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Abstract
A priori bounds constitute a crucial and powerful tool in the investigation of initial
boundary value problems for linear and nonlinear fractional and integer order
differential equations in bounded domains. We present herein a collection of a priori
estimates of the solution for an initial boundary value problem for a singular fractional
evolution equation (generalized time-fractional wave equation) with mass
absorption. The Riemann–Liouville derivative is employed. Results of uniqueness and
dependence of the solution upon the data were obtained in two cases, the damped
and the undamped case. The uniqueness and continuous dependence (stability of
solution) of the solution follows from the obtained a priori estimates in fractional
Sobolev spaces. These spaces give what are called weak solutions to our partial
differential equations (they are based on the notion of the weak derivatives). The
method of energy inequalities is used to obtain different a priori estimates.
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1 Introduction
In the disk, D = {(x, y) ∈ R

2, x2 + y2 < b2}, we consider the following evolution fractional
partial differential equation in the Riemann–Liouville sense:

∂λ
t U – �U + δUt + A(x, y, t)U = h(x, y, t), ∀(x, y) ∈ D, t > 0, (1.1)

with a damping effect due to the term δUt , with δ > 0, and where ∂λ
t U is the Riemann–

Liouville fractional derivative of order λ ∈ (1, 2] defined below. The functions h(x, y, t) and
A(x, y, t) are given and will be specified later. If we search only for the radially symmet-
ric solution (the functions h and A must be radial), we then have the partial differential
equation

∂λ
t U –

1
r

(rUr)r + δUt + A(r, θ , t)U (r, t) = h(r, θ , t), (1.2)

such that 0 < r < b, 0 < θ < 2π , t > 0.

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-03049-2
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-03049-2&domain=pdf
mailto:mesloub@ksu.edu.sa


Mesloub and Gadain Advances in Difference Equations        (2020) 2020:584 Page 2 of 12

Assume that the source term h(r, θ , t) and the function A(r, θ , t) are independent of θ and
denote x in place of r, then instead of Eq. (1.2), we obtain the time-fractional generalized
wave equation

∂λ
t U –

1
x

(xUx)x + δUt + A(x, t)U (x, t) = h(x, t), (1.3)

where x ∈ � = (0, b), t > 0.
If A(x, t) = 0, then (1.3) reduces to the fractional non-homogeneous damped wave equa-

tion with Bessel operator

∂λ
t U –

1
x

(xUx)x + δUt = h(x, t). (1.4)

In the special case where δ = 0 (no damping) and A(x, t) = α, the differential equation (1.3)
corresponds to the time-fractional generalization of the nonhomogeneous Klein–Gordon
equation [1–4] with Bessel operator

∂λ
t U –

1
x

(xUx)x + αU (x, t) = h(x, t). (1.5)

This equation plays a great role in relativistic physics and can be used to represent dis-
persive wave phenomena. In Eq. (1.5), the case α > 0 corresponds to mass absorption and
the case α < 0 corresponds to mass release. When λ = 2, A(x, t) = 0, and δ > 0, Eq. (1.3)
represents the telegraph equation with Bessel operator, which arises for example in sig-
nal analysis [5], wave propagation [6], and it also governs the electrical transmission in a
telegraph cable,

Utt –
1
x

(xUx)x + δUt = h(x, t), x ∈ (0, b), t ∈ [0, T]. (1.6)

It can also be considered as the damping wave equation with damping term δUt . It should
be noted that when λ = 2, Eq. (1.5) reduces to the non-homogeneous hyperbolic Klein–
Gordon equation with Bessel operator

Utt –
1
x

(xUx)x + αU (x, t) = h(x, t), (1.7)

which can be encountered for example in quantum and classical mechanics and solid state
physics [6, 10]. Equation (1.5) is in fact the time-fractional counterpart of Eq. (1.7). It
should be also noted that when λ = 1, α > 0, Eq. (1.5) represents the classical parabolic
diffusion equation with heat or mass absorption and source heat h(x, t) where the elliptic
part is replaced by the Bessel operator 1

x
∂
∂x (x ∂

∂x ), that is,

Ut –
1
x

(xUx)x + αU (x, t) = h(x, t). (1.8)

