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Abstract
At present, the research on discrete-time Clifford-valued neural networks is rarely
reported. However, the discrete-time neural networks are an important part of the
neural network theory. Because the time scale theory can unify the study of discrete-
and continuous-time problems, it is not necessary to separately study continuous-
and discrete-time systems. Therefore, to simultaneously study the pseudo almost
periodic oscillation and synchronization of continuous- and discrete-time
Clifford-valued neural networks, in this paper, we consider a class of Clifford-valued
fuzzy cellular neural networks on time scales. Based on the theory of calculus on time
scales and the contraction fixed point theorem, we first establish the existence of
pseudo almost periodic solutions of neural networks. Then, under the condition that
the considered network has pseudo almost periodic solutions, by designing a novel
state-feedback controller and using reduction to absurdity, we obtain that the
drive-response structure of Clifford-valued fuzzy cellular neural networks on time
scales with pseudo almost periodic coefficients can realize the global exponential
synchronization. Finally, we give a numerical example to illustrate the feasibility of our
results.

Keywords: Clifford-valued fuzzy cellular neural network; Pseudo almost periodic
synchronization; Global exponential synchronization; Time scale

1 Introduction
Fuzzy cellular neural networks, introduced into the field of artificial neural networks in
1996 by Yang and Yang [1, 2], are a combination of fuzzy operations (fuzzy AND and fuzzy
OR) and cellular neural networks. They combine the advantages of neural network and
fuzzy theory and integrate learning, association, recognition, and information processing.
Because fuzzy neural networks are based on uncertainty, which is a common problem in
the study of brain model, they are closer to human brain than the general neural networks.
Therefore the fuzzy cellular neural networks are widely used in the fields such as pattern
recognition, computer science, artificial intelligence, optimal control, equation solving,
robotics, military science, and so on. Because the application of neural networks in these
fields is related to their long-term behaviors and the time delay is inevitable in real neural
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networks, the dynamics of fuzzy cellular neural networks with various time delays has
been extensively studied [3–9].

On the one hand, it is well known that discrete- and continuous-time systems have the
same importance in theory and practice, and the discrete-time systems are more con-
venient for calculation and numerical simulation. Therefore it is necessary to study the
discrete-time systems while studying continuous-time systems. Fortunately, studying the
neural network systems on time scales can unify the research of discrete- and continuous-
time neural networks. So it is necessary and meaningful to study neural network models
on time scales [10–16].

On the other hand, Clifford-valued neural network models are a kind of multidimen-
sional neural network models, which are introduced into the study of neural networks
in [17, 18]. They include real-valued, complex-valued, and quaternion-valued neural
network models as their particular cases. Because of the potential application value of
Clifford-valued neural network models in high-dimensional data processing, they have
attracted researchers’ attention in recent years [17–23]. However, so far, there are few re-
sults on the dynamics of Clifford-valued neural networks [22–27]. In particular, up to date,
there are no papers published on the dynamics of Clifford-valued fuzzy cellular neural net-
works on time scales.

Moreover, we know that periodic, almost periodic, and almost automorphic oscillations
are important dynamics of nonautonomous neural networks. Pseudo almost periodicity is
an extension of almost periodicity, so it is of great theoretical and practical significance to
study the pseudo almost periodic oscillations of neural networks. Therefore many scholars
have studied the pseudo almost periodic oscillation of neural networks [28–37]. In addi-
tion, synchronization is a common phenomenon in real systems, which shows that many
different systems can adjust each other to produce a common dynamic behavior. With
the help of synchronization, we can know the behavior of the unknown system through
the known one. Therefore, as a powerful tool, it plays an important role in network con-
trol and system design. There are many results in the study of synchronization of neu-
ral networks [38–49]. However, the results of pseudo almost periodic synchronization of
Clifford-valued neural networks on time scales have not been reported.

Based on the above observations and discussion, the primary purpose of this paper is to
study the existence of pseudo almost periodic solutions and synchronization for fuzzy
cellular neural networks with time-varying delays on time scales. This is the first pa-
per studying the existence of pseudo almost periodic solutions and synchronization of
Clifford-valued fuzzy cellular neural networks on time scales.

The remainder of the paper is organized as follows. In Sect. 2, we give some preliminar-
ies and model description. In Sect. 3, we obtain sufficient conditions for the existence of
pseudo almost periodic solutions of the proposed networks on time scales. In Sect. 4, we
investigate global exponential synchronization. In Sect. 5, we show the effectiveness and
feasibility of the developed methods in this paper by a numerical example. In Sect. 6, we
draw a brief conclusion.

2 Preliminaries and model description
The real Clifford algebra over Rm is defined as

A =
{ ∑

A⊆{1,2,...,m}
uAeA, uA ∈ R

}
,



Li and Shen Advances in Difference Equations        (2020) 2020:593 Page 3 of 22

where eA = eh1 eh2 · · · ehν with A = {h1, h2, . . . , hν}, 1 ≤ h1 < h2 < · · · < hν ≤ m. Moreover,
e∅ = e0 = 1 and e{h} = eh, h = 1, 2, . . . , m, are called Clifford generators, which satisfy the
relations

⎧⎪⎪⎨
⎪⎪⎩

e2
i = 1, i = 1, 2, . . . , s < m,

e2
i = –1, i = s + 1, s + 2, . . . , m,

eiej + ejei = 0, i �= j.

Let Q = {∅, 1, 2, . . . , A, . . . , 12 · · ·m}. Then it is easy to see that A = {∑A uAeA, uA ∈ R},
where

∑
A is a shorthand for

∑
A∈Q. For u =

∑
A uAeA ∈A and v = (v1, v2, . . . , vn)T ∈An, the

norms of u and v are defined as ‖u‖A =
√∑

A(uA)2 and ‖v‖An = max1≤p≤n ‖vp‖A, respec-
tively; for v = (v1, v2, . . . , vn)T ∈ An, the norm of v is defined as ‖v‖An = max1≤p≤n ‖vp‖A.
For information on the Clifford algebra, we refer the reader to [50].

Definition 2.1 ([8]) For x, y ∈R, we denote

x ∧ y = min{x, y} and x ∨ y = max{x, y}.

