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Abstract
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1 Introduction
Let a and b are two integers with a < b and [a, b]Z = {a, a + 1, . . . , b}. In this paper, we
consider the existence of positive solutions of the following discrete problem:

⎧
⎨

⎩

–�2u(t – 1) = f (t, u(t),�u(t)), t ∈ [1, T]Z,

u(0) = u(T + 1) = 0,
(1.1)

where T > 1 is a positive integer, � is the forward difference operator with �u(t) = u(t +
1) – u(t), f : [1, T]Z ×R

+ ×R →R
+ is a continuous function and R

+ = [0,∞).
In the past few years, boundary value problems for difference equations have been de-

duced from different disciplines, such as the computer sciences, economics, mechanical
engineering and control systems and so on; see, for instance, [1, 6, 23, 24]. Therefore, many
scholars studied the discrete boundary value problems, including the linear discrete prob-
lems and nonlinear discrete problems [2–5, 8, 10–17, 19–21, 26, 28–30, 33–35]. In 1999,
by using the upper and lower solution method, Agarwal and O’Regan [2] studied the ex-
istence of solutions and nonnegative solutions for the following discrete problem:

⎧
⎨

⎩

�2u(t – 1) + μf (t, u(t)) = 0, t ∈ [1, T]Z,

u(0) = u(T + 1) = 0.
(1.2)
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Thereafter, many authors focused on the existence of solutions and positive solutions of
(1.2). In particular, since Zhou et al. [26] introduced the variation method to solve the dis-
crete boundary condition, several excellent existence results of discrete boundary value
problems have been obtained by using this method; see, for instance, [8, 11, 26, 33, 35]
and the references therein. For example, by using the variation method, Bonanno et al. [8]
studied the existence of multiple positive solutions of (1.2). Meanwhile, as a very impor-
tant method, the bifurcation technique has also been introduced to discuss the discrete
problem as (1.2). For example, by using the bifurcation technique, Gao et al. [12] studied
the continuum of the positive and negative solutions of the boundary value problem (1.2)
and they also obtained the existence of positive solutions and negative solutions of (1.2).
Meanwhile, Ma et al. [27–29] and Gao [10] also used the same method to consider different
discrete boundary value problems. Finally, another important method used to discuss the
positive solutions of the discrete boundary value problems should be noted: fixed-point
theory in cones. In fact, since Merdivenci [31] introduced the fixed-point theory in cones
to consider the positive solutions of the two-point discrete boundary value problems as
(1.2), lots of interesting and excellent results have been obtained. For example, by using
the fixed-point theory in cones, Wong and Agarwal [34] considered the existence results
of positive solutions for a boundary value problems of a higher-order difference equation,
Ma and Raffoul [30] considered the existence of positive solutions of the discrete three-
point boundary value problems in 2004. Later, Henderson and Luca [19–21], Agarwal and
Luca [2] considered the existence of positive solutions of the discrete multi-point systems.

However, it is noted that most of the above results focus on the problems as (1.2) which
does not contain the damping term �u in the nonlinear term f . As we know, the damping
phenomenon exists widely in the real world. Therefore, it is interesting to consider such a
problem which has the damping term in the nonlinear term; see, for instance, [7, 22, 32].
In [7], Anderson et al. considered the existence of the solutions of this kind of problems
by using Schaefer’s theorem. In [22, 32], the method of lower and upper solutions are used
to consider the existence of solutions a kind of discrete problems with the fully nonlinear
term. Therefore, inspired by the above the results, we try our best to consider the existence
of positive solutions of the discrete boundary value problem (1.1), which has a damping
term �u in the nonlinear term. Our main tools here are also some fixed-point theories in
a cone, called the fixed-point index theories, we only briefly list them in Sect. 3 and we can
find them in the references [9, 18] for more details. Furthermore, in the present paper, the
superlinear and the sublinear conditions on the nonlinear term f at 0 and ∞ do not hold
as the limitation form, but some weaker conditions hold at 0 and ∞; see Remarks 3.1 and
3.2. Finally, it is noted that the continuous problems with fully nonlinear terms have been
studied by [25].

The rest of the present paper is organized as follows: In Sect. 2, we give some prelimi-
naries, including the work space, the properties of the Green’s function and the spectral
results of the linear eigenvalue problems. In Sect. 3, we give our main results and prove
them.

2 Preliminaries
At first, let us introduce our work space. Let

E =
{

u|u : [0, T + 1]Z, u(0) = u(T + 1) = 0
}
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with the maximum norm ‖u‖E = maxt∈[0,T+1]Z |u(t)| and

Y =
{

u|u : [0, T]Z →R
}

with the maximum norm ‖u‖Y = maxt∈[0,T]Z |u(t)|.
Let j : E → Y by

j
(
0, u(1), u(2), . . . , u(T), 0

)
=

(
u(1), u(2), . . . , u(T)

)
.

