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Abstract
In this article, a hybrid method is developed for solving the time fractional
advection–diffusion equation on an unbounded space domain. More precisely, the
Chebyshev cardinal functions are used to approximate the solution of the problem
over a bounded time domain, and the modified Legendre functions are utilized to
approximate the solution on an unbounded space domain with vanishing boundary
conditions. The presented method converts solving this equation into solving a
system of algebraic equations by employing the fractional derivative matrix of the
Chebyshev cardinal functions and the classical derivative matrix of the modified
Legendre functions together with the collocation technique. The accuracy of the
presented hybrid approach is investigated on some test problems.
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1 Introduction
Mathematical description of physical phenomena in which physical quantities are trans-
ferred inside a physical system due to diffusion and convection leads to the well-known
advection–diffusion equation [1, 2]. Specifically, this type of partial differential equa-
tion is used to describe dispersion in two-dimensional tidal currents, transport of pol-
lutants in the atmosphere, heat transfer in a draining film, dispersion in finite porous
media, and water transfer in soils [3–7]. Motivated by these significant applications, re-
searchers have taken considerable efforts to solve advection–diffusion equation. In [8],
Zhang et al. provided the finite element method for the fractional advection–diffusion
equation with non-homogeneous initial-boundary condition. Authors in [9] developed
an implicit meshless approach for numerical simulation of fractional advection–diffusion
equation. The numerical method is presented by using a Lax–Wendroff-type time dis-
cretization procedure for solving the fractional advection–diffusion equation [10]. Ding
and Jiang considered the fractional Laplacian operator for analytical solutions of multi-
term time space fractional advection–diffusion equation with mixed boundary condi-
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tions on a finite domain in [11]. Recently, researchers have used several numerical meth-
ods to solve approximate fractional advection–diffusion equation involving the Kansa
method, the finite difference method, a moving least squares meshless, Laplace trans-
form, Bernstein dual Petrov–Galerkin method, the finite volume method, and the local
discontinuous Galerkin method [12–19]. Moreover, Cartaladea et al. introduced an ap-
proximation for the fractional advection–diffusion equation according to lattice Boltz-
mann method by Bhatnagar–Gross–Krook or multiple-relaxation time collision operators
[20]. To solve fractional advection–diffusion equation, Chen formulated a fully-discrete
numerical method by using the classical finite difference method [21]. In [22], an efficient
shifted Legendre collocation method was proposed for numerical solution of the variable-
order fractional Galilei advection–diffusion equation. Also, a Legendre–Gauss–Lobatto
collocation method was proposed to solve the fractional advection diffusion equation in
[23].There have also been some studies on solving fractional advection–diffusion equation
with other derivatives. Partohaghighi et al. [24] used a transformation involving a ficti-
tious coordinate to solve the fractional advection–diffusion equation with the Atangana–
Baleanu–Caputo derivative. The Riesz derivative is approximated by the second-order
fractional weighted and shifted Gruünwald–Letnikov formula to solve the time-space
fractional advection–diffusion equation [25].

The major purposes of this study are briefly given as follows:
• Introducing a new version of the time fractional advection–diffusion equation on an

unbounded space domain with vanishing boundary conditions.
• Establishing a hybrid method based on the Chebyshev cardinal functions and the

modified Legendre functions for solving this equation.
So, we focus on the equation

⎧
⎪⎪⎨

⎪⎪⎩

c
0Dα

t u(x, t) + λux(x, t) – γ uxx(x, t) = f (x, t), (x, t) ∈R× [0, T],

lim|x|→∞ u(x, t) = 0,

u(x, 0) = g(x),

(1.1)

where c
0Dα

t is the Caputo fractional derivative of order α ∈ (0, 1], λ and γ are positive real
constants, and f and g are known functions.

The proposed method uses mutually the Chebyshev cardinal functions and the modified
Legendre functions together with the collocation method to transform equation (1.1) into
a system of algebraic equations which can be easily solved. To do this, first, using an ap-
propriate change of variable, the problem expressed in relation (1.1) is transformed into an
equivalent problem over bounded time and space domains. Then, the Chebyshev cardinal
functions and the modified Legendre functions are employed to approximate solution of
the elicited problem over time and space domains, respectively. Next, by inserting this ap-
proximation into the transformed equation, employing the fractional derivative matrix of
the Chebyshev cardinal functions and the ordinary derivative matrix of the modified Leg-
endre functions, and applying the collocation technique, we derive a system of algebraic
equations. Eventually, solution of this system leads to the solution of the original problem.