We also mention the very special case of Eq. (1.3), when A = 0, δ = 0; we then have the
time-fractional diffusion-wave equation for λ ∈ (0, 2]

∂λ
t U –

1
x

(xUx)x = h(x, t), (1.9)
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where the case λ ∈ (0, 1) corresponds to the slow diffusion, with heat supply h(x, t), and the
case λ ∈ (1, 2] corresponds to the fast diffusion (fractional wave propagation) with h(x, t) as
an external force. The case λ = 0 is known as the localized diffusion and corresponds to the
Helmholtz equation, and the case λ = 2 is known as the ballistic diffusion and corresponds
to the wave equation. The differential equation (1.9) describes several physical phenomena
in many branches of sciences [7–9].

Finally, we indicate that, if in Eq. (1.3) the function U depends only on time t and λ = 2,
we obtain the general Bagley–Torvik equation,

Utt + δ∂
β
t U + AU = h(t) = h(t), t ∈ [0, T],β ∈ (1, 2), (1.10)

but with β = 1. This fractional differential equation has a huge applications in engineering
and applied sciences fields (see for example [10–13]). There are some recent papers dealing
with numerical and theoretical aspects of fractional partial differential equations, related
to our work, and having many applications, for which the reader can refer to [14–21].

The main purpose of this paper is to derive certain a priori estimates (in the form of
uniform bounds for derivatives) for solutions of an initial boundary value problem for a
singular time-fractional wave equation with mass absorption in the case of presence and
absence of a certain damping term. The method of energy inequalities is used to obtain
different a priori estimates (see for example [22–24]). The obtained results can greatly
contribute in the development of the method of a priori estimate, the so called energy
inequalities method for fractional order PDEs. To the best of our knowledge, there are
few papers dealing with the a priori estimate method for the fractional order differential
equations case.

2 Statement of the problem
A time-fractional damped partial differential equation with Bessel operator in the domain
� = � × [0, T] = (0, b) × [0, T] is considered

∂λ
t U –

1
x

(xUx)x + δUt + A(x, t)U (x, t) = h(x, t), (2.1)

under zero initial data

U (x, 0) = 0, Ut(x, 0) = 0, x ∈ (0, b) (2.2)

and with one point boundary condition (Dirichlet condition)

U (b, t) = 0, t ∈ [0, T] (2.3)

where h ∈ L2
x([0, T],�) and the function A satisfies

A(x, t) ≥ A0 > 0, 0 < At(x, t) ≤ A1, ∀(x, t) ∈ �. (2.4)

The fractional order derivative ∂λ
t Z is the left Riemann–Liouville fractional derivative of

order λ ∈ (1, 2] for a function Z defined on � [25, 26] given by

∂
η
t Z(x, t) =

1

(1 – η)

d
dt

∫ t

0

Z(x, s)
(t – s)η

ds, t > 0. (2.5)
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We denote by ∂
η

TZ the right Riemann–Liouville fractional derivative defined by

∂
η

TZ(x, t) = –
1


(1 – η)
d
dt

∫ T

t

Z(x, s)
(s – t)η

ds, t < T . (2.6)

For essentials of fractional calculus, we refer the reader to [25–28].

3 Functional setting
Let L2(0, T) be the space of measurable square integrable functions on (0, T) with inner
product and norm given, respectively, by

(U , V )L2(0,T) =
∫ T

0
UV dt, ‖U‖2

L2(0,T) =
∫ T

0
U2 dt, (3.1)

and L2
x(0, b), be the weighted space having the inner product

(U , V )L2
x(0,b) =

∫ b

0
xUV dx. (3.2)