For x =
∑

A∈Q xAeA, y =
∑

A∈Q yAeA ∈ A, we denote x ∧ y =
∑

A∈Q(xA ∧ yA)eA and x ∨ y =∑
A∈Q(xA ∨ yA)eA.

Let T be a time scale, that is, an arbitrary nonempty closed subset of the real set R with
the topology and ordering inherited from R, let σ and η denote the forward jump operator
and the graininess function, respectively, and let R denote the set of regressive functions
on T. We define the set R+ = {r ∈ R : 1 + μ(t)r(t) > 0,∀t ∈ T}. For the time scale theory,
we refer the reader to [51].

Definition 2.2 Let z =
∑

A zAeA : T → A, where zA : T → R. The delta derivative of the
function z is z�(t) =

∑
A∈Q(zA)�(t)eA, provided that (zA)�(t) exists for each A ∈ Q.

Definition 2.3 ([52]) A time scale T is called an almost periodic time scale if

� := {τ ∈R : t ± τ ∈ T,∀t ∈ T} �= {0}.

From now on, we assume that T is an almost periodic time scale.

Definition 2.4 A function f ∈ C(T,An) is called almost periodic if for every ε > 0, there
exists a constant l(ε) > 0 such that each interval of length l(ε) contains τ ∈ � such that

∥∥f (t + τ ) – f (t)
∥∥
An < ε, ∀t ∈ T.

We denote by AP(T,An) the set of all almost periodic functions defined on T and by
BC(T,An) the set of all bounded continuous functions from T to An.
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Let

PAP0
(
T,An) =

{
f ∈ BC

(
T,An) : f is �-measurable such that

lim
r→+∞

1
2r

∫ r

–r

∥∥f (s)
∥∥
An�s = 0, r ∈ T

}
.

Inspired by Definition 3 in [11], we introduce the following definition.

Definition 2.5 A function f ∈ BC(T,An) is called pseudo almost periodic if f = g + h,
where g ∈ AP(T,An) and h ∈ PAP0(T,An).

We denote by PAP(T,An) the class of all pseudo almost periodic functions defined on T.
From the above definition, similarly to the proofs of Lemmas 2.5 and 2.6 in [11], it is not

difficult to prove the following two lemmas.

Lemma 2.1 If α ∈ R, f , g ∈ PAP(T,An), then αf , f + g, f × g ∈ PAP(T,An).

Lemma 2.2 If f ∈ C(A,An) satisfies the Lipschitz condition, x ∈ PAP(T,A), τ ∈ C1(T,R)∩
AP(T,�), and inft∈T(1 – τ�(t)) > 0, then f (x(· – τ (·))) ∈ PAP(T,An).

The following lemma can be proved by the same proof method as that for Lemma 6 in
[53].

Lemma 2.3 Let a ∈ AP(T,R+) with –a ∈R+, inft∈T a(t) = a– > 0, and g ∈ PAP(T,A). Then
the function F : t → ∫ t

–∞ e–a(t,σ (s))g(s)�s belongs to PAP(T,A).

Similarly to the proof of Corollary 1 in [1], we can prove the following:

Lemma 2.4 Suppose that αi,βi ∈ C(T ,A) and fi ∈ C(A,A), i = 1, 2, . . . , n. Then we have

∥∥∥∥∥
n∧

i=1

αifi(x) –
n∧

i=1

αifi(y)

∥∥∥∥∥
A

≤
n∑

i=1

‖αi‖A
∥∥fi(x) – fi(y)

∥∥
A, i = 1, 2, . . . , n,

∥∥∥∥∥
n∨

i=1

βifi(x) –
n∨

i=1

βifi(y)

∥∥∥∥∥
A

≤
n∑

i=1

‖βi‖A
∥∥fi(x) – fi(y)

∥∥
A, i = 1, 2, . . . , n.

Similarly to the proof of Lemma 2.2 in [28], we can easily prove the following:

Lemma 2.5 If Fi ∈ PAP(T ,A), i = 1, 2, . . . , n, then
∧n

i=1 Fi(·), ∨n
i=1 Fi(·) ∈ PAP(T ,A).

In the paper, we consider the following Clifford-valued fuzzy cellular neural network
with time-varying delays on time scale T:

x�
i (t) = –ai(t)xi(t) +

n∑
j=1

bij(t)fj
(
xj
(
t – ηij(t)

))

+
n∧

j=1

αij(t)gj
(
xj
(
t – τij(t)

))
+

n∨
j=1

α̃ij(t)g̃j
(
xj
(
t – τ̃ij(t)

))
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+
n∑

j=1

dij(t)μj(t) +
n∧

j=1

Tij(t)μj(t)

+
n∨

j=1

Sij(t)μj(t) + Ii(t), i = 1, 2, . . . , n, (1)

where n is the number of neurons in layers; xi(t) ∈ A, μj(t) ∈ A, and Ii(t) ∈ A express the
state, input, and bias of the ith neuron, respectively, where A is a Clifford algebra; ai(t) >
0 is the rate at which the ith neuron resets its potential to the resting state in isolation
when they are disconnected from the network and the external inputs at time t; αij(t) ∈A
represents an element of the fuzzy feedback MIN template; α̃ij(t) ∈ A is an element of
the fuzzy feedback MAX template; Tij(t) ∈ A and Sij(t) ∈ A are fuzzy feed forward MIN
template and fuzzy feed forward MAX template, respectively; bij(t) ∈ A is an element
of the feedback template; dij(t) ∈ A is the feed forward template;

∧
and

∨
denote the

fuzzy AND and fuzzy OR operations, respectively; fj, gj, and g̃j : A→A are the activation
functions; ηij(t), τij(t), and τ̃ij(t) correspond to the transmission delays at time t and satisfy
t – ηij(t), t – τij(t), and t – τ̃ij(t) ∈ T for t ∈ T.

Throughout the rest of the paper, we adopt the following notation:

a–
i = inf

t∈T
ai(t), b+

ij = sup
t∈T

∥∥bij(t)
∥∥
A, α+

ij = sup
t∈T

∥∥αij(t)
∥∥
A,

α̃+
ij = sup

t∈T

∥∥α̃ij(t)
∥∥
A, η+

ij = sup
t∈T

ηij(t), τ+
ij = sup

t∈T
τij(t),

τ̃+
ij = sup

t∈T
τ̃ij(t), I = {1, 2, . . . , n}, ζ = max

i,j∈I
{
η+

ij , τ
+
ij , τ̃+

ij
}

.