The framework of this paper is as follows: In Sect. 2 the fractional calculus is stated.
Shifted Chebyshev cardinal and the modified Legendre functions are introduced in Sect. 3.
The hybrid method is presented in Sect. 4. Some examples are studied in Sect. 5. Conclu-
sion of this study is given in Sect. 6.
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2 Fractional calculus
In this section, we review the definition of fractional derivative in the Caputo sense.

Definition 1 ([26]) Assume that α ∈ (n – 1, n], n ∈ N, and f (t) is sufficiently continuous.
Then

c
0Dα

t f (t) =

⎧
⎨

⎩

1
�(n–α)

∫ t
0

f (n)(τ )
(t–τ )α+1–n dτ , α ∈ (n – 1, n),

dn

dtn f (t), α = n ∈N,
(2.1)

is called the Caputo fractional derivative of order α.

Corollary 1 ([8]) If α ∈ (n – 1, n], n ∈N, r, s ∈R, and c
0Dα

t f (t) and c
0Dα

t g(t) exist, then

c
0Dα

t
(
rf (t) + sg(t)

)
= rc

0Dα
t f (t) + sc

0Dα
t g(t), (2.2)

which confirms that the Caputo fractional derivative is a linear operator.

Corollary 2 ([26]) If k ∈N∪ {0} and α ∈ (n – 1, n], then

c
0Dα

t tk =

⎧
⎨

⎩

�(k+1)
�(k+1–α) tk–α , k ≥ n,

0, k < n.
(2.3)

3 Basis functions
Herein, we introduce two classes of the basis functions which will be used in approximat-
ing solution of the problem under consideration.

3.1 The shifted Chebyshev cardinal functions
Definition 2 ([27]) The shifted Chebyshev cardinal functions of order m are defined over
[0, T] by

ϕi(t) =
m+1∏

j=1
j �=i

(
t – tj

ti – tj

)

, i = 1, 2, . . . , m + 1, (3.1)

where ti = T
2 (1 – cos( (2i–1)π

2(m+1) )).

A function u(t) ∈ C([0, T]) can be expressed by the shifted Chebyshev cardinal functions
as follows:

u(t) �
m+1∑

i=1

ciϕi(t) � CTΦm(t), (3.2)

where

C =
[
c1 c2 · · · cm+1

]T =
[
u(t1) u(t2) · · · u(tm+1)

]T (3.3)
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and

Φm(t) =
[
ϕ1(t) ϕ2(t) · · · ϕm+1(t)

]T . (3.4)

Remark 1 ([27]) The cardinal functions in relation (3.1) can be redefined simpler as fol-
lows:

ϕi(t) =
1
γ̂i

m∑

k=0

b̂iktm–k , i = 1, 2, . . . , m + 1, (3.5)

where

γ̂i =
m+1∏

l=1
l �=i

(ti – tl),

and

b̂ik =

⎧
⎨

⎩

1, k = 0,

– 1
k
∑k

l=1 âilb̂ik–1, k = 1, 2, . . . , m,

in which

âil =
m+1∑

r=1
r �=i

tl
r .

Theorem 3.1 If Φm(t) is the vector defined in relation (3.4) and α ∈ (0, 1], then

c
0Dα

t Φm(t) � D(α)
m Φm(t), (3.6)

where D(α)
m is an (m + 1) × (m + 1) matrix (known as the fractional derivative matrix of the

shifted Chebyshev cardinal functions) with entries

d(α)
ij =

1
γ̂i

m–1∑

k=0

b̂ik
(m – k)! tm–k–α

j

�(m – k – α + 1)
, i, j = 1, 2, . . . , m + 1,

in which the coefficients b̂ik have been already introduced in Remark 1.

Proof From relations (2.2) and (3.5), we get

c
0Dα

t ϕi(t) = c
0Dα

t

(
1
γ̂i

m∑

k=0

b̂iktm–k

)

=
1
γ̂i

m∑

k=0

b̂ik
(c

0Dα
t tm–k), i = 1, 2, . . . , m + 1.