We also introduce the fractional derivative spaces Hη
t,x([0, T],�) and Hη

T ,x([0, T],�) to
be the space of functions U ∈ L2

x([0, T],�) having η-order Riemann–Liouville derivative
∂

η
t U ∈ L2

x([0, T],�), U(x, 0) = 0, U(x, T) = 0, having, respectively, the norms

‖U‖2
Hη

t,x([0,T],�) = ‖U‖2
L2

x([0,T],�) +
∥∥∂

η
t U

∥∥2
L2

x([0,T],�) (3.3)

and

‖U‖2
Hη

T ,x([0,T],�) = ‖U‖2
L2

x([0,T],�) +
∥∥∂

η

T U
∥∥2

L2
x([0,T],�). (3.4)

That is, Hη
t,x([0, T],�) and Hη

T ,x([0, T],�) can be defined as the closure of C∞([0, T],�)
with respect to the norms (3.3) and (3.4), respectively. We denote by C([0, T],�) the Ba-
nach space of the set of functions U : [0, T] → � equipped with the norm

‖U‖C([0,T],�) = max
0≤t≤T

∥∥U(·, t)
∥∥

�
. (3.5)

We also need the usual Sobolev space H1
x (�) with norm

‖U‖2
H1

x (�) = ‖U‖2
L2

x(�) + ‖Ux‖2
L2

x(�).

The following lemmas are crucial for the proofs of results.

Lemma 1 ([29]) If 0 < η < 1, N (t) ∈ Hη
t ([0, T]), M(t) ∈ Hη

T ([0, T]), and N (0) = 0, M(0) =
0. then

(
∂

η
t N ,M

)
L2([0,T] =

(
N , ∂η

TM
)

L2([0,T]). (3.6)
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Lemma 2 ([30]) If β > 0, N ∈ C∞(R) and suppN ⊂[0, T]. Then

(
∂

β
t N , ∂β

TN
)

L2([0,T]) = cos(πβ)
∥∥∂

β
t N

∥∥2
L2(0,∞). (3.7)

Remark (see [30], pages 5 and 19) Note that, for β = n – 1
2 , n is a natural number,

(∂β
t N , ∂β

TN )L2([0,T]) = 0. For example β = 1
2 , (∂

1
2

t N , ∂
1
2

T N )L2([0,T]) = (∂tN ,N )L2([0,T]) = 0, pro-
vided that N vanishes on the boundary.

Throughout the following, we suppose that there exists a solution u in C2,2(�) of prob-
lem (2.1)–(2.3) and problem (5.1), (2.2) and (2.3).

4 A priori estimations for the damped case
Theorem 4.1 Let λ = η + 1 with 0 < η < 1, and assume that h ∈ L2

x([0, T],�), and the func-
tion A(x, t) satisfies conditions (2.4), then the solution of problem (2.1)–(2.3) verifies the a
priori bound

‖U‖2
C(0,T ;Hη

t,x(�)) + ‖Ut‖2
Hη/2

t,x (�)
+

∥∥∂
η/2
t U

∥∥2
H1

x (�)

≤ ωeωT‖h‖2
L2

x(�), (4.1)

where ω is a positive constant given by

ω =
max( 1

2 + δ, 1
2 + 1

δ
, A1)

min(1, δ
2 , 2 cos(πη/2), 2A0 cos(πη/2)

. (4.2)

Proof We consider the inner product in L2
x(�) of the differential equation (2.1) and the

operator P (U ) = (∂η
t + ∂

∂t )U to have

(
∂

η+1
t U , ∂η

t U
)

L2
x(�) –

(
(xUx)x, ∂η

t U
)
)L2(�) +

(
δUt , ∂η

t U
)

L2
x(�)

+
(
∂

η+1
t U ,Ut

)
L2

x(�) –
(
(xUx)x,Ut

)
)L2(�) + (δUt ,Ut)L2

x(�)

× (
AU , ∂η

t U
)

L2
x(�) + (AU ,Ut)L2

x(�)

=
(
h, ∂η

t U
)

L2
x(�) + (h,Ut)L2

x(�). (4.3)

Taking into account the boundary condition (2.3) and the initial conditions (2.2), we obtain

(
∂

η+1
t U , ∂η

t U
)

L2
x(�) =

1
2

∂

∂t
∥∥∂

η
t U

∥∥2
L2

x(�), (4.4)

