b)
(1 – d)(1 – q)

H4(aq, bq; cq, d; q, x, y), d �= 1.

Iterating this technique n times on H4, we obtain (3.5) and (3.6). �

Theorem 3.3 For H4 defined in (1.9), we have

[

aθx,q +
1 – a
1 – q

]

H4 + aθx,qH4(xq) + aθy,qH4
(
xq2) =

1 – a
1 – q

H4(aq), (3.7)

[

aθy,q +
1 – a
1 – q

]

H4 + aθx,qH4(yq) + aθx,qH4(xq, yq) =
1 – a
1 – q

H4(aq), (3.8)

[

aq–1θx,q +
1 – aq–1

1 – q

]

H4
(
aq–1) + aq–1θy,qH4

(
aq–1, xq

)
+ aq–1θy,qH4

(
aq–1, xq, yq

)

=
1 – aq–1

1 – q
H4, (3.9)

and
[

aq–1θy,q +
1 – aq–1

1 – q

]

H4
(
aq–1) + aq–1θx,qH4

(
aq–1, yq

)
+ aq–1θx,qH4

(
aq–1, xq, yq

)

=
1 – aq–1

1 – q
H4. (3.10)

Proof By using these q-derivatives of H4 in (3.5) and (3.6), we get the recursion formulas
(3.7) and (3.8).

Using (3.5), (3.7), and (3.8) for H4, we obtain (3.9) and (3.10). �
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Theorem 3.4 For d �= 1, the contiguous function relations of H4 with the numerator pa-
rameter b hold true:

H4(bq) = H4 +
by(1 – a)

1 – d
H4(aq, bq; c, dq; q, x, y) (3.11)

and

H4
(
bq–1) = H4 –

by(1 – a)
q(1 – d)

H4(aq, b; c, dq; q, x, y). (3.12)

Proof In (1.9), we replace b by bq to obtain

H4(bq) – H4 =
∞∑

m,n=0

(a; q)2m+n

(c; q)m(d; q)n(q; q)m(q; q)n

[
(bq; q)n – (b; q)n

]
xmyn.

By means of the relations

(b; q)n = (1 – b)(bq; q)n–1

and

(bq; q)n =
(
1 – bqn)(bq; q)n–1,

we have

H4(bq) – H4 =
∞∑

m,n=0

b(1 – qn)(a; q)2m+n(bq; q)n–1

(c; q)m(d; q)n(q; q)m(q; q)n
xmyn

=
∞∑

m,n=0

b(a; q)2m+n+1(bq; q)n

(c; q)m+1(d; q)n(q; q)m(q; q)n
xmyn+1

=
by(1 – a)

1 – d
H4(aq, bq; c, dq; q, x, y), d �= 1.

Replacing b → bq–1 in relation (3.12), we get

H4
(
a, bq–1; c, d; q, x, y

)
= H4 –

by(1 – a)
q(1 – d)

H4(aq, b; c, dq; q, x, y), d �= 1. �

Theorem 3.5 The q-differential formulas are valid:

[

bθy,q +
1 – b
1 – q

]

H4 =
1 – b
1 – q

H4(bq) (3.13)

and

[

bq–1θy,q +
1 – bq–1

1 – q

]

H4
(
bq–1) =

1 – bq–1

1 – q
H4. (3.14)

Proof From (3.5) and (3.6), we obtain (3.13) and (3.14). �
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Theorem 3.6 For c �= 1, d �= 1, and b �= q, the contiguous function relations hold true for
the numerator parameters a and b of H4:

H4
(
aq, bq–1; c, d; q, x, y

)

= H4 +
ay

1 – d
H4(aq, b; c, dq; q, x, y)

+
ax(1 – aq)
1 – bq–1 H4

(
aq2, bq–1; cq; q, x, yq

)

+
axq(1 – aq)

1 – bq–1 H4
(
aq2, bq–1; cq; q, xq, yq

)

–
abq–1x(1 – aq)

(1 – bq–1)(1 – c)
H4

(
aq2, bq–1; cq; q, x, yq

)

–
abx(1 – aq)

(1 – bq–1)(1 – c)
H4

(
aq2, bq–1; cq; q, xq, yq

)

–
bq–1y
1 – d

H4(aq, b; c, dq; q, x, y)

(3.15)

and

H4
(
aq, bq–1; c, d; q, x, y

)

= H4 +
ax(1 – aq)

(1 – c)(1 – bq–1)
H4

(
aq2, bq–1; cq; q, x, y

)

+
axq(1 – aq)

1 – bq–1 H4
(
aq2, bq–1; cq; q, xq, y

)

+
ay

1 – d
H4

(
aq, bq; c, dq; q, xq2, y

)

–
abxq(1 – aq)

(1 – bq–1)(1 – c)
H4

(
aq2, bq–1; cq; q, x, yq

)

(3.16)

–
abx(1 – aq)

(1 – bq–1)(1 – c)
H4

(
aq2, bq–1; cq; q, xq, yq

)

–
bq–1y
1 – d

H4(aq, b; c, dq; q, x, y).