From Eq. (2.3) and the above relation, we obtain

c
0Dα

t ϕi(t) =
1
γ̂i

m–1∑

k=0

b̂ik
(m – k)! tm–k–α

�(m – k – α + 1)
, i = 1, 2, . . . , m + 1.
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Now, we can approximate c
0Dα

t ϕi(t) for i = 1, 2, . . . , m + 1 as follows:

c
0Dα

t ϕi(t) �
m+1∑

j=1

d(α)
ij ϕj(t),

where

d(α)
ij =

1
γ̂i

m–1∑

k=0

b̂ik
(m – k)! tm–k–α

j

�(m – k + 1 – α)
, j = 1, 2, . . . , m + 1.

Thus, the proof is completed. �

3.2 The modified Legendre functions
The modified Legendre functions are defined over [–1, 1] by

ψi(x) =

√(

i +
1
2

)
(
1 – x2

)
Li(x), i = 0, 1, 2, . . . , s, (3.7)

where Li is the ith Legendre polynomial of order i that can be generated by the recurrence
relation

(i + 1)Li+1(x) = (2i + 1)xLi(x) – iLi–1(x), i = 1, 2, . . . , s,

with L0(x) = 1 and L1(x) = x. The modified Legendre functions are orthogonal on [–1, 1]
with respect to the weight function � (x) = 1√

1–x2 and

〈ψi,ψj〉 =
∫ 1

–1
ψi(x)ψj(x)� (x) dx =

1
2i + 1

δij.

We can approximate a function u(x) ∈ L2
� ([–1, 1]) with conditions u(–1) = u(1) = 0 via the

modified Legendre functions as follows:

u(x) �
s∑

i=0

c̃iψi(x) � C̃T
s(x), (3.8)

where

C̃ =
[
c̃0 c̃1 · · · c̃s

]T ,

in which

c̃i =
∫ 1

–1
u(x)ψi(x)� (x) dx,

and


s(x) =
[
ψ0(x) ψ1(x) · · · ψs(x)

]T . (3.9)
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The differentiation of the vector 
s(x) can be expressed as follows:

d
s(x)
dx

� P(1)
s 
s(x), (3.10)

where P(1)
s is a matrix of order s + 1 with entries

p(1)
ij =

∫ 1

–1
ψ ′

i–1(x)ψj–1(x) dx, i, j = 1, 2, . . . , s + 1. (3.11)

Moreover, for any natural number r, we have

dr
s(x)
dxr = P(r)

s 
s(x), (3.12)

where

P(r)
s = P(1)

s × P(1)
s × · · · × P(1)

s︸ ︷︷ ︸
r time

. (3.13)

4 Analysis of the method
In this section, we establish a numerical method for solving problem (1.1) by using the
basis functions introduced in the previous section. To solve Eq. (1.1), first the problem
is transformed from R × [0, T] into [–1, 1] × [0, T] by using the change of variable x =
arctanh(ϑ). Thus, by defining u(arctanh(ϑ), t) � ū(ϑ , t), we obtain

ux(x, t) =
(
1 – ϑ2)ūϑ (ϑ , t) (4.1)

and

uxx(x, t) =
(
1 – ϑ2)2ūϑϑ (ϑ , t) – 2ϑ

(
1 – ϑ2)ūϑ (ϑ , t). (4.2)

Now, by replacing Eqs. (4.1) (4.2) into Eq. (1.1), we obtain the equivalent problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c
0Dα

t ū(ϑ , t) + [λ(1 – ϑ2) + 2γϑ(1 – ϑ2)]ūϑ (ϑ , t) – γ (1 – ϑ2)2ūϑϑ (ϑ , t)

= f̄ (ϑ , t), (ϑ , t) ∈ [–1, 1] × [0, T],

ū(–1, t) = ū(1, t) = 0,

ū(ϑ , 0) = ḡ(ϑ),

(4.3)

where f̄ (ϑ , t) = f (arctanh(ϑ), t) and ḡ(ϑ) = g(arctanh(ϑ)). For solving Eq. (4.3), let

ū(ϑ , t) �
s∑

i=0

m+1∑

j=1

uijψi(ϑ)ϕj(t) � 
T
s (ϑ)UΦm(t), (4.4)

in which U = [uij] is an (s + 1) × (m + 1) unknown matrix, and 
s(ϑ) and �m(t) are defined
in Eqs. (3.9) and (3.4), respectively. From Eqs. (3.6) and (3.10), we obtain

c
0Dα

t ū(ϑ , t) � 
T
s (ϑ)UD(α)

m �m(t), ūϑ (ϑ , t) � 
T
s (ϑ)

(
P(1)

s
)T U�m(t),

ūϑϑ (ϑ , t) � 
T
s (ϑ)

(
P(2)

s
)T U�m(t).