Then j is an isomorphism from E to Y . Furthermore, define

P =
{

u ∈ E|u(t) ≥ 0
}

,

then P is a cone in E.
Now, let us consider the following linear boundary value problems:

�2u(t – 1) + h(t) = 0, t ∈ [1, T]Z, (2.1)

u(0) = u(T + 1) = 0. (2.2)

Then the following results hold.

Lemma 2.1 Let h ∈ P. Then the problem (2.1), (2.2) has a unique nonnegative solution

u(t) =
T∑

s=1

G(t, s)h(s), (2.3)

where G(t, s) is the Green’s function defined as

G(t, s) =
1

T + 1

⎧
⎨

⎩

(T + 1 – t)s, s ≤ t,

(T + 1 – s)t, t ≤ s.

Proof Summing Eq. (2.1) from s = 1 to s = t – 1, we get

�u(t – 1) = �u(0) –
t–1∑

s=1

h(s).

Then continuing to sum the above equation from s = 1 to s = t – 1, we obtain

u(t) = t�u(0) –
t∑

s=1

s–1∑

τ=1

h(τ ) = t�u(0) –
t–1∑

s=1

(t – s)h(s).

Combining this with the boundary condition u(T + 1) = 0, we get

u(t) =
t

T + 1

T∑

s=1

(T + 1 – s)h(s) –
t–1∑

s=1

(t – s)h(s) =
T∑

s=1

G(t, s)h(s). �
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Lemma 2.2 The Green’s function G(t, s) satisfies the following properties:
(i) G(t, s) = G(s, t), for t, s ∈ [0, T + 1]Z × [0, T + 1]Z;

(ii) G(0, s) = G(T + 1, s) = 0 for s ∈ [0, T + 1]Z;
(iii) G(t, s) > 0, for t, s ∈ [1, T]Z × [1, T]Z;
(iv) G(t, s) ≤ G(s, s), for t, s ∈ [0, T + 1]Z × [0, T + 1]Z;
(v) G(t, s) ≥ 1

T+1 G(t, t)G(s, s).

Proof The properties (i)–(iv) are obvious. We only prove (v) here. In fact,

G(t, s)
G(t, t)G(s, s)

=

⎧
⎨

⎩

(T+1)(T+1–t)s
(T+1–t)t(T+1–s)s , 1 ≤ s ≤ t ≤ T ,

(T+1)(T+1–s)t
(T+1–t)t(T+1–s)s , 1 ≤ s ≤ t ≤ T .

Therefore, (v) holds. �

Lemma 2.3 Let u ∈ P be a solution of (2.1), (2.2). Then u satisfies the following properties:
(i) u(t) ≥ 1

T+1 G(t, t)‖u‖E for t ∈ [0, T + 1]Z;
(ii) ‖u‖E ≤ T maxt∈[0,T–1]Z |�u(t)|;

(iii) maxt∈[0,T]Z |�u(t)| ≤ �u(0) – �u(T).

Proof (i) For t ∈ [1, T]Z, by the properties of G(t, s), we have

u(t) =
T∑

s=1

G(t, s)h(s) ≤
T∑

s=1

G(s, s)h(s).

Therefore,

‖u‖E ≤
T∑

s=1

G(s, s)h(s).

Furthermore, by the property (v) of G(t, s), we know that

u(t) =
T∑

s=1

G(t, s)h(s) ≥ 1
T + 1

G(t, t)
T∑

s=1

G(s, s)h(s) ≥ 1
T + 1

G(t, t)‖u‖E .

(ii) By direct calculation, we know that

u(t) =
t∑

s=1

�u(s – 1).

Then, for t ∈ [1, T]Z, we get

∣
∣u(t)

∣
∣ ≤

t∑

s=1

∣
∣�u(s – 1)

∣
∣ ≤

T∑

s=1

∣
∣�u(s – 1)

∣
∣ ≤ T max

t∈[0,T–1]Z

∣
∣�u(t)

∣
∣.

Combining this with the fact that u(0) = u(T + 1) = 0, we see that the assertion (ii) holds.
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(iii) By Lemma 2.1 and the fact h ∈ P, it is not difficult to see that �u(0) ≥ 0 and �u(T) ≤
0. Moreover, –�2u(t – 1) = h(t) ≥ 0, we know that �u(t) is an increasing function on
[0, T]Z. Therefore,

max
t∈[0,T]Z

∣
∣�u(t)

∣
∣ = max

{
�u(0), –�u(T)

} ≤ �u(0) – �u(T). �

Lemma 2.4 The linear eigenvalue problem

⎧
⎨

⎩

�2u(t – 1) + λu(t) = 0, t ∈ [1, T]Z,

u(0) = u(T + 1) = 0,
(2.4)

has T real and simple eigenvalues 2 – 2 cos kπ
T+1 , k = 1, 2, . . . , T , and the corresponding eigen-

function is ϕk = sin kπ t
T+1 , k = 1, 2, . . . , T .

