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Abstract
We consider the maximal regularity problem for a PDE of linear acoustics, named the
Van Wijngaarden–Eringen equation, that models the propagation of linear acoustic
waves in isothermal bubbly liquids, wherein the bubbles are of uniform radius. If the
dimensionless bubble radius is greater than one, we prove that the inhomogeneous
version of the Van Wijngaarden–Eringen equation, in a cylindrical domain, admits
maximal regularity in Lebesgue spaces. Our methods are based on the theory of
operator-valued Fourier multipliers.
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1 Introduction
In this paper, we study the following model arising in acoustics propagation in viscous,
isothermal bubbly liquids known as the Van Wijngaarden–Eringen (VWE) equation [14,
p. 1121]:

∂ttu(x, t) – �u(x, t) – (Reb)–1�∂tu(x, t) – a2
0�∂ttu(x, t)

= 0, t ∈ T := [0, 2π ], x ∈ � ⊂R
N , (1.1)

where � denotes the Laplacian operator defined in a domain � ⊂ R
N and subject to ap-

propriate boundary conditions. The parameter Red = ceL/δ is a Reynolds number, where
ce (> 0) is the adiabatic sound speed, δ is the diffusivity of sound [25], and L is a character-
istic (macroscopic length). The constant a0 > 0 is a Knudsen number that corresponds to
the dimensionless bubble radius.

In the case N = 1, equation (1.1) was obtained by Van Wijngaarden [26] to describe the
propagation of linear acoustic waves in isothermal bubbly liquids. In the case N = 3, Erin-
gen [10] re-derived equation (1.1) based on a microcontinuum theory. Later, Rubin et al.
[23] found that equation (1.1) also describes acoustic waves in a thermoelastic compress-
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ible Newtonian viscous fluid, and Hayes and Saccomandi [13] showed that it also governs
the propagation of transverse plane waves in a particular class of viscoelastic media.

When the Knudsen number a0 is less than 1, it was proved in [7] that model (1.1) can
exhibit chaotic behavior. However, the analysis of mathematical behavior of the model for
the case a0 > 1 was left open.

In the present paper we are concerned with the Lp – Lq-maximal regularity problem in
a cylindrical domain � = U × V ⊂ R

n+d for the following inhomogeneous version of the
VWE equation subject to Dirichlet boundary conditions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(I – a2
0�)∂ttu(x, y, t) – �u(x, y, t) – (Red)–1�∂tu(x, y, t)

= f (x, y, t), for (x, y, t) ∈ � × (0, 2π );

BUu(x, y, t) = 0, for (x, y, t) ∈ ∂U × V × (0, 2π );

BV u(x, y, t) = 0, for (x, y, t) ∈ U × ∂V × (0, 2π );

u(x, y, 0) = u(x, y, 2π ), ∂tu(x, y, 0) = ∂tu(x, y, 2π ),

∂ttu(x, y, 0) = ∂ttu(x, y, 2π ), (x, y) ∈ �,

(1.2)

where U = R
n
+, n ∈ N and V ⊂ R

d , d ∈ N0 is bounded, open, and connected, � denotes
a cylindrical decomposition of the Dirichlet Laplacian operator on Lq(�) with respect to
the two cross-sections, i.e., � = �1 + �2 and each �i acts on the according component
of �. It is well known that many situations in applied sciences naturally lead to problems
in cylindrical domains �. We refer, e.g., to the textbooks [5] and [6] and the references
[9, 20, 22] for a demonstration of the significance of problems on such �.