Proof Using the definition of H4 with the relation (bq–1; q)n = (1 – bq–1)(b; q)n–1, we get

H4
(
aq, bq–1; c, d; q, x, y

)
– H4

=
∞∑

m,n=0

(aq; q)2m+n–1(b; q)n–1

(c; q)m(d; q)n(q; q)m(q; q)n

[(
1 – aq2m+n)(1 – bq–1) – (1 – a)

(
1 – bqn–1)]xmyn

=
∞∑

m,n=0

a(1 – qn)(aq; q)2m+n–1(b; q)n–1

(c; q)m(d; q)n(q; q)m(q; q)n
xmyn

+
∞∑

m,n=0

aqn(1 – qm)(aq; q)2m+n–1(b; q)n–1

(c; q)m(d; q)n(q; q)m(q; q)n
xmyn

+
∞∑

m,n=0

aqm+n(1 – qm)(aq; q)2m+n–1(b; q)n–1

(c; q)m(d; q)n(q; q)m(q; q)n
xmyn
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–
∞∑

m,n=0

abqn–1(1 – qm)(aq; q)2m+n–1(b; q)n–1

(c; q)m(d; q)n(q; q)m(q; q)n
xmyn

–
∞∑

m,n=0

abqm+n–1(1 – qm)(aq; q)2m+n–1(b; q)n–1

(c; q)m(d; q)n(q; q)m(q; q)n
xmyn

–
∞∑

m,n=0

bq–1(1 – qn)(aq; q)2m+n–1(b; q)n–1

(c; q)m(d; q)n(q; q)m(q; q)n
xmyn

=
ay

1 – d
H4(aq, b; c, dq; q, x, y)

+
ax(1 – aq)
1 – bq–1 H4

(
aq2, bq–1; cq, d; q, x, yq

)

+
axq(1 – aq)

1 – bq–1 H4
(
aq2, bq–1; cq, d; q, xq, yq

)

–
abq–1x(1 – aq)

(1 – bq–1)(1 – c)
H4

(
aq2, bq–1; cq, d; q, x, yq

)

–
abx(1 – aq)

(1 – bq–1)(1 – c)
H4

(
aq2, bq–1; cq, d; q, xq, yq

)

–
bq–1y
1 – d

H4(aq, b; c, dq; q, x, y), c �= 1, d �= 1, b �= q.

Proceeding as above, one can get the proof of Eq. (3.16) that would run parallel to
Eq. (3.15), so details are omitted here. �

Theorem 3.7 For c �= 1, the recursion formulas hold true for the numerator parameter b
of H4:

b(1 – a)H4(aq) – a(1 – b)H4(bq)

= (b – a)H4 +
abx(1 – a)(1 – aq)

1 – c
H4

(
aq2, b; cq, d; q, x, yq

)

+
abxq(1 – a)(1 – aq)

1 – c
H4

(
aq2, b; cq, d; q, xq, yq

)
.

(3.17)

Proof From (1.9) we have

b(1 – a)H4(aq) – a(1 – b)H4(bq)

=
∞∑

m,n=0

b(1 – a)(aq; q)2m+n(b; q)n – a(1 – b)(a; q)2m+n(bq; q)n

(c; q)m(d; q)n(q; q)m(q; q)n
xmyn.