(4.5)
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Using Eq. (4.5), we define the following residual function for problem (4.3):

R(ϑ , t) � 
T
s
(
UD(α)

m +
[
λ
(
1 – ϑ2) + 2γϑ

(
1 – ϑ2)](P(1)

s
)T U – γ

(
1 – ϑ2)2(P(2)

s
)T U

)

× Φm(t) – f̄ (ϑ , t) � 0. (4.6)

Moreover, using Eqs. (4.3) and (4.4), we define

�(ϑ) � 
T
s (ϑ)UΦm(0) – ḡ(ϑ) � 0. (4.7)

Eventually, we obtain a system of (s+1)(m+1) equations by inserting the collocation points
ϑi = – cos( (2i–1)π

2(s+1) ) and tj = T
2 (1 – cos( (2j–1)π

2(m+1) )) into Eqs. (4.6) and (4.7) as follows:

⎧
⎨

⎩

R(ϑi, tj) = 0, i = 1, 2, . . . , s + 1, j = 2, 3, . . . , m + 1,

�(ϑi) = 0, i = 1, 2, . . . , s + 1.
(4.8)

Solving the above system leads to obtaining an approximate solution for problem (4.3).
Finally, the approximate solution of Eq. (1.1) is obtained as u(x, t) = ū(tanh(x), t) for (x, t) ∈
R× [0, T].

5 Numerical simulation
This section demonstrates the accuracy of the presented scheme for solving the problem
introduced in Eq. (1.1) by solving some test problems.

Example 1 As the first example, we consider Eq. (1.1) with λ = γ = 2 and the exact solu-
tion u(x, t) = sin(t)

(1+x2)10 . Note that the initial condition and the right-hand side function can
be identified using the exact solution. The proposed method has been used to solve this
equation for various values of α. The maximum absolute errors of the obtained numer-
ical solutions for various values of α have been presented in Table 1. Figure 1 shows the
approximate solution and the absolute error function for α = 0.9 with (s = 30, m = 15). By
considering these results, it is clear that the presented hybrid method is very accurate for
solving this example.

Example 2 Consider the time fractional advection–diffusion equation (1.1) with λ = 1,
γ = 2 and the exact solution u(x, t) = sinh(t) exp(–5x2). The maximum absolute errors of
the obtained numerical results for various values of α are given in Table 2. The obtained
results of solving this equation for α = 0.9 when (s = 30, m = 15) are plotted in Fig. 2. From
the obtained results, we conclude that the presented scheme is an efficient tool for solving
this example.

Table 1 Maximum absolute errors in Example 1

s m = 10 m = 15

α = 0.4 α = 0.6 α = 0.8 α = 1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

10 8.8475E–02 3.1992E–02 5.9763E–01 9.7876E–02 1.0174E–01 7.6296E–00 2.8850E–00 2.1390E–01
15 1.3870E–03 1.4295E–03 1.4275E–03 1.4113E–03 1.3330E–03 1.4168E–03 1.4315E–03 1.4201E–03
20 6.8639E–06 4.4667E–06 4.4759E–06 4.4649E–06 7.3821E–06 6.9270E–06 4.4737E–06 4.4729E–06
25 3.1811E–07 3.1837E–07 3.1856E–07 3.1860E–07 3.1799E–07 3.1825E–07 3.1848E–07 3.1860E–07
30 6.0001E–10 5.9879E–10 5.9691E–10 5.9409E–10 6.0046E–10 5.9947E–10 5.9796E–10 5.9560E–10
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Figure 1 Numerical results in Example 1 for α = 0.9 with (s = 30,m = 15) when (x, t) ∈ [–10, 10]× [0, 1]

Table 2 Maximum absolute errors in Example 2

s m = 10 m = 15

α = 0.4 α = 0.6 α = 0.8 α = 1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

10 2.3796E–03 6.2965E–02 8.0714E–03 3.2427E–03 2.9956E–03 2.8948E–00 2.5067E–02 4.1562E–03
15 1.9392E–05 1.4618E–05 1.3228E–05 1.1492E–05 2.4699E–05 1.6195E–05 1.3846E–05 1.2463E–05
20 3.0684E–07 2.8006E–07 2.6043E–07 2.4726E–07 3.2270E–07 2.9257E–07 2.6936E–07 2.5312E–07
25 1.7489E–07 1.7460E–07 1.7401E–07 1.7304E–07 1.7495E–07 1.7478E–07 1.7435E–07 1.7357E–07
30 1.5585E–09 1.5626E–09 1.5664E–09 1.5692E–09 1.5568E–09 1.5605E–09 1.5647E–09 1.5680E–09