Suppose that we know something about the behavior of the forcing function f in
(1.2). For example, f could be bounded or asymptotically periodic, or f might satisfy
f ∈ Lp(T; Lq(�)), where 1 < p, q < ∞. In the last case, the Lp – Lq-maximal regularity prob-
lem consists of obtaining conditions on the parameters a2

0, (Red)–1 in order to conclude
that the solution u of (1.2) has the same behavior as f and the following estimate

‖u‖Lp(T,Lq(�)) +
∥
∥u′∥∥

W 1,p(T,Lq(�)) +
∥
∥u′′∥∥

W 2,p
per (T,Lq(�)) + ‖�u‖Lp(T,[D(�)]) (1.3)

+
∥
∥�u′∥∥

W 1,p
per (T,[D(�)]) +

∥
∥�u′′∥∥

W 2,p
per (T,[D(�)]) ≤ C‖f ‖Lp(T,Lq(�))

holds.
One of the main tools to address the maximal regularity problem for equation (1.2) is

the theory of discrete operator-valued Fourier multipliers. Taking the Fourier series, we
are faced with the question under which conditions an operator-valued Fourier series de-
fines a bounded operator in Lp(T; X) where X is a Banach space. This question was an-
swered by Arendt and Bu in [2], where a discrete operator-valued Fourier multiplier re-
sult for UMD spaces X and applications to Cauchy problems of first and second order in
Lebesgue spaces can be found. A generalization of the results in [2] to first order integro-
differential equations in Lebesgue, Besov, and Hölder spaces is given in [16]. In [17] one
finds a comprehensive treatment of second order differential equations in Lebesgue and
Hölder spaces. In particular, the special case of the linearized Kuznetsov equation, i.e.,
a0 = 0 is investigated. More references concerning abstract degenerate Volterra integro-
differential equations can be found in [4, 11, 18, 24].
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Replacing in (1.2) the negative Laplacian operator –� by a closed linear operator A with
domain D(A) defined on a Banach space X, one of the main difficulties we are faced with in
order to analyze maximal regularity for (1.2) relies in the unbounded operator M := I +a2

0A
in front of the second order term ∂tt which, for general A, produces a kind of degenerate
second order problem. When M is bounded, this problem was studied by Anufrieva [1].
Very recently, Bu and Cai [3] treated the case of M unbounded.

On the other hand, the usage of operator-valued Fourier multipliers to treat cylindrical
in space boundary value problems was first carried out in [12] in a Besov space setting. In
that paper the author constructs semiclassical fundamental solutions for a class of elliptic
operators on infinite cylindrical domains Rn × V . This proves to be a strong tool for the
treatment of related elliptic and parabolic, as well as hyperbolic problems. Operators in
cylindrical domains with a similar splitting property as in the present paper were, in the
case of an infinite cylinder, also considered by Nau et al. in [9, 19–22].

In this paper, we directly apply general results of [3] and [20] to our case of the VWE
equation and obtain a Lp – Lq-maximal regularity result. The main difficulty relies in the
verification of the so-called R-boundedness property that must be satisfied by certain sets
of operators. To overcome this difficulty, we will employ the criteria established by Denk,
Hieber, and Prüss in the reference [8] that reduce the problem to the localization of the
spectrum of the Laplacian. We highlight that our method is sufficiently general to admit
a wider class of operators than the Laplacian in (1.2) allowing also the possibility of the
fractional Laplacian, the bi-Laplacian �2, or other operators of practical interest. There-
fore, we first establish our main result in an abstract setting that roughly states that under
certain conditions of sectoriality of the operator A, and for all η > 0, the equation

(
I + a2

0Aη
)
u′′(t) + Aηu(t) + (Red)–1Aηu′(t) = f (t), t ∈ T,

has Lp – Lq-maximal regularity. Then, using the results of [20], we establish our main find-
ings concerning (1.2), namely: for any given f ∈ Lp(T, Lq(�)) and under the condition

a0 > 1,

the solution u of problem (1.2) exists, is unique, and belongs to the space W 2,p
per (T,

[D(�q)]) ∩ W 2,p
per (T, X). Moreover, for any 1 < p, q < ∞, the a priori estimate (1.3) holds.

2 Preliminaries
We will use recent results obtained in [3] where Lp-maximal regularity was obtained for
an abstract degenerate model of second order given by

(
Mu′)′(t) – aBu(t) – αBu′(t) = f (t), t ∈ T := [0, 2π ], (2.1)

where a, α are real numbers and B and M are linear operators with domains D(B) and
D(M) defined on a Banach space X such that D(B) ⊂ D(M).