By using the equation

(1 – a)(aq; q)2m+n =
(
1 – aq2m+n)(a; q)2m+n

and

(1 – b)(bq; q)n =
(
1 – bqn)(b; q)n,
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we get

b(1 – a)H4(aq) – a(1 – b)H4(bq)

=
∞∑

m,n=0

(a; q)2m+n(b; q)n[b(1 – aq2m+n) – a(1 – bqn)]
(c; q)m(d; q)n(q; q)m(q; q)n

xmyn

= (b – a)
∞∑

m,n=0

(a; q)2m+n(b; q)n

(c; q)m(d; q)n(q; q)m(q; q)n
xmyn

+ ab
∞∑

m,n=0

qn(1 – qm)(a; q)2m+n(b; q)n

(c; q)m(d; q)n(1 – qm)(q; q)m–1(q; q)n
xmyn

+ ab
∞∑

m,n=0

qn+m(1 – qm)(a; q)2m+n(b; q)n

(c; q)m(d; q)n(1 – qm)(q; q)m–1(q; q)n
xmyn

= (b – a)H4 +
abx(1 – a)(1 – aq)

1 – c
H4

(
aq2, b; cq; q, x, yq

)

+
abxq(1 – a)(1 – aq)

1 – c
H4

(
aq2, b; cq; q, xq, yq

)
, c �= 1. �

Theorem 3.8 The contiguous function relations of H4 with denominator parameters c and
d hold true:

H4
(
cq–1) = H4 +

cx(1 – a)(1 – aq)
(q – c)(1 – c)

H4
(
aq2, b; cq, d; q, x, y

)
, c �= 1, q (3.18)

and

H4
(
dq–1) = H4 +

dy(1 – a)(1 – b)
(q – d)(1 – d)

H4(aq, bq; c, dq; q, x, y), d �= 1, q. (3.19)

Proof By the definition of H4, we have

H4
(
a, b; cq–1; q, x, y

)
– H4 =

∞∑

m,n=0

(a; q)2m+n(b; q)n

(d; q)n(q; q)m(q; q)n

(c; q)m(d; q)n – (cq–1; q)m

(cq–1; q)m(c; q)m
xmyn.

Using

(
cq–1; q

)

m =
(
1 – cq–1)(c; q)m–1

and

(c; q)m =
(
1 – cqm–1)(c; q)m–1,

we get

H4
(
a, b; cq–1; q, x, y

)
– H4

=
∞∑

m,n=0

(a; q)2m+n(b; q)n

(q; q)m(q; q)n

[1 – qm]cq–1(c; q)m–1

[1 – cq–1](c; q)m–1(c; q)m(d; q)n
xmyn
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= c
∞∑

m,n=0

1 – qm

q – c
(a; q)2m+n(b; q)n

(c; q)m(d; q)n(1 – qm)(q; q)m–1(q; q)n
xmyn

=
cx(1 – a)(1 – aq)

(q – c)(1 – c)
H4

(
aq2, b; cq; q, x, y

)
, c �= 1, q,

which is the desired result. The recursion formula (3.19) can be proved in a similar man-
ner. �

Theorem 3.9 The contiguous function relations hold true for the denominator parameter
c of H4:

H4(a, b; cq, d; q, x, y)

= H4 –
cx(1 – a)(1 – aq)

(1 – cq)(1 – c)
H4

(
aq2, b; cq2, d; q, x, y

)
, c �= 1, cq �= 1,

H4(a, b; c, dq; q, x, y)

= H4 –
dy(1 – a)(1 – b)
(1 – dq)(1 – d)

H4
(
aq, bq; c, dq2; q, x, y

)
, d �= 1, dq �= 1.

(3.20)

Proof Replacing c → cq in (3.18) and d → dq in (3.19), we obtain (3.20). �

Theorem 3.10 The following results of H4 hold well:

H4
(
cq–1) =

c
c – q

H4(a, b; c, d; q, xq, y) –
q

c – q
H4, c �= q, (3.21)

H4
(
dq–1) =

d
d – q

H4(a, b; c, d; q, x, yq) –
q

d – q
H4, d �= q, (3.22)

H4(cq) + (c – 1)H4 = cH4(a, b, cq, xq, y), (3.23)

H4(dq) + (d – 1)H4 = dH4(a, b, c, dq, x, yq), (3.24)
[

cq–1θx,q +
1 – cq–1

1 – q

]

H4 =
1 – cq–1

1 – q
H4

(
cq–1), (3.25)

and

[

dq–1θy,q +
1 – dq–1

1 – q

]

H4 =
1 – dq–1

1 – q
H4

(
dq–1). (3.26)

Proof We replace 1
(cq–1;q)m

= 1
(c;q)m

[ c
c–q qm – q

c–q ] in relation (1.9) to get

H4
(
cq–1) =

∞∑

m,n=0

[
c

c – q
qm –

q
c – q

]
(a; q)2m+n(b; q)n

(c; q)m(d; q)n(q; q)m(q; q)n
xmyn

=
c

c – q
H4(a, b; c, d; q, xq, y) –

q
c – q

H4; c �= q.