The initial values of system (1) are as follows:

xi(s) = ϕi(s) ∈A, s ∈ [–ζ , 0]T,

where ϕi ∈ C([–ζ , 0]T,A), i ∈ I .
To obtain our primary results, we need the following assumptions:
(S1) For i, j ∈ I , ai ∈ AP(T,R+) with –ai ∈ R+, ηij, τij, τ̃ij ∈ C1(T,R+) ∩ AP(T,�)

with inft∈R{(1 – η�
ij (t)), (1 – τ�

ij (t)), (1 – τ̃ �
ij (t))} > 0, and bij,αij, α̃ij,μj, dij, Sij, Tij, Ii ∈

PAP(T,A).
(S2) For j ∈ I , fj, gj, g̃j ∈ C(A,A), d there exist positive constants Lf

j , Lg
j , Lg̃

j such that for
any u, v ∈ A, ‖fj(u) – fj(v)‖A ≤ Lf

j ‖u – v‖A, ‖gj(u) – gj(v)‖A ≤ Lg
j ‖u – v‖A, ‖g̃j(u) –

g̃j(v)‖A ≤ Lg̃
j ‖u – v‖A.

(S3) maxi∈I{Pi
a–

i
} ≤ 1

2 and maxi∈I{Qi
a–

i
} =: κ < 1, where for i, j ∈ I ,

Pi =
n∑

j=1

b+
ij

(
Lf

j +
1
2

)
+

n∑
j=1

α+
ij

(
Lg

j +
1
2

)
+

n∑
j=1

α̃+
ij

(
Lg̃

j +
1
2

)
,

Qi =
n∑

j=1

b+
ijL

f
j +

n∑
j=1

α+
ij L

g
j +

n∑
j=1

α̃+
ij L

g̃
j .
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3 The existence of pseudo almost periodic solutions
In this section, we state and prove sufficient conditions for the existence of pseudo almost
periodic solutions of (1).

Let Y = PAP(T,An). Then it is a Banach space with the norm ‖f ‖Y = supt∈T ‖f (t)‖An .
Take

Y0 =
{
ϕ ∈ Y|‖ϕ – ϕ0‖Y ≤ �

}
,

where ϕ0 = (ϕ1
0 ,ϕ2

0 , . . . ,ϕn
0 )T ,

ϕi
0(t) =

∫ t

–∞
e–ai

(
t,σ (s)

)( n∑
j=1

dij(s)μj(s) +
n∧

j=1

Tij(s)μj(s)

+
n∨

j=1

Sij(s)μj(s) + Ii(s)

)
�s, i ∈ I ,

and

� ≥
{
‖ϕ0‖Y, max

j∈I
{∥∥fj(0)

∥∥
A
}

, max
j∈I

{∥∥gj(0)
∥∥
A
}

, max
j∈I

{∥∥g̃j(0)
∥∥
A
}}

.

Theorem 3.1 Let (S1)–(S3) be satisfied. Then system (1) possesses only one pseudo almost
periodic solution in Y0.

Proof Firstly, it is easy to check that if x ∈ BC(T,An) is a solution of the integral equation

xi(t) =
∫ t

–∞
e–ai

(
t,σ (s)

)( n∑
j=1

bij(s)fj
(
xj
(
s – ηij(s)

))

+
n∧

j=1

αij(s)gj
(
xj
(
s – τij(s)

))
+

n∨
j=1

α̃ij(s)g̃j
(
xj
(
s – τ̃ij(s)

))

+
n∑

j=1

dij(s)μj(s) +
n∧

j=1

Tij(s)μj(s)

+
n∨

j=1

Sij(s)μj(s) + Ii(s)

)
�s, i ∈ I ,

then x is also a solution of system (1).
Secondly, we define the operator ϒ : Y → BC(T,An) by

ϒϕ = (ϒ1ϕ,ϒ2ϕ, . . . ,ϒnϕ)T ,

where ϕ ∈ Y,

(ϒiϕ)(t) =
∫ t

–∞
e–ai

(
t,σ (s)

)
Wi(s)�s,
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and

Wi(s) =
n∑

j=1

bij(s)fj
(
ϕj
(
s – ηij(s)

))
+

n∧
j=1

αij(s)gj
(
ϕj
(
s – τij(s)

))

+
n∨

j=1

α̃ij(s)g̃j
(
ϕj
(
s – τ̃ij(s)

))
+

n∑
j=1

dij(s)μj(s) +
n∧

j=1

Tij(s)μj(s)

+
n∨

j=1

Sij(s)μj(s) + Ii(s), i ∈ I .

We will show that ϒ : Y → Y is well defined. In fact, by Lemmas 2.1, 2.2, and 2.5 for any
ϕ ∈ Y, we have Wi(s) ∈ PAP(T,A), i ∈ I . Furthermore, by Lemma 2.3 we conclude that
ϒiϕ ∈ PAP(T,A), i ∈ I . Hence ϒϕ ∈ Y.

Thirdly, we will prove that ϒ(Y0) ⊂ Y0. In fact, for every ϕ ∈ Y0, we have that

‖ϕ‖Y ≤ ‖ϕ – ϕ0‖Y + ‖ϕ0‖Y ≤ 2� ,

and so we deduce that

sup
t∈T

∥∥(ϒϕ – ϕ0)(t)
∥∥
An

= max
i∈I

{
sup
t∈T

∥∥∥∥∥
∫ t

–∞
e–ai

(
t,σ (s)

)( n∑
j=1

bij(s)fj
(
ϕj
(
s – ηij(s)

))

+
n∧

j=1

αij(s)gj
(
ϕj
(
s – τij(s)

))
+

n∨
j=1

α̃ij(s)g̃j
(
ϕj
(
s – τ̃ij(s)

)))
�s

∥∥∥∥∥
A

}

≤ max
i∈I

{
sup
t∈T

[∫ t

–∞
e–ai

(
t,σ (s)

)( n∑
j=1

b+
ij
(
Lf

j
∥∥ϕj

(
s – ηij(s)