We recall the notion of the M-resolvent set of B as follows:

ρM(B) :=
{

s ∈R : –k2M – (a + αik)B : D(B) → X

is invertible and
[
–k2M – (a + αik)B

]–1 ∈ B(X)
}

. (2.2)

Observe that D(B) and D(M) are Banach spaces when endowed with the graph norm.
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For any n ∈ N and 1 ≤ p < ∞, we define the vector-valued function spaces [3, Defini-
tion 2.4]:

W n,p
per (T, X) :=

{
u ∈ Lp(T, X) : there exists v ∈ Lp(T, X), v̂(k) = (ik)nû(k) for all k ∈ Z

}
.

Let u ∈ Lp(T; X), then u ∈ W n,p
per (T; X) if and only if u is n-times differentiable a.e. on T and

u(n) ∈ Lp(T, X), in this case u(k)(0) = u(k)(2π ), 0 ≤ k ≤ n – 1 [2, Lemma 2.1]. We refer to [2]
and [3] for more information about these spaces.

Let 1 < p ≤ ∞, we define the solution space of (2.1) by

Sp(B, M) :=
{

u ∈ Lp(
T; D(B)

) ∩ W 1,p
per (T; X)u′ ∈ Lp(

T; D(M)
)
, Mu′ ∈ W 1,p

per (T; X)
}

.

We have that Sp(B, M) is a Banach space with the norm

‖u‖Sp(B,M) := ‖u‖Lp +
∥
∥u′∥∥

Lp + ‖Bu‖Lp +
∥
∥Bu′∥∥

Lp +
∥
∥Mu′∥∥

Lp +
∥
∥
(
Mu′)′∥∥

Lp .

The notion of Lp-maximal regularity is given as follows.

Definition 2.1 Let 1 < p < ∞ and f ∈ Lp(T, X) be given. We say that (2.1) has Lp-maximal
regularity if there exists a unique u ∈ Sp(B, M) that solves equation (2.1) on T and there
exists a constant C > 0 such that the estimate

‖u‖Sp(B,M) ≤ C‖f ‖Lp

holds.

In particular, for X = Lq(�), 1 < q < ∞, we say that (2.1) has Lp – Lq-maximal regularity.
Since the characterization given by Bu and Cai in the reference [3] is provided in terms of
the R-boundedness of certain sets of operators, we first recall this definition.

Definition 2.2 Let X and Y be Banach spaces. A set T ⊂ B(X, Y ) is called R-bounded if
there is a constant c ≥ 0 such that

∥
∥(T1x1, . . . , Tnxn)

∥
∥

R ≤ c
∥
∥(x1, . . . , xn)

∥
∥

R (2.3)

for all T1, . . . , Tn ∈ T , x1, . . . , xn ∈ X, n ∈N, where

∥
∥(x1, . . . , xn)

∥
∥

R :=
1
2n

∑

εj∈{–1,1}n

∥
∥
∥
∥
∥

n∑

j=1

εjxj

∥
∥
∥
∥
∥

.

The least c such that (2.3) is satisfied is called the R-bound of T and is denoted by R(T ).

The property of R-boundedness is preserved under sum or product by a constant. More-
over, if X and Y are Hilbert spaces, R-boundedness is equivalent to uniform boundedness.
More information about these properties is summarized in [8].
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The class of Banach spaces X such that the Hilbert transform defined by

(Hf )(t) = lim
ε,R→∞

1
π

∫

ε≤|s|≤R

f (t – s)
s

ds, t ∈R,

is bounded in Lp(R; X) for some p ∈ (1,∞) is denoted by HT (or UMD).
The UMD spaces include Hilbert spaces, Sobolev spaces Hs

p(�), 1 < p < ∞, Lebesgue
spaces Lp(�,μ),�p, 1 < p < ∞, and vector-valued Lebesgue spaces Lp(�,μ; X), where X is
a UMD space. On the other hand, the space of continuous functions C(K) does not have
the UMD property.