–
(
(xUx)x, ∂η

t U
)
)L2(�) =

(
∂

η
t Ux,Ux

)
L2

x(�), (4.5)
(
∂

η+1
t U ,Ut

)
L2

x(�) =
(
∂

η
t Ut ,Ut

)
L2

x(�), (4.6)

–
(
(xUx)x,Ut

)
)L2(�) =

1
2

∂

∂t
‖Ux‖2

L2
x(�), (4.7)

(AU ,Ut)L2
x(�) =

1
2

∂

∂t
‖√AU‖2

L2
x(�) –

1
2
‖√AtU‖2

L2
x(�). (4.8)
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Referring to (4.3) and using (4.4)–(4.8), it follows that

∂

∂t
∥∥∂

η
t U

∥∥2
L2

x(�) +
∂

∂t
‖Ux‖2

L2
x(�) + 2

(
∂

η
t Ut ,Ut

)
L2

x(�)

+ 2
(
∂

η
t Ux,Ux

)
L2

x(�) + 2δ‖Ut‖2
L2

x(�) +
(
AU , ∂η

t U
)

L2
x(�)

+
1
2

∂

∂t
‖√AU‖2

L2
x(�)

= 2
(
h, ∂η

t U
)

L2
x(�) + 2(h,Ut)L2

x(�) – 2
(
δUt , ∂η

t U
)

L2
x(�) (4.9)

+ ‖√AtU‖2
L2

x(�).

Replace t by s and integrate with respect to s over the interval (0, t) and use Lemma 1 and
Lemma 2 and conditions (2.4); it follows that

∥∥∂
η
t U (·, t)

∥∥2
L2

x(�) + 2 cos

(
πη

2

)∥∥∂
η/2
t Ux

∥∥2
L2(0,∞;L2

x(�)) +
∥∥Ux(·t)

∥∥2
L2

x(�)

+ δ‖Us‖2
L2(0,t;L2

x(�)) + 2 cos

(
πη

2

)∥∥∂
η/2
t Ut

∥∥2
L2(0,∞;L2

x(�))

+ A0
∥∥U (·, t)

∥∥2
L2

x(�) + 2A0 cos

(
πη

2

)∥∥∂
η/2
t U

∥∥2
L2(0,∞;L2

x(�))

≤
∫ t

0

(
h, ∂η

s U
)

L2
x(�) ds – δ

∫ t

0

(
∂η

s U ,Us
)

L2
x(�) ds (4.10)

+
∫ t

0
(h,Us)L2

x(�) ds + A1

∫ t

0

∥∥U (·, s)
∥∥2

L2
x(�) ds.

Since cos( πη

2 ) > 0 for η ∈ (0, 1), and

∥∥∂
η/2
t Ux

∥∥2
L2(0,∞;L2

x(�)) ≥ ∥∥∂
η/2
t Ux

∥∥2
L2(0,t;L2

x(�)),∥∥∂
η/2
t Ut

∥∥2
L2(0,∞;L2

x(�)) ≥ ∥∥∂
η/2
t Ut

∥∥2
L2(0,t;L2

x(�)),

inequality (4.10) becomes

∥∥∂
η
t U (·, t)

∥∥2
L2

x(�) + 2 cos

(
πη

2

)∥∥∂
η/2
t Ux

∥∥2
L2

x(�t ) +
∥∥Ux(·t)

∥∥2
L2

x(�)

+ δ‖Ut‖2
L2

x(�t ) + 2 cos

(
πη

2

)∥∥∂
η/2
t Ut

∥∥2
L2

x(�t )

× 2A0 cos

(
πη

2

)∥∥∂
η/2
t U

∥∥2
L2

x(�t ) + A0
∥∥U (·, t)

∥∥2
L2

x(�)

≤ (
h, ∂η

t U
)

L2
x(�t ) – δ

(
∂

η
t U ,Ut

)
L2

x(�t ) + (h,Ut)L2
x(�t ) (4.11)