)∥∥
A +

∥∥fj(0)
∥∥
A
)

+
n∑

j=1

α+
ij
(
Lg

j
∥∥ϕj

(
s – τij(s)

)∥∥
A +

∥∥gj(0)
∥∥
A
)

+
n∑

j=1

α̃+
ij
(
Lg̃

j
∥∥ϕj

(
s – τ̃ij(s)

)∥∥
A +

∥∥g̃j(0)
∥∥
A
))

�s

]}

≤ max
i∈I

{
2�

a–
i

( n∑
j=1

b+
ij

(
Lf

j +
1
2

)
+

n∑
j=1

α+
ij

(
Lg

j +
1
2

)
+

n∑
j=1

α̃+
ij

(
Lg̃

j +
1
2

))}

= max
i∈I

{
2�Pi

a–
i

}
,

which, combined with condition (S3), implies that ‖�ϕ‖Y ≤ � . Hence ϒ(Y0) ⊂ Y0.
Finally, we will prove that ϒ is a contraction. Noting that, for any ϕ,ψ ∈ Y0,

sup
t∈T

∥∥(ϒϕ – ϒψ)(t)
∥∥
An

= max
i∈I

{
sup
t∈T

∥∥∥∥∥
∫ t

–∞
e–ci

(
t,σ (s)

)( n∑
j=1

bij(s)
(
fj
(
ϕj
(
s – ηij(s)

))
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– fj
(
ψj
(
s – ηij(s)

)))
+

n∧
j=1

αij(s)
(
gj
(
ϕj
(
s – τij(s)

))
– gj

(
ψj
(
s – τij(s)

)))

+
n∨

j=1

α̃ij(s)
(
g̃j
(
ϕj
(
s – τ̃ij(s)

))
– g̃j

(
ψj
(
s – τ̃ij(s)

))))
�s

∥∥∥∥∥
A

}

≤ max
i∈I

{
1

a–
i

( n∑
j=1

b+
ijL

f
j +

n∑
j=1

α+
ij L

g
j +

n∑
j=1

α̃+
ij L

g̃
j

)}
‖ϕ – ψ‖Y

= max
i∈I

{Qi

a–
i

}
‖ϕ – ψ‖Y,

by (S3) we arrive at

‖�ϕ – �ψ‖Y ≤ κ‖ϕ – ψ‖Y.

Hence ϒ is a contraction mapping. Consequently, ϒ has a unique fixed point in Y0, that
is, system (1) possesses a unique pseudo almost periodic solution in Y0. This completes
the proof of Theorem 3.1. �

4 Pseudo almost periodic synchronization
In this section, we take (1) as the driving system to study the global exponential synchro-
nization of the drive-response structure of system (1). For this purpose, we take the fol-
lowing system as the response system:

y�
i (t) = –ai(t)yi(t) +

n∑
j=1

bij(t)fj
(
yj
(
t – ηij(t)

)) n∧
j=1

αij(t)gj
(
yj
(
t – τij(t)

))

+
n∨

j=1

α̃ij(t)g̃j
(
yj
(
t – τ̃ij(t)

))
+

n∑
j=1

dij(t)μj(t) +
n∧

j=1

Tij(t)μj(t)

+
n∨

j=1

Sij(t)μj(t) + Ii(t) + θi(t), (2)

where t ∈ T, i ∈ I , yi(t) ∈ A denotes the state of the response system, θi(t) is a state-
feedback controller, the remaining notations are the same as those in system (2), and the
initial condition is as follows:

yi(s) = ψi(s) ∈A, s ∈ [–ζ , 0]T,

where ψi ∈ C([–ζ , 0]T,A), i ∈ I .
Put zi(t) = yi(t) – xi(t). Subtracting (1) from (2) yields the following error system:

z�
i (t) = –ai(t)zi(t) +

n∑
j=1

bij(t)
(
fj
(
yj
(
t – ηij(t)

))
– fj

(
xj
(
t – ηij(t)

)))

+
n∧

j=1

αij(s)
(
gj
(
yj
(
t – τij(t)

))
– gj

(
xj
(
t – τij(t)

)))
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+
n∨

j=1

α̃ij(t)
(
g̃j
(
yj
(
t – τ̃ij(t)

))
– g̃j

(
xj
(
t – τ̃ij(t)

)))
+ θi(t), i ∈ I . (3)

To achieve the global exponential synchronization of the drive-response systems, we de-
sign the following state-feedback controller:

θi(t) = –ci(t)zi(t) +
n∧

j=1

βij(t)
(
hj
(
yj
(
t – τij(t)

))
– hj

(
xj
(
t – τij(t)

)))

+
n∨

j=1

β̃ij(t)
(
h̃j
(
yj
(
t – τ̃ij(t)

))
– h̃j

(
xj
(
t – τ̃ij(t)

)))
, i ∈ I .

Definition 4.1 The response system (2) and the drive system (1) are said to be globally ex-
ponentially synchronized if for every solution z of the error system (3), there exist positive
constants ξ with �ξ ∈R+ and M > 1 such that

∥∥z(t)
∥∥
An ≤M‖ψ – ϕ‖0e�ξ (t, t0), t ∈ [0, +∞)T,

where t0 ∈ [–ζ , 0]T, ‖ψ – ϕ‖0 = sups∈[–ζ ,0]T ‖ψ(s) – ϕ(s)‖An , and ξ , M are independent of z.

Theorem 4.1 Let (S1)–(S3) hold. Suppose further that:
(S4) For i, j ∈ I , ci ∈ AP(T,R+) with –(ci + ai) ∈R+, βij, β̃ij ∈ PAP(T,A).
(S5) For i, j ∈ I , hj, h̃j ∈ C(A,A), and there exist positive constant numbers Lh

j , Lh̃
j such

that for any u, v ∈A,

∥∥hj(u) – hj(v)
∥∥
A ≤ Lh

j ‖u – v‖A,
∥∥h̃j(u) – h̃j(v)

∥∥
A ≤ Lh̃

j ‖u – v‖A.

(S6) maxi∈I{ Q̃i
a–

i +c–
i
} < 1, where Q̃i = Qi +

∑n
j=1 β+

ij Lh
j +

∑n
j=1 β̃+

ij Lh̃
j .