We next recall the result obtained in [3].

Theorem 2.3 Let 1 < p < ∞ and α, a ∈ R. Assume that B and M are closed linear op-
erators defined on a UMD space X such that D(B) ⊂ D(M). The following assertions are
equivalent:

(i) Equation (2.1) has Lp-maximal regularity;
(ii) Z⊂ ρM(B) and the sets {k2MNk : k ∈ Z} and {kNk : k ∈ Z} are R-bounded where

Nk := –
[
k2M + (a + iαk)B

]–1, k ∈ Z. (2.4)

We also need to recall some preliminaries on sectorial operators. Let �φ ⊂C denote the
open sector �φ = {λ ∈ C \ {0} : | argλ| < φ}. We define the spaces of functions as follows:
H(�φ) = {f : �φ →C holomorphic}, and

H∞(�φ) = {f : �φ →C holomorphic and bounded}

which is endowed with the norm ‖f ‖φ∞ = sup| argλ|<φ |f (λ)|. We further define the subspace
H0(�φ) of H(�φ) as follows:

H0(�φ) =
⋃

α,β<0

{
f ∈H(�φ) : ‖f ‖φ

α,β < ∞}
,

with ‖f ‖φ
α,β = sup|λ|≤1 |λαf (λ)| + sup|λ|≥1 |λ–β f (λ)|.

Definition 2.4 Given a closed linear operator A in X, we say that A is sectorial if the
following conditions hold:

(i) D(A) = X , R(A) = X , (–∞, 0) ⊂ ρ(A);
(ii) ‖t(t + A)–1‖ ≤ M for all t > 0 and some M > 0.
A is called R-sectorial if the set {t(t + A)–1}t>0 is R-bounded.

If A is sectorial, then �φ ⊂ ρ(–A) for some φ > 0 and

sup
| argλ|<φ

∥
∥λ(λ + A)–1∥∥ < ∞.

We denote the spectral angle of a sectorial operator A by

φA = inf
{
φ : �π–φ ⊂ ρ(–A), sup

λ∈�π–φ

∥
∥λ(λ + A)–1∥∥ < ∞

}
.
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Definition 2.5 Given a sectorial operator A, we say that it admits a bounded H∞-calculus
if there exist φ > φA and a constant Kφ > 0 such that

∥
∥f (A)

∥
∥ ≤ Kφ‖f ‖φ

∞ for all f ∈H0(�φ). (2.5)

The class of sectorial operators A which admit a bounded H∞-calculus is denoted by
H∞(X). Moreover, the H∞-angle is defined by φ∞

A = inf{φ > φA : (2.5) holds}. When A ∈
H∞(X), we say that A admits an R-bounded H∞-calculus if the set

{
h(A) : h ∈H∞(�θ ),‖h‖θ

∞ ≤ 1
}

is R-bounded for some θ > 0. We denote the class of such operators by RH∞(X). The
corresponding angle is defined in an obvious way and is denoted by θ

R∞
A .

Remark 2.6 If A is a sectorial operator on a Hilbert space, Lebesgue spaces Lp(�), 1 < p <
∞, Sobolev spaces W s,p(�), 1 < p < ∞, s ∈ R, or Besov spaces Bs

p,q(�), 1 < p, q < ∞, s ∈ R

and A admits a bounded H∞-calculus of angle β , then A admits a RH∞-calculus on the
same angle β on each of the above described spaces (see Kalton and Weis [15]). More
generally, this property is true whenever X is a UMD space with the so-called property
(α) (see [15]).

There exist well-known examples for general classes of closed linear operators with
bounded H∞ such as: normal sectorial operators in a Hilbert space; m-accretive operators
in a Hilbert space; generators of bounded C0-groups on Lp-spaces, and negative generators
of positive contraction semigroups on Lp-spaces.