Figure 2 Numerical results in Example 2 for α = 0.9 with (s = 30,m = 15) when (x, t) ∈ [–10, 10]× [0, 1]

Table 3 Maximum absolute errors in Example 3

s m = 10 m = 15

α = 0.4 α = 0.6 α = 0.8 α = 1 α = 0.35 α = 0.6 α = 0.8 α = 1

10 2.2386E–02 1.8535E–00 2.1500E–01 7.0157E–02 2.4151E–02 1.9044E–00 2.1709E–01 7.0161E–02
15 1.4938E–03 1.4766E–03 1.4647E–03 1.4600E–03 1.5366E–03 1.5104E–03 1.4954E–03 1.4906E–03
20 5.4736E–06 5.6114E–06 5.7641E–06 7.6563E–06 5.6879E–06 5.9757E–06 4.8025E–06 4.7964E–06
25 3.6010E–07 3.6090E–07 3.6175E–07 3.6285E–07 3.7085E–07 3.7225E–07 3.7370E–07 3.7599E–07
30 7.5521E–10 7.8044E–10 8.4546E–10 8.6684E–10 7.8622E–10 6.6174E–10 6.7191E–10 9.1401E–10

Example 3 Consider the time fractional advection–diffusion equation (1.1) with λ = 2,
γ = 1 and the exact solution u(x, t) = exp(t)

(1+x2)10 . The presented scheme is used to solve this
equation and the maximum absolute errors of the obtained numerical results are given
in Table 3. The obtained results for α = 0.8 with (s = 30, m = 15) are shown in Fig. 3.
According to the obtained results, we see that the proposed method is very accurate for
solving this example.

Example 4 Finally, consider the time fractional advection–diffusion equation (1.1) with
λ = γ = 1 and the exact solution u(x, t) = cos(t) exp(–5x2). Table 4 provides the maximum
absolute errors of the obtained numerical solutions for various values α. The obtained
results for α = 0.8 with (s = 30, m = 15) are plotted in Fig. 4. These results confirm that the
presented approach is an efficient tool for solving this problem.
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Figure 3 Numerical results in Example 3 for α = 0.8 with (s = 30,m = 15) when (x, t) ∈ [–10, 10]× [0, 1]

Table 4 Maximum absolute errors in Example 4

s m = 10 m = 15

α = 0.4 α = 0.6 α = 0.8 α = 1 α = 0.4 α = 0.6 α = 0.8 α = 1

10 8.6448E–01 1.2273E–02 3.7324E–03 2.6389E–03 9.2321E–01 1.2429E–02 3.7509E–03 2.4602E–03
15 9.3538E–06 8.8092E–06 9.5683E–06 1.0428E–05 9.4068E–06 8.8672E–06 9.6121E–06 1.0429E–05
20 3.0300E–07 2.0316E–07 1.8145E–07 1.5476E–07 3.2770E–07 2.3016E–07 2.1729E–07 5.8024E–07
25 1.5022E–07 1.4968E–07 1.5026E–07 1.5194E–07 1.3869E–07 1.5074E–07 1.4073E–07 1.4300E–07
30 1.0942E–09 1.1142E–09 1.1733E–09 1.2831E–09 1.0972E–09 1.1262E–09 1.1719E–09 1.2807E–09

Figure 4 Numerical results in Example 4 for α = 0.8 with (s = 30,m = 15) when (x, t) ∈ [–10, 10]× [0, 1]

6 Conclusion
In this paper, we have used two types of orthogonal basis functions (namely the Cheby-
shev cardinal functions and the modified Legendre functions) to solve the time fractional
advection–diffusion equation on an unbounded space domain with vanishing boundary
conditions. In the proposed method, first, by using a suitable change of variable that sat-
isfies the boundary conditions, the problem under consideration is mapped on a bounded
space domain. Then, the Chebyshev cardinal functions are used to approximate solution
of the problem over the time domain and the modified Legendre functions are utilized
to approximate the solution over the space domain. The numerical results obtained by
solving some test problems confirm high accuracy of the method.
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