Then the response system (1) and the drive system (2) are globally exponentially synchro-
nized.

Proof Multiplying (3) by e–(ai+ci)(t0,σ (t)) and then integrating it over the interval [t0, t]T,
where t0 ∈ [–ζ , 0]T, we get that

zi(t) = zi(t0)e–(ai+ci)(t, t0) +
∫ t

t0

e–(ai+ci)
(
t,σ (s)

)

×
( n∑

j=1

bij(t)
(
fj
(
yj
(
s – ηij(s)

))
– fj

(
xj
(
s – ηij(s)

)))

+
n∧

j=1

αij(s)
(
gj
(
yj
(
s – τij(s)

))
– gj

(
xj
(
s – τij(s)

)))

+
n∨

j=1

α̃ij(s)
(
g̃j
(
yj
(
s – τ̃ij(s)

))
– g̃j

(
xj
(
s – τ̃ij(s)

)))

+
n∧

j=1

βij(s)
(
hj
(
yj
(
s – τij(s)

))
– hj

(
xj
(
s – τij(s)

)))
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+
n∨

j=1

β̃ij(s)
(
h̃j
(
yj
(
s – τ̃ij(s)

))
– h̃j

(
xj
(
s – τ̃ij(s)

))))
�s, i ∈ I . (4)

Set

�i(ω) = a–
i + c–

i – ω – exp
(
ω sup

s∈T
μ(s)

)( n∑
j=1

b+
ijL

f
j exp

(
ωη+

ij
)

+
n∑

j=1

(
α+

ij L
g
j + β+

ij Lh
j
)

exp
(
ωτ+

ij
)

+
n∑

j=1

(
α̃+

ij L
g̃
j + β̃+

ij Lh̃
j
)

exp
(
ωτ̃+

ij
))

, i ∈ I .

Then by (S6), for i ∈ I , we find

�i(0) = a–
i + c–

i – Q̃i > 0, i ∈ I .

Because of the continuity of �i and the fact that �i(ω) → –∞ as ω → +∞, we see
that there exist θi such that �i(θi) = 0 and �i(ω) > 0 for ω ∈ (0, θi), i ∈ I . Obviously,
we have �i(e) ≥ 0, i ∈ I , where e = mini∈I{θi}. So, we can choose a positive constant
0 < ξ < min{e, mini∈I{a–

i + c–
i }} with �ξ ∈ R+ such that �i(ξ ) > 0, i ∈ I , which implies

that

exp(ξ sups∈T μ(s))
a–

i + c–
i – ξ

( n∑
j=1

b+
ijL

f
j exp

(
ξη+

ij
)

+
n∑

j=1

(
α+

ij L
g
j + β+

ij Lh
j
)

exp
(
ξτ+

ij
)

+
n∑

j=1

(
α̃+

ij L
g̃
j + β̃+

ij Lh̃
j
)

exp
(
ξ τ̃+

ij
))

< 1, i ∈ I .

Taking

M = max
i∈I

{
a–

i + c–
i

Q̃i

}
,

from (S6) we have M > 1. Thus

1
M <

exp(ξ sups∈T μ(s))
a–

i + c–
i – ξ

( n∑
j=1

b+
ijL

f
j exp

(
ξη+

ij
)

+
n∑

j=1

(
α+

ij L
g
j + β+

ij Lh
j
)

exp
(
ξτ+

ij
)

+
n∑

j=1

(
α̃+

ij L
g̃
j + β̃+

ij Lh̃
j
)

exp
(
ξ τ̃+

ij
))

.

For e�ξ (t, t0) > 1, where t ∈ [–ζ , t0]T, it is evident that

∥∥z(t)
∥∥
An ≤Me�ξ (t, t0)‖ψ – ϕ‖0, ∀t ∈ [–ζ , t0]T.

Further, we will prove the following inequality:

∥∥z(t)
∥∥
An ≤Me�ξ (t, t0)‖ψ – ϕ‖0, ∀t ∈ (t0, +∞)T. (5)
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To this end, we first prove that for any ς > 1,

∥∥z(t)
∥∥
An < ςMe�ξ (t, t0)‖ψ – ϕ‖0, ∀t ∈ (t0, +∞)T, (6)

which implies that for all i ∈ I ,

∥∥zi(t)
∥∥
A < ςMe�ξ (t, t0)‖ψ – ϕ‖0, ∀t ∈ (t0, +∞)T. (7)

Otherwise, if (7) is not true, then there exist i0 ∈ I and t̃ ∈ (t0, +∞)T such that

∥∥zi0 (t̃)
∥∥
A ≥ ςM‖ψ – ϕ‖0e�ξ (t̃, t0)

and

∥∥zi0 (t)
∥∥
A < ςM‖ψ – ϕ‖0e�ξ (t, t0), t ∈ (t0, t̃)T.

Therefore there must exist a constant C ≥ 1 such that

∥∥zi0 (t̃)
∥∥
A = CςM‖ψ – ϕ‖0e�ξ (t̃, t0) (8)

and

∥∥zi0 (t)
∥∥
A < CςM‖ψ – ϕ‖0e�ξ (t, t0), t ∈ (t0, t̃)T. (9)

In view of (8), (9), (4), and M > 1, we have

∥∥zi0 (t̃)
∥∥
A

=

∥∥∥∥∥zi0 (t0)e–(ai0 +ci0 )(t̃, t0) +
∫ t̃

t0

e–(ai0 +ci0 )
(
t̃,σ (s)

)

×
( n∑

j=1

bi0j(s)
(
fj
(
yj
(
s – ηi0j(s)

))
– fj

(
xj
(
s – ηi0j(s)

)))

+
n∧

j=1

αi0j(s)
(
gj
(
ϕj
(
s – τi0j(s)

))
– gj

(
ψj
(
s – τi0j(s)

)))

+
n∨

j=1

α̃i0j(s)
(
g̃j
(
ϕj
(
s – τ̃i0j(s)

))
– g̃j

(
ψj
(
s – τ̃i0j(s)

)))

+
n∧

j=1

βi0j(s)
(
hj
(
ϕj
(
s – τi0j(s)