We also recall the following result [8, Proposition 4.10], which will be needed for our
characterization, which shows under suitable conditions of uniform boundedness the R-
boundedness of certain sets of operators.

Proposition 2.7 Let A ∈ RH∞(X) and suppose that {hλ}λ∈� ⊂ H∞(�θ ) is uniformly
bounded for some θ > θ

R∞
A , where � is an arbitrary index set. Then the set {hλ(A)}λ∈� is

R-bounded.

3 Main results
Let 1 ≤ p < ∞, η > 0 and X be a Banach space. In this section, we want to give necessary
conditions on a given sectorial operator A with domain D(A) defined on X that describe
the Lp – Lq-maximal regularity of the VWE equation given in an abstract form as follows:

(
I + a2

0Aη
)
u′′(t) + Aηu(t) + (Red)–1Aηu′(t) = f (t), t ∈ T := [0, 2π ], (3.1)

where a0 > 0, Red > 0, and f ∈ Lp(T; X). We state the main abstract result of this paper.

Theorem 3.1 Assume that X is a UMD-space, 1 < p < ∞, a0 > 1, and suppose that A ∈
RH∞(X) with angle θ

R∞
A ∈ (0, π

2η
) and 0 ∈ ρ(A). Then, for all η > 0, equation (3.1) admits

Lp – Lq-maximal regularity.
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Proof We first point out that our equation (3.1) labels into (2.1) for M = (I + a2
0Aη), a = –1,

α = –(Red)–1, and B = Aη . Moreover, it is clear that D(Aη) = D(I + a2
0Aη). In order to prove

well-posedness for (3.1), we only need to show that condition (ii) in Theorem 2.3 holds,
that is, we have to prove that the sets {k2MNk : k ∈ Z} and {kNk : k ∈ Z} are R-bounded.
Indeed, we have

Nk =
[
–k2 +

((
1 – a2

0k2) + ik(Red)–1)Aη
]–1.

It follows that

Nk =
1

(1 – a2
0k2) + ik(Red)–1

[
–k2

(1 – a2
0k2) + ik(Red)–1 + Aη

]–1

=
–1
k2 dk

(
dk + Aη

)–1,

where dk := –k2

(1–a2
0k2)+ik(Red)–1 . A computation shows that

�(dk) =
k2(k2a2

0 – 1)
(1 – a2

0k2)2 + (k(Red)–1)2

and

�(dk) =
k3(Red)–1

(1 – a2
0k2)2 + (k(Red)–1)2 .

Since a0 > 1, by hypothesis, we obtain θ∗ := supk∈Z | arg(dk)| < π/2.
On the other hand, we have 0 < θ

R∞
A < π

2η
, and hence there exists s > θ

R∞
A such that s < π

2η
.

For every z ∈ �s and k ∈ Z, k �= 0, we can define

F(k, z) = dk
(
dk + zη

)–1.

Observe that zη

dk
belongs to the sector �sη+π/2. We immediately get that the distance from

the sector �sη+π/2 to –1 is always positive. Consequently, there exists a constant M > 0
independent of k ∈ Z and z ∈ �s such that

∣
∣F(k, z)

∣
∣ =

∣
∣
∣
∣

1
1 + zη

dk

∣
∣
∣
∣ ≤ M.

Now, from Proposition 2.7 it follows that

{
F(k, A)

}

k∈Z\{0}

is R-bounded. In particular, since A is invertible, the operators H(k) := (dk + Aη)–1 exist for
all k ∈ Z, then H(k) belongs to B(X) for all k ∈ Z and the sequence

{
dk

(
dk + Aη

)–1}

k∈Z
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is R-bounded. Since the following identity holds Aη(dk + Aη)–1 = I – dk(dk + Aη)–1, we
obtain

k2MNk = –
(
I + a2

0Aη
)
dk

(
dk + Aη

)–1

= a2
0dkdk

(
dk + Aη

)–1 – a2
0dkI – dk

(
dk + Aη

)–1.