+ A1‖U‖2
L2

x(�t ),
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where �t = � × (0, t). We estimate the right-hand side of (4.11) which becomes

∥∥∂
η
t U (·, t)

∥∥2
L2

x(�) + 2 cos

(
πη

2

)∥∥∂
η/2
t Ux

∥∥2
L2

x(�t ) +
∥∥Ux(·t)

∥∥2
L2

x(�)

+ δ‖Ut‖2
L2

x(�t ) + 2 cos

(
πη

2

)∥∥∂
η/2
t Ut

∥∥2
L2

x(�t )

+ 2A0 cos

(
πη

2

)∥∥∂
η/2
t U

∥∥2
L2

x(�t ) + A0
∥∥U (·, t)

∥∥2
L2

x(�)

≤ ε1

2
∥∥∂

η
t U

∥∥2
L2

x(�t ) +
1

2ε1
‖h‖2

L2
x(�t ) +

δε2

2
‖Ut‖2

L2
x(�t ) + A1‖U‖2

L2
x(�t )

+
δ

2ε2

∥∥∂
η
t U

∥∥2
L2

x(�t ) +
ε3

2
‖Ut‖2

L2
x(�t ) +

1
2ε3

‖h‖2
L2

x(�t ). (4.12)

Let ε1 = 1, ε2 = 1
2 , ε3 = δ

2 , then (4.12) reduces to

∥∥∂
η
t U (·, t)

∥∥2
L2

x(�) +
∥∥U (·, t)

∥∥2
L2

x(�) +
∥∥Ux(·t)

∥∥2
L2

x(�)

+ ‖Ut‖2
L2

x(�t ) +
∥∥∂

η/2
t Ut

∥∥2
L2

x(�t ) +
∥∥∂

η/2
t U

∥∥2
L2

x(�t )

+
∥∥∂

η/2
t Ux

∥∥2
L2

x(�t )

≤ ω
(∥∥∂

η
t U

∥∥2
L2

x(�t ) + ‖U‖2
L2

x(�t ) + ‖h‖2
L2

x(�t )

)
, (4.13)

where

ω =
max( 1

2 + δ, 1
2 + 1

δ
, A1)

min(1, δ
2 , 2 cos(πη/2), 2A0 cos(πη/2)

. (4.14)

We apply Gronwall’s lemma [11] to (4.13) and we omit the third term on its left-hand side,
and we get

∥∥∂
η
t U (·, t)

∥∥2
L2

x(�) +
∥∥U (·, t)

∥∥2
L2

x(�)

+
∥∥∂

η/2
t Ux

∥∥2
L2

x(�t ) +
∥∥∂

η/2
t U

∥∥2
L2

x(�t )

+ ‖Ut‖2
L2

x(�t ) +
∥∥∂

η/2
t Ut

∥∥2
L2

x(�t )

≤ ωeωt‖h‖2
L2

x(�t ). (4.15)

By taking the maximum of both sides of (4.15) with respect to t over [0, T], then it can be
reduced to the desired a priori estimate

‖U‖2
C(0,T ;Hη

t,x(�)) + ‖Ut‖2
Hη/2

t,x (�)
+

∥∥∂
η/2
t U

∥∥2
H1

x (�)

≤ ωeωT‖h‖2
L2

x(�), (4.16)

where ω is given by (4.14). It follows from the a priori estimate (4.16) that problem (2.1)–
(2.3) admits a unique solution that depends continuously on the given data. �
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5 A priori estimations for the undamped case
In the case of the undamped equation

∂λ
t U –

1
x

(xUx)x + A(x, t)U (x, t) = h(x, t), (5.1)

that is, when δ = 0, we have the following results.