))
– hj

(
ψj
(
s – τi0j(s)

)))

+
n∨

j=1

β̃i0j(s)
(
h̃j
(
ϕj
(
s – τ̃i0j(s)

))
– h̃j

(
ψj
(
s – τ̃i0j(s)

))))
�s

∥∥∥∥∥
A

<
∥∥zi0 (t0)

∥∥
Ae–(ai0 +ci0 )(t̃, t0) + CςM‖ψ – ϕ‖0e�ξ (t̃, t0)

×
∫ t̃

t0

e–(ai0 +ci0 )
(
t̃,σ (s)

)
eξ

(
t̃,σ (s)

)( n∑
j=1

b+
i0jL

f
j eξ

(
σ (s), s – ηi0j(s)

)
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+
n∑

j=1

(
α+

i0jL
g
j + β+

i0jL
h
j
)
eξ

(
σ (s), s – τi0j(s)

)

+
n∑

j=1

(
α̃+

i0jL
g̃
j + β̃+

i0jL
h̃
j
)
eξ

(
σ (s), s – τ̃i0j(s)

))
�s

=
∥∥zi0 (t0)

∥∥
Ae–(ai0 +ci0 )(t̃, t0) + CςM‖ψ – ϕ‖0e�ξ (t̃, t0)

×
∫ t̃

t0

e–(ai0 +ci0 )⊕ξ

(
t̃,σ (s)

)( n∑
j=1

b+
i0jL

f
j eξ

(
σ (s), s – ηi0j(s)

)

+
n∑

j=1

(
α+

i0jL
g
j + β+

i0jL
h
j
)
eξ

(
σ (s), s – τi0j(s)

)

+
n∑

j=1

(
α̃+

i0jL
g̃
j + β̃+

i0jL
h̃
j
)
eξ

(
σ (s), s – τ̃i0j(s)

))
�s

≤ ∥∥zi0 (t0)
∥∥
Ae–(ai0 +ci0 )(t̃, t0) + CςM‖ψ – ϕ‖0e�ξ (t̃, t0)

×
∫ t̃

t0

e–(ai0 +ci0 )⊕ξ

(
t̃,σ (s)

)( n∑
j=1

b+
i0jL

f
j exp

(
ξ
(
η+

i0j + sup
s∈T

μ(s)
))

+
n∑

j=1

(
α+

i0jL
g
j + β+

i0jL
h
j
)

exp
(
ξ
(
τ+

i0j + sup
s∈T

μ(s)
))

+
n∑

j=1

(
α̃+

i0jL
g̃
j + β̃+

i0jL
h̃
j
)

exp
(
ξ
(
τ̃+

i0j + sup
s∈T

μ(s)
)))

�s

≤ CςM‖ψ – ϕ‖0

{
e–(ai0 +ci0 )⊕ξ (t̃, t0)

CςM + exp
(
ξ sup

s∈T
μ(s)

)

×
( n∑

j=1

b+
i0jL

f
j exp

(
ξη+

i0j
)

+
n∑

j=1

(
α+

i0jL
g
j + β+

i0jL
h
j
)

exp
(
ξτ+

i0j
)

+
n∑

j=1

(
α̃+

i0jL
g̃
j + β̃+

i0jL
h̃
j
)

exp
(
ξ τ̃+

i0j
))

×
∫ t̃

t0

e–(ai0 +ci0 )⊕ξ

(
t̃,σ (s)

)
�s

}
e�ξ (t̃, t0)

≤
{

e–(ai0 +ci0 )⊕ξ (t̃, t0)
CςM + exp

(
ξ sup

s∈T
μ(s)

)( n∑
j=1

b+
i0jL

f
j exp

(
ξη+

i0j
)

+
n∑

j=1

(
α+

i0jL
g
j + β+

i0jL
h
j
)

exp
(
ξτ+

i0j
)

+
n∑

j=1

(
α̃+

i0jL
g̃
j + β̃+

i0jL
h̃
j
)

exp
(
ξ τ̃+

i0j
))

× 1 – e–(ai0 +ci0 )⊕ξ (t̃, t0)
a–

i0 + c–
i0 – ξ

}
CςM‖ψ – ϕ‖0e�ξ (t̃, t0)

<

{[
1
M –

exp(ξ sups∈T μ(s))
a–

i0 + c–
i0 – ξ

( n∑
j=1

b+
i0jL

f
j exp

(
ξη+

i0j
)
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+
n∑

j=1

(
α+

i0jL
g
j + β+

i0jL
h
j
)

exp
(
ξτ+

i0j
)

+
n∑

j=1

(
α̃+

i0jL
g̃
j + β̃+

i0jL
h̃
j
)

exp
(
ξ τ̃+

i0j
))]

× e–(ai0 +ci0 )⊕ξ (t̃, t0) +
exp(ξ sups∈T μ(s))

a–
i0 + c–

i0 – ξ

×
( n∑

j=1

b+
i0jL

f
j exp

(
ξη+

i0j
)

+
n∑

j=1

(
α+

i0jL
g
j + β+

i0jL
h
j
)

exp
(
ξτ+

i0j
)

+
n∑

j=1

(
α̃+

i0jL
g̃
j + β̃+

i0jL
h̃
j
)

exp
(
ξ τ̃+

i0j
))}

CςM‖ψ – ϕ‖0e�ξ (t̃, t0)

< CςM‖ψ – ϕ‖0e�ξ (t̃, t0),

which contradicts (8), and so (7) holds. Letting ς → 1, we conclude that (5) holds. As a
result, the response system (1) and the drive system (2) are globally exponentially synchro-
nized. The proof of Theorem 4.1 is completed. �

5 Examples
In this section, we present an example to illustrate the feasibility and effectiveness of our
results obtained in Sect. 4.