Due to the R-boundedness of the sets {dk}k∈Z and {dkdk(dk + Aη)–1}, we can state that the
set {k2MNk : k ∈ Z} is also R-bounded. On the other hand, we have

kNk =
–1
k

dk
(
dk + Aη

)–1,

which implies that the set {kNk}k∈Z is R-bounded, too. From Theorem 2.3 we conclude
that equation (3.1) admits Lp – Lq-maximal regularity. �

Taking into account Remark 2.6, we obtain the following corollary.

Corollary 3.2 Let 1 < p, q < ∞ be given. Suppose that a0 > 1 and that A is a sectorial
operator that admits a bounded H∞-calculus of angle θ

R∞
A ∈ (0, π

2η
) and 0 ∈ ρ(A). Then,

for all η > 0, equation (3.1) admits Lp – Lq-maximal regularity.

Finally, we consider the Van Wijngaarden–Eringen equation in a cylindrical domain � =
U ×V ⊂R

n+d , where U = R
n
+, n ∈N and V ⊂R

d , d ∈N0 is bounded, open, and connected

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(I – a2
0�)∂ttu(x, y, t) – �u(x, y, t) – (Red)–1�∂tu(x, y, t)

= f (x, y, t), for (x, y, t) ∈ � × (0, 2π ),

BUu(x, y, t) = 0, for (x, y, t) ∈ ∂U × V × (0, 2π ),

BV u(x, y, t) = 0, for (x, y, t) ∈ U × ∂V × (0, 2π ),

u(x, y, 0) = u(x, y, 2π ), ∂tu(x, y, 0) = ∂tu(x, y, 2π ),

∂ttu(x, y, 0) = ∂ttu(x, y, 2π ), (x, y) ∈ �,

(3.2)

where � denotes a cylindrical decomposition of the Dirichlet Laplacian operator on Lq(�)
with respect to the two cross-sections, i.e., � = �1 + �2, where �i acts on the according
component of �. Following [20] we introduce Lq-realizations �q,i = �i as follows:

D(�q,1) :=
{

u ∈ W 2,q(
R

n
+, Lq(V )

)
: BU = 0

}
;

D(�q,2) := W 2,q(V ) ∩ W 1,q
0 (V ),

see also [27] for the description of �q,2. We define the Laplacian �q in Lq(�) subject to
the Dirichlet boundary conditions BU and BV to be

D(�q) := D(�q,1) ∩ D(�q,2)

�qu := �q,1u + �q,1u = �u, u ∈ D(�q).

Suppose now that V is a C2-standard domain (see [20, Definition 3.1] for the precise
definition). Then, applying [20, Theorem 4.2], we have that –�q ∈ RH∞(Lq(�)) and
0 ∈ ρ(�q). Moreover, by [20, Proposition 5.1(i)], we have θ

R∞
–�q < π

2 .



Lizama and Murillo-Arcila Advances in Difference Equations        (2020) 2020:591 Page 9 of 10

From Corollary 3.2 with η = 1 and A = –�q, we deduce the following result.

Theorem 3.3 Let 1 < p, q < ∞ and assume the condition

a0 > 1.

Then, for any given f ∈ Lp(T, Lq(�)), the solution u of problem (3.2) exists, is unique, and
belongs to the space W 2,p

per (T, [D(�q)]) ∩ W 2,p
per (T, X). Moreover, for any 1 < p, q < ∞, the

estimate

‖u‖Lp(T,Lq(�)) +
∥
∥u′∥∥

W 1,p(T,Lq(�)) +
∥
∥u′′∥∥

W 2,p
per (T,Lq(�)) + ‖�u‖Lp(T,[D(�q)])

+
∥
∥�u′∥∥

W 1,p
per (T,[D(�q)]) +

∥
∥�u′′∥∥

W 2,p
per (T,[D(�q)]) ≤ C‖f ‖Lp(T,Lq(�))

holds.

We remark that an analogous result holds when we replace the Laplacian by the frac-
tional Laplacian (–�q)η, 0 < η < 1.
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