Replacing c = cq in (3.21), we get

H4(cq) + (c – 1)H4 = cH4(a, b, cq, xq, y).
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The results (3.25), (3.26), (3.22), and (3.24) are along the same lines as those of Eqs. (2.22)–
(2.25). �

Theorem 3.11 For c, d, cq �= 1, the results of H4 hold:

H4(aq, b; cq, d; q, x, y) – H4

=
ax(1 – aq)

(1 – c)(1 – cq)
H4

(
aq2, b; cq2, d; q, x, y

)

+
axq(1 – aq)

(1 – c)(1 – cq)
H4

(
aq2, b; cq2, d; q, xq, y

)

+
ay(1 – b)

(1 – c)(1 – d)
H4

(
aq, bq; cq, dq; q, xq2, y

)

+
cx(1 – aq)

(1 – c)(1 – cq)
H4

(
aq2, b; cq2, d; q, x, y

)

–
acy(1 – b)

(1 – c)(1 – d)
H4(aq, bq; cq, dq; q, xq, y)

–
acxq(1 – aq

(1 – c)(1 – cq)
H4

(
aq2, b; cq2, d; q, xq, yq

)

(3.27)

and

H4(aq, b; cq, d; q, x, y) – H4

=
ax(1 – aq)

(1 – c)(1 – cq)
H4

(
aq2, b; cq2, d; q, x, y

)

+
axq(1 – aq)

(1 – c)(1 – cq)
H4

(
aq2, b; cq2, d; q, xq, y

)

+
ay(1 – b)

(1 – c)(1 – d)
H4

(
aq, bq; cq, dq; q, xq2, y

)
(3.28)

+
cx(1 – aq)

(1 – c)(1 – cq)
H4

(
aq2, b; cq2, d; q, x, y

)

–
acxq(1 – aq)

(1 – c)(1 – cq)
H4

(
aq2, bq; cq2, d; q, xq, y

)

–
acy(1 – b)

(1 – c)(1 – d)
H4

(
aq2, bq; cq, dq; q, xq2, y

)
.

Proof In (1.9), replacing a and c by aq and cq, we have

H4(aq, b; cq, d; q, x, y) – H4

=
∞∑

m,n=0

(b; q)n

(q; q)m(q; q)n

[
(aq; q)2m+n(c; q)m(d; q)n – (a; q)2m+n(cq; q)m

(cq; q)m(c; q)m(d; q)n

]

xmyn

=
∞∑

m,n=0

(aq; q)2m+n–1(cq; q)m–1(b; q)n

(q; q)m(q; q)n

[
(1 – aq2m+n)(1 – c) – (1 – a)(1 – cqm)

(1 – cqm)(cq; q)m–1(c; q)m(d; q)n

]

xmyn

=
ax(1 – aq)

(1 – c)(1 – cq)
H4

(
aq2, b; cq2, d; q, x, y

)
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+
axq(1 – aq)

(1 – c)(1 – cq)
H4

(
aq2, b; cq2, d; q, xq, y

)

+
ay(1 – b)

(1 – c)(1 – d)
H4

(
aq, bq; cq, dq; q, xq2, y

)

+
cx(1 – aq)

(1 – c)(1 – cq)
H4

(
aq2, b; cq2, d; q, x, y

)

–
acxq(1 – aq)

(1 – c)(1 – cq)
H4

(
aq2, bq; cq2, d; q, xq, y

)

–
acy(1 – b)

(1 – c)(1 – d)
H4

(
aq2, bq; cq, dq; q, xq, yq

)
, c, d, cq �= 1.

By using the relation

a
(
1 – q2m+n) + c

(
1 – qm)

– acqm(
1 – qm+n)

= a
(
1 – qm)

+ aqm(
1 – qm)

+ aq2m(
1 – qn) + c

(
1 – qm)

– acqm(
1 – qm)

– acq2m(
1 – qn).