Example 5.1 In systems (1) and (2), let m = 3 and n = 2 and take the coefficients are fol-
lows:

a1(t) = 0.35 + 0.3| cos
√

3t|, a2(t) = 0.4 + 0.1| sin 3t|,
c1(t) = 0.6 + 0.1| sin

√
5t|, c2(t) = 0.3 + 0.2| cos 5t|,

fj(x) =
1

320
e0 cos

√
5x13 +

3
800

sin
(
x12 + x123)e1 +

1
530

e2 tanh 4x13

+
1

390
e3 cos

(
x2 + x13) +

1
245

e12 sin2 x3 +
1

350
cos

(
x3 + x1)e13

+
1

390
e23 tanh x12 +

1
380

e123 sin
(
x0 + x2 + x23), j = 1, 2,

gj(x) = g̃j(x) =
√

3
480

e0 cos
√

3x3 +
1

225
∣∣x1 + x3∣∣e1 +

1
410

e2 tanh x123

+
2

325
e3 cos

(
x13 + x23) +

1
430

(∣∣x13 + 1
∣∣ –

∣∣x2 – 1
∣∣)e12

+
√

2
570

e13 sin
(
x2 + x13) +

1
485

e23 cos x23

+
1

390
e123 tanh

(
x1 + x12 + x13), j = 1, 2,

hj(x) = h̃j(x) =
√

3
1110

e0 cos
√

5
(
x2 + x13) +

1
345

∣∣x12 + x123∣∣e1

+
1

530
e2 tanh x2 +

3
870

e3 sin
(
x23 + x2) +

1
470

cos
(
x12)e12

+ e13

√
3

990
sin

(
x0 + x12) + e23

1
435

tanh x23



Li and Shen Advances in Difference Equations        (2020) 2020:593 Page 14 of 22

+
1

340
e123 cos

(
x0 + x3 + x123), j = 1, 2,

I1(t) = 0.4e0 cos
√

5t + (0.1 + 0.5 cos
√

3t)e1 + 0.7e2 sin 4t

+ 0.4e3 sin
√

5t + 0.9e12 sin 5t + (0.1 + 0.6 sin
√

7t)e13

+
(

0.6 cos 5t +
3

10 + t2

)
e23 + 0.4e123 cos 3t,

I2(t) = 0.7e0 sin
√

3t + 0.6e1 cos 3t + 0.8e2 sin 6t

+ 0.8e3 cos
√

3t + 0.5e12 sin 3t + 0.7e13 cos
√

5t

+ 0.6e23 sin 3t + 0.9e123 cos 5t +
4

20 + t2 ,

b11(t) = 0.03e0 sin 5t + 0.01e3 cos 2t + 0.01e23 sin 5t + 0.03e123 cos2 7t,

b12(t) = 0.04e0 cos 6t + 0.02e2 sin2 4t + 0.01e3 sin 3t + 0.03e12 cos 6t,

b21(t) = 0.025e2 sin 2t + 0.01e3 cos 3t + 0.02e13 cos 6t + 0.03e23 sin2 7t,

b22(t) = 0.04e3 cos 5t + 0.02e12 sin 7t + 0.02e13 cos2 6t + 0.03e23 cos 6t,

b̃11(t) = 0.02e0 cos t + 0.01e3 cos 2t + 0.01e23 sin 4t + 0.03e123 sin2 5t,

b̃12(t) = 0.02e0 sin 3t + 0.02e2 cos2 4t + 0.01e3 cos 3t + 0.04e12 cos 3t,

b̃21(t) = 0.03e2 sin 5t + 0.01e3 cos 3t + 0.035e13 cos 4t + 0.02e23 sin2 7t,

b̃22(t) = 0.025e3 sin 3t + 0.01e12 sin2 5t + 0.04e13 cos 3t + 0.03e23 cos 2t,

α11(t) = α̃11(t) = 0.01e3 cos 5t + 0.02e12 sin 3t

+ 0.02e13 sin2 6t + 0.01e23 sin 4t,

α12(t) = α̃12(t) = 0.02e2 cos 4t + 0.04e3 sin 5t

+ 0.02e12 cos 4t + 0.04e123 cos 3t,

α21(t) = α̃21(t) = 0.03e1 sin 3t + 0.02e2 cos 4t

+ 0.02e3 sin 5t + 0.01e12 cos2 2t,

α22(t) = α̃22(t) = 0.05e0 sin 4t + 0.03e1 cos 5t

+ 0.02e2 cos 5t + 0.03e13 sin2 4t,

β11(t) = β̃11(t) = 0.03e0 sin 2t + 0.01e1 cos 3t

+ 0.02e2 cos
√

5t + 0.02e123 cos 3t,

β12(t) = β̃12(t) = 0.02e0 cos 4t + 0.03e1 sin 5t

+ 0.04e2 cos
√

6t + 0.01e23 sin 3t,

β21(t) = β̃21(t) = 0.03e0 sin t + 0.01e1 sin t

+ 0.02e2 sin
√

3t + 0.02e12 cos 4t,

β22(t) = β̃22(t) = 0.015e1 cos 5t + 0.02e2 cos 3t

+ 0.01e12 sin
√

6t + 0.02e123 cos 5t,
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dij(t) = 0.3e0 sin 2
√

5t + 0.3e1 cos 2
√

5t

+ 0.2e12 sin 2t + 0.1e23 sin
√

2t, i, j = 1, 2,

Tij(t) = (0.2 + 0.1 cos 2t)e0 + 0.4e12 sin2 3t

+ 0.6e23 sin 5t + 0.5e123 cos 4t, i, j = 1, 2,

Sij(t) =
(

0.5 cos 6t +
3

16 + t2

)
e0 + 0.4e1 sin 2t

+ 0.3e2 sin 5t + 0.4e12 cos t, i, j = 1, 2,

μj(t) = 0.2e2 cos 2t + 0.2e3 cos2 t + 0.2e23 cos 3t

+
(

0.8 sin
√

3t +
2

30 + t2

)
e123, j = 1, 2.

If T = R, then we take

ηij(t) = 0.4| cos 3t|, τij(t) = 0.7| cos 6t|, τ̃ij(t) = 0.9| sin 3t|, i, j = 1, 2,

and if T = Z, then we take

ηij(t) = 3
∣∣∣∣sin

(
3π t +

π

2

)∣∣∣∣, τij(t) = 2e–5| cos(π t+ π
2 )|,

τ̃ij(t) = 4| cos 4π t|, i, j = 1, 2.