Proof This result is the well-known discrete Sturm–Liouville theory, we can find it in sev-
eral classical book, like Kelly and Peterson [23]. To be complete, we give a brief proof here.

The characteristic equation of the equation in (2.4) is μ2 + (λ – 2)μ + 1 = 0. Then

m1,2 =
(2 – λ) ± √

(λ – 2)2 – 4
2

.

If |λ – 2| ≥ 2, then the general solution of the equation in (2.4) is

u(t) = c1em1t + c2em2t .

Combining the boundary condition u(0) = u(T + 1) = 0, we know that c1 = c2 = 0. There-
fore, the problem (2.4) has only a trivial solution in this case.

If |λ – 2| < 2, we could set 2 – λ = 2 cos θ . Then

m1,2 = cos θ ± i sin θ = e±iθ .

Therefore, the general solution of the equation in (2.4) is

u(t) = c1 cos θ t + c2 sin θ t.

Combining the boundary condition u(0) = u(T + 1) = 0, we know that

y(0) = c1 = 0, y(T + 1) = c2 sin(T + 1)θ = 0.

Let

θk =
kπ

T + 1
, k = 1, 2, . . . , T .

Then we get the eigenvalue of the problem (2.4) is

λk = 2 – 2 cos
kπ

T + 1
, k = 1, 2, . . . , T ,
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and the corresponding eigenfunction is ϕk = sin kπ t
T+1 , k = 1, 2, . . . , T . The proof is com-

plete. �

3 Main results
In this section, we try our best to find the nontrivial positive solution of the problem (1.1).
Let

K =
{

u ∈ P
∣
∣
∣u(t) ≥ 1

T + 1
G(t, t)‖u‖E , t ∈ [1, T]Z

}

.

Then K is a positive cone in E. Define an operator A : K → E by

Au(t) =
T∑

t=1

G(t, s)f
(
s, u(s),�u(s)

)
.

Since f : [1, T]Z × R
+ × R → R

+ is a continuous function, it is not difficult to see that
A : K → K is a completely continuous mapping. Now, it suffices to find the nontrivial
positive fixed-point of A. To get it, let us recall some basic concepts and lemmas on the
fixed-point theory in a cone; see [9, 18].

Let E be a Banach space, K ⊂ E is a closed convex cone. Suppose that D is a bounded
open subset of E with boundary ∂D, and K ∩ D 
= ∅. Then the following lemmas hold.

Lemma 3.1 Let D be a bounded open subset of E with θ ∈ D, and A : K ∩ D̄ → K a
completely continuous mapping. If μAu 
= u for every u ∈ K ∩ ∂D and 0 < μ < 1, then
i(A, K ∩ D, K) = 1.

Lemma 3.2 Let D be a bounded open subset of E and A : K ∩ D̄ → K a completely contin-
uous mapping. If there exists v0 ∈ K \ {θ} such that u – Au 
= τv0 for every u ∈ K ∩ ∂D and
τ ≥ 0, then i(A, K ∩ D, K) = 0.

Lemma 3.3 Let D be a bounded open subset of E, and A, A1 : K ∩D̄ → K be two completely
continuous mappings. If (1 – t)Au + tA1u 
= u for every u ∈ K ∩ ∂D and 0 ≤ t ≤ 1, then
i(A, K ∩ D, K) = i(A1, K ∩ D, K).

Now, let us introduce two notations. For r > 0, let

	r =
{

u ∈ E|‖u‖E < r
}

, ∂	r =
{

u ∈ E|‖u‖E = r
}

.

The first main result is as follows.

Theorem 3.1 Let f : [1, T]Z × R
+ × R → R

+ be a continuous function. Suppose that the
conditions

(H1) there exist three positive constants a > 0, b > 0, δ > 0 with a + 2b < 1
T2 such that

f (t, u, v) ≤ au + b|v|, (t, u, v) ∈ [1, T]Z × [0, δ] × [–2δ, 2δ],

and
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(H2) there exist constants c > λ1 = 2 – 2 cos π
T+1 and H > 0 such that

f (t, u, v) ≥ cu, (t, u, v) ∈ [1, T]Z ×R
+ ×R, |u| + |v| > H ,

hold.
Then the boundary value problem (