The proof of Eq. (3.27) is similar as that of Eq. (3.28). �

Theorem 3.12 For c, d, cq �= 1, the following contiguous function relations hold:

H4(aq, b; cq, d; q, x, y) – H4

=
ay(1 – b)

(1 – c)(1 – d)
H4(aq, bq; cq, dq; q, x, y)

+
axq(1 – aq)

(1 – c)(1 – cq)
H4

(
aq2, b; cq2, d; q, x, yq

)

+
axq(1 – aq)

(1 – c)(1 – cq)
H4

(
aq2, b; cq2, d; q, xq, yq

)

+
cx(1 – aq)

(1 – c)(1 – cq)
H4

(
aq2, b; cq2, d; q, x, y

)

(3.29)

–
acy(1 – b)

(1 – c)(1 – d)
H4(aq, bq; cq, dq; q, xq, y)

–
acxq(1 – aq

(1 – c)(1 – cq)
H4

(
aq2, b; cq2, d; q, xq, yq

)

and

H4(aq, b; cq, d; q, x, y) – H4

=
ay(1 – b)

(1 – c)(1 – d)
H4(aq, bq; cq, dq; q, x, y)

+
axq(1 – aq)

(1 – c)(1 – cq)
H4

(
aq2, b; cq2, d; q, x, yq

)

+
axq(1 – aq)

(1 – c)(1 – cq)
H4

(
aq2, b; cq2, d; q, xq, yq

)
(3.30)

+
cx(1 – aq)

(1 – c)(1 – cq)
H4

(
aq2, b; cq2, d; q, x, y

)
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–
acxq(1 – aq)

(1 – c)(1 – cq)
H4

(
aq2, bq; cq2, d; q, xq, y

)

–
acy(1 – b)

(1 – c)(1 – d)
H4

(
aq2, bq; cq, dq; q, xq2, y

)
.

Proof By virtue of our calculation in Theorem 3.11, and with the help of the relations

a
(
1 – q2m+n) + c

(
1 – qm)

– acqm(
1 – qm+n)

= a
(
1 – qn) + aqn(1 – qm)

+ aqm+n(1 – qm)
+ c

(
1 – qm)

– acqm(
1 – qn) – acqm+n(1 – qm)

and

a
(
1 – q2m+n) + c

(
1 – qm)

– acqm(
1 – qm+n)

= a
(
1 – qn) + aqn(1 – qm)

+ aqm+n(1 – qm)
+ c

(
1 – qm)

– acqm(
1 – qm)

– acq2m(
1 – qn).

To simplify the above relationships, we get (3.29) and (3.30). �

Theorem 3.13 For c, d, dq �= 1, the contiguous relations hold true for the parameters of H4:

H4(aq, b; c, dq; q, x, y) – H4

=
ax(1 – aq)

(1 – c)(1 – d)
H4

(
aq2, b; cq, dq; q, x, y

)

+
axq(1 – aq)

(1 – c)(1 – d)
H4

(
aq2, b; cq, dq; q, xq, y

)

+
ax(1 – b)

(1 – d)(1 – dq)
H4

(
aq, b; c, dq2; q, xq2, y

)

+
d(1 – b)

(1 – d)(1 – dq)
H4(aq, bq; c, dq; q, x, y)

–
adx(1 – aq)

(1 – c)(1 – d)
H4

(
aq2, b; cq, dq; q, x, yq

)

–
adyq(1 – b

(1 – d)(1 – dq)
H4

(
aq, bq; c, dq2; q, xq, yq

)
,

(3.31)

H4(aq, b; c, dq; q, x, y) – H4

=
ax(1 – aq)

(1 – c)(1 – d)
H4

(
aq2, b; cq, dq; q, x, y

)

+
axq(1 – aq)

(1 – c)(1 – d)
H4

(
aq2, b; cq, dq; q, xq, y

)

+
ax(1 – b)

(1 – d)(1 – dq)
H4

(
aq, b; c, dq2; q, xq2, y

)
(3.32)

+
d(1 – b)

(1 – d)(1 – dq)
H4(aq, bq; c, dq; q, x, y)
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–
adyq(1 – b)

(1 – d)(1 – dq)
H4

(
aq, bq; c, dq2; q, x, yq

)

–
adx(1 – aq)

(1 – c)(1 – d)
H4

(
aq2, b; cq, dq; q, x, yq2),

H4(aq, b; c, dq; q, x, y) – H4

=
ay(1 – b)

(1 – d)(1 – dq)
H4

(
aq, bq; c, dq2; q, x, y

)

+
axq(1 – aq)

(1 – c)(1 – d)
H4

(
aq2, b; cq, dq; q, x, yq

)

+
dy(1 – aq)

(1 – c)(1 – d)
H4

(
aq2, b; cq, dq; q, xq, yq

)

+
dy(1 – b)

(1 – c)(1 – d)
H4

(
aq, bq; c, dq2; q, x, y

)

–
adx(1 – aq)

(1 – c)(1 – d)
H4

(
aq2, b; cq, dq, d; q, x, yq

)

–
ady(1 – b)