Obviously, (S1) and (S4) hold. By calculating we have Lf
j = 1

265 , Lg
j = Lg̃

j = 3
480 , Lh

j = Lh̃
j =

√
15

1110 ,
j = 1, 2; a–

1 = 0.35, a–
2 = 0.4, c–

1 = 0.6, c–
2 = 0.3, b+

11 = b̃+
11 = b+

21 = b̃+
12 = 0.03, b+

12 = b+
22 = b̃+

22 =
0.04, b̃+

21 = 0.035, α+
11 = α̃+

11 = β+
22 = β̃+

22 = 0.02, α+
12 = α̃+

12 = β+
12 = β̃+

12 = 0.04, α+
21 = α̃+

21 = β+
11 =

β̃+
11 = β+

21 = β̃+
21 = 0.03, α+

22 = α̃+
22 = 0.05;

P1 ≈ 0.0963, P2 ≈ 0.1165, Q1 ≈ 0.0013,

Q2 ≈ 0.0015, Q̃1 ≈ 0.00179, Q̃2 ≈ 0.00185,

max

{P1

a–
1

,
P2

a–
2

}
≈ max{0.2751, 0.2913} = 0.2913 <

1
2

,

max

{Q1

a–
1

,
Q2

a–
2

}
≈ max{0.0037, 0.0038} = 0.0038 = κ < 1,

and

max

{ Q̃1

a–
1 + c–

1
,

Q̃2

a–
2 + c–

2

}
≈ max{0.0019, 0.0026} = 0.0026 < 1.

Hence, whether T = R or T = Z, all the assumptions of Theorem 4.1 are satisfied. So by
Theorem 4.1 systems (1) and (2) are globally exponentially synchronized about the pseudo
almost periodic solution (see Figs. 1–10).

Figures 1 and 3 have the same initial values

(
x0

1(0), x0
2(0)

)T =
(
y0

1(0), y0
2(0)

)T = (0.2, –0.1)T , (1, –0.9)T ,
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Figure 1 T =R. Transient states of x0(t), x1(t), x2(t) and x3(t)

Figure 2 T =R. Transient states of x12(t), x13(t), x23(t), and x123(t)

(
x1

1(0), x1
2(0)

)T =
(
y1

1(0), y1
2(0)

)T = (0.3, –0.4)T , (0.9, –0.7)T ,
(
x2

1(0), x2
2(0)

)T =
(
y2

1(0), y2
2(0)

)T = (0.1, 0.4)T , (–0.5, –0.8)T ,
(
x3

1(0), x3
2(0)

)T =
(
y3

1(0), y3
2(0)

)T = (0.3, –0.2)T , (–0.9, 0.7)T .

Figures 2 and 4 have the same initial values

(
x12

1 (0), x12
2 (0)

)T =
(
y12

1 (0), y12
2 (0)

)T = (–0.4, 0.2)T , (1, –0.8)T ,
(
x13

1 (0), x13
2 (0)

)T =
(
y13

1 (0), y13
2 (0)

)T = (–0.1, 0.3)T , (–0.6, 0.9)T ,
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Figure 3 T =R. Transient states of y0(t), y1(t), y2(t), and y3(t)

Figure 4 T =R. Transient states of y12(t), y13(t), y23(t), and y123(t)

(
x23

1 (0), x23
2 (0)

)T =
(
y23

1 (0), y23
2 (0)

)T = (–0.2, 0.5)T , (0.7, –0.8)T ,
(
x123

1 (0), x123
2 (0)

)T =
(
y123

1 (0), y123
2 (0)

)T = (–0.3, 0.4)T , (0.9, –0.6)T .

Figure 5 has two different initial values.
Figures 6 and 8 have the same initial values

(
x0

1(0), x0
2(0)

)T =
(
y0

1(0), y0
2(0)

)T = (0.5, –0.5)T , (–1, 1)T ,
(
x1

1(0), x1
2(0)

)T =
(
y1

1(0), y1
2(0)

)T = (–0.7, 0.6)T , (–1.2, 1.5)T ,
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Figure 5 T =R. Synchronization errors z(t) = y(t) – x(t)

Figure 6 T = Z. Transient states of x0(n), x1(n), x2(n) and x3(n)

(
x2

1(0), x2
2(0)

)T =
(
y2

1(0), y2
2(0)

)T = (–0.8, 0.5)T , (1, –1.4)T ,
(
x3

1(0), x3
2(0)

)T =
(
y3

1(0), y3
2(0)

)T = (1.5, 1)T , (–0.6, –1)T .

Figures 7 and 9 have the same initial values

(
x12

1 (0), x12
2 (0)

)T =
(
y12

1 (0), y12
2 (0)

)T = (–1, 0.8)T , (1.5, –1.5)T ,
(
x13

1 (0), x13
2 (0)

)T =
(
y13

1 (0), y13
2 (0)

)T = (1, –1.2)T , (–0.7, 0.5)T ,
(
x23

1 (0), x23
2 (0)

)T =
(
y23

1 (0), y23
2 (0)

)T = (0.5, –1)T , (–1.5, 1.3)T ,
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Figure 7 T = Z. Transient states of x12(n), x13(n), x23(n), and x123(n)

Figure 8 T = Z. Transient states of y0(n), y1(n), y2(n), and y3(n)

(
x123

1 (0), x123
2 (0)

)T =
(
y123

1 (0), y123
2 (0)

)T = (–1, –0.5)T , (0.9, 1.5)T .

Figure 10 has two different initial values.

6 Conclusion
In this paper, we study pseudo almost periodic synchronization of Clifford-valued fuzzy
cellular neural networks with time-varying delays on time scales by a direct method. That
is to say, we do not decompose the Clifford-valued systems into real-valued systems, but
directly study the Clifford systems. This is the first paper to study the pseudo almost pe-
riodic synchronization of Clifford-valued neural networks on time scales. The results of
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Figure 9 T = Z. Transient states of y12(n), y13(n), y23(n), and y123(n)

Figure 10 T = Z. Synchronization errors z(n) = y(n) – x(n)

this paper are brand-new, and the proposed approach can be used to study the periodic,
almost periodic, and almost automorphic synchronization for other types of neural net-
works on time scales. Studying the dynamics of Clifford-valued neural networks on time
scales can not only unify the research of discrete- and continuous-time neural networks,
but also unify the research of real-valued, complex-valued, and quaternion-valued neural
networks.
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