Theorem 5.1 Suppose that A(x, t) satisfies conditions (2.4) and h ∈ L2
x([0, T],�). Let λ =

η + 1 with 0 < η < 1, then the solution of problem (5.1), (2.2) and (2.3) satisfies the a priori
estimate

max
0≤τ≤T

∥∥U (x.τ )
∥∥2

H1
x (�) +

∥∥∂
η/2
t Ut

∥∥2
L2

x(�) ≤ θ exp(θT)‖h‖2
L2

x(�), (5.2)

where

θ =
max( Tη/2

cos( πη
2 ).
( η

2 +1) , A1)

min(cos( πη

2 ), 1)
. (5.3)

Proof Consider the identity

(
∂

η
t Ut ,Ut

)
L2

x(�) –
(
(xUx)x,Ut

)
)L2(�) + (AU ,Ut)L2

x(�)

= (h,Ut)L2
x(�). (5.4)

Inequality (5.4) can be reduced to

2
(
∂

η
t Ut ,Ut

)
L2

x(�) +
∂

∂t
‖Ux‖2

L2
x(�) +

∂

∂t
‖√AU‖2

L2
x(�)

= 2(h,Ut)L2
x(�) + ‖√AtU‖2

L2
x(�). (5.5)

If we integrate (5.5) with respect to t from 0 to τ , and use the Cauchy ε inequality as well
as the conditions (2.4), we obtain

2 cos

(
πη

2

)∥∥∂
η/2
t Ut

∥∥2
L2(0,∞;L2

x(�)) +
∥∥Ux(·τ )

∥∥2
L2

x(�) + A0
∥∥U (·, τ )

∥∥2
L2

x(�)

≤ ε‖Ut‖2
L2

x(�τ ) +
1
ε
‖h‖2

L2
x(�τ ) + A1‖U‖2

L2
x(�τ ). (5.6)

Thanks to [30], the term ‖Ut‖2
L2

x(�τ ) can be eliminated from the right-hand side of (5.6) and
thus

2 cos

(
πη

2

)∥∥∂
η/2
t Ut

∥∥2
L2(0,∞;L2

x(�)) +
∥∥Ux(·τ )

∥∥2
L2

x(�) + A0
∥∥U (·, τ )

∥∥2
L2

x(�)

≤ ε
Tη/2


( η

2 + 1)
∥∥∂

η/2
t Ut

∥∥2
L2(0,τ ;L2

x(�)) +
1
ε
‖h‖2

L2
x(�τ ) + A1‖U‖2

L2
x(�τ ). (5.7)

Observe that cos( πη

2 ) > 0 and

∥∥∂
η/2
t Ut

∥∥2
L2(0,∞;L2

x(�)) ≥ ∥∥∂
η/2
t Ut

∥∥2
L2(0,τ ;L2

x(�)), (5.8)
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then letting ε = cos( πη

2 ) 
( η
2 +1)

Tη/2 , we infer from (5.7) that

∥∥∂
η/2
t Ut

∥∥2
L2(0,τ ;L2

x(�)) +
∥∥U (x, τ )

∥∥2
H1

x (�)

≤ θ
(‖h‖2

L2
x(�τ ) + ‖U‖2

H1
x (�τ )

)
, (5.9)

where

θ =
max( Tη/2

cos( πη
2 ).
( η

2 +1) , A1)

min(cos( πη

2 ), 1)
.

A term ‖U‖2
L2

x(�τ ) was added to the right-hand side of (5.7). We now apply Gronwall’s
lemma [11] to (5.9), we obtain after taking the maximum over the interval [0, T]

max
0≤τ≤T

∥∥U (x, τ )
∥∥2

H1
x (�)) +

∥∥∂
η/2
t Ut

∥∥2
L2

x(�) ≤ θ exp(θT)‖h‖2
L2

x(�), (5.10)

from which we deduce the uniqueness and continuous dependence of solution on the
input data of problem (5.1), (2.2) and (2.3). �

Theorem 5.2 Let λ = η + 1 with 0 < η < 1, and assume that h ∈ L2
x([0, T], (0, b)), then the

solution of problem (5.1), (2.2) and (2.3) satisfies the a priori estimate

max
0≤t≤T

∥∥∂
η
t U (x, t)

∥∥
L2

x(�) +
∥∥∂

η/2
t U

∥∥
H1

x (�)

≤ d‖h‖L2
x(�), (5.11)

where

d = 2
√

T
(

1 +
1√

min(cos(πη/2), A0 cos(πη/2))