(1 – d)(1 – dq)
H4

(
aq, bq; c, dq2; q, xq, yq

)
,

(3.33)

and

H4(aq, b; c, dq; q, x, y) – H4

=
ay(1 – b)

(1 – d)(1 – dq)
H4

(
aq, bq; c, dq2; q, x, y

)

+
axq(1 – aq)

(1 – c)(1 – d)
H4

(
aq2, b; cq, dq; q, x, yq

)

+
dy(1 – aq)

(1 – c)(1 – d)
H4

(
aq2, b; cq, dq; q, xq, yq

)
(3.34)

+
dy(1 – b)

(1 – c)(1 – d)
H4

(
aq, bq; c, dq2; q, x, y

)

–
adyq(1 – b)

(1 – d)(1 – dq)
H4

(
aq, bq; c, dq2; q, x, yq

)

–
adx(1 – aq)

(1 – c)(1 – d)
H4

(
aq2, b; cq, dq; q, x, yq2).

Proof Using the relations

a
(
1 – q2m+n) + d

(
1 – qn) – adqn(1 – qm+n)

= a
(
1 – qm)

+ aqm(
1 – qm)

+ aq2m(
1 – qn) + d

(
1 – qn) – adqn(1 – qm)

– adqm+n(1 – qn),

a
(
1 – q2m+n) + d

(
1 – qn) – adqn(1 – qm+n)

= a
(
1 – qm)

+ aqm(
1 – qm)

+ aq2m(
1 – qn) + d

(
1 – qn) – adqn(1 – qn) – adq2n(1 – qm)

,

a
(
1 – q2m+n) + d

(
1 – qn) – adqn(1 – qm+n)
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= a
(
1 – qn) + aqn(1 – qm)

+ aqm+n(1 – qm)
+ d

(
1 – qn) – adqn(1 – qm)

– adqm+n(1 – qn),

and

a
(
1 – q2m+n) + d

(
1 – qn) – adqn(1 – qm+n)

= a
(
1 – qn) + aqn(1 – qm)

+ aqm+n(1 – qm)
+ d

(
1 – qn) – adqn(1 – qn) – adq2n(1 – qm)

.

Simplifying the above relations, we obtain (3.31)–(3.34). �

Theorem 3.14 The formulas hold true of H4:

H4(a, bq; cq, d; q, x, y)

= H4 +
by(1 – a)

(1 – d)(1 – cq)
H4

(
aq, bq; cq2, dq; q, x, y

)
(3.35)

–
cx(1 – a)(1 – aq)(1 – b)

(1 – c)(1 – cq)
H4

(
aq2, b; cq2, d; q, x, y

)
, c, d, cq �= 1

and

H4(a, bq; c, dq; q, x, y)

= H4 +
(b – d)y(1 – a)
(1 – d)(1 – dq)

H4
(
aq, bq; c, dq2; q, x, y

)
, d, dq �= 1.

(3.36)

Proof By using the definition of H4, we get

H4(a, bq; cq; q, x, y) – H4

=
∞∑

m,n=0

(a; q)2m+n(b; q)n

(d; q)n(q; q)m(q; q)n

[
(bq; q)n(c; q)m – (b; q)n(cq; q)m

(cq; q)m(c; q)m

]

xmyn

=
∞∑

m,n=0

(a; q)2m+n(cq; q)m–1(bq; q)n–1

(d; q)n(q; q)m(q; q)n

[
(1 – bqn)(1 – c) – (1 – b)(1 – cqm)

(1 – cqm)(cq; q)m–1(c; q)m

]

xmyn

=
∞∑

m,n=0

(a; q)2m+n(bq; q)n–1

(d; q)n(q; q)m(q; q)n

[
b(1 – c)(1 – qn) + c(b – 1)(1 – qm)

(1 – c)(cq; q)m

]

xmyn

=
by(1 – a)

(1 – d)(1 – cq)
H4

(
aq, bq; cq2, dq; q, x, y

)

+
c(b – 1)x(1 – a)(1 – aq)

(1 – c)(1 – cq)
H4

(
aq2, b; cq2, d; q, x, y

)
, c, d, cq �= 1.

We prove relation (3.36) in a similar way as relation (3.35). �

4 Conclusion
We conclude by the remark that the results established in this paper are general forms
and one can deduce several contiguous function relations and q-differential relations of
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basic Horns hypergeometric functions H3 and H4 as different cases of our main findings.
Also, other types of these extensions are recommended for a parallel study of this work.
More work will be carried out in the coming future results in other fields of interest for
fractional quantum calculus.
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