)
. (5.12)

Proof We multiply the differential equation (5.1) by x∂
η
t U and integrate on �, we have

(
∂

η+1
t U , ∂η

t U
)

L2
x(�) –

(
(xUx)x, ∂η

t U
)

L2(�) +
(
AU , ∂η

t U
)

L2
x(�)

=
(
h, ∂η

t U
)

L2
x(�). (5.13)

The use of initial and boundary conditions gives

1
2

∂

∂t
∥∥∂

η
t U

∥∥2
L2

x(�) +
(
∂

η
t Ux,Ux

)
L2

x(�) +
(
AU , ∂η

t U
)

L2
x(�)

=
(
h, ∂η

t U
)

L2
x(�). (5.14)
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Invoking conditions (2.4) and replacing t by ν and integrating with respect to ν from 0 to
t, inequality (5.14) implies

∥∥∂
η
t U (x, t)

∥∥2
L2

x(�) + 2 cos

(
πη

2

)∥∥∂
η/2
t Ux

∥∥2
L2(0,∞;L2

x(�))

+ A0 cos

(
πη

2

)∥∥∂
η/2
t U

∥∥2
L2(0,∞;L2

x(�))

= 2
(
h, ∂η

t U
)

L2(0,t;L2
x(�)) +

∥∥∂
η
t U (x, 0)

∥∥2
L2

x(�). (5.15)

Taking into account that

⎧⎨
⎩

‖∂η/2
t Ux‖2

L2(0,∞;L2
x(�)) ≥ ‖∂η/2

t Ux‖2
L2

x(�t ),

‖∂η/2
t U‖2

L2(0,∞;L2
x(�)) ≥ ‖∂η/2

t U‖2
L2

x(�t ),
(5.16)

and employing condition (2.2) and the Cauchy–Schwartz inequality, we infer from (5.15)
that

2 cos

(
πη

2

)∥∥∂
η/2
t Ux

∥∥2
L2

x(�t ) + A0 cos

(
πη

2

)∥∥∂
η/2
t U

∥∥2
L2

x(�t )

+
∥∥∂

η
t U (x, t)

∥∥2
L2

x(�)

≤ 2
√

T max
0≤t≤T

∥∥∂
η
t U (x, t)

∥∥
L2

x(�)‖h‖L2
x(�t ). (5.17)

Discarding the first two term on the left-hand side of (5.17) gives

max
0≤t≤T

∥∥∂
η
t U (x, t)

∥∥
L2

x(�) ≤ 2
√

T‖h‖L2
x(�). (5.18)

Now dropping the third term on the left-hand side of (5.17), then using (5.18), and taking
t = T , we obtain

∥∥∂
η/2
t U

∥∥
H1

x (�) ≤ 2
√

T‖h‖L2
x(�)

1√
min(cos(πη/2), A0 cos(πη/2))

. (5.19)

By summing (5.18) and (5.19) side to side, the a priori estimate (5.11) follows, and it implies
that problem (5.1), (2.2) and (2.3) admits a unique solution depending continuously on the
given data. �

Conclusion 1 A collection of a priori estimates in fractional Sobolev spaces for the solu-
tion of some initial boundary value problems for singular time-fractional diffusion equa-
tions with mass absorption is obtained. The fractional derivative is considered in the
Riemann–Liouville sense. For this type of fractional derivatives, an arbitrary function
needs not be continuous at the origin and it needs not be differentiable. The uniqueness
and continuous dependence (stability of solution) of the solution on the input data in dif-
ferent fractional Sobolev spaces follows from the obtained a priori bounds.

The method of energy inequalities is used to obtain the different a priori estimates. The
obtained results can greatly contribute in the development of the used method for partial
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differential equations of fractional order. We should mention that there are few papers
using the a priori estimate method for the fractional order differential equations. A more
general fractional models can be investigated by employing the proposed method, espe-
cially those having a certain singularity, such as fractional evolution equations with Bessel
operator, where weighted Sobolev spaces may be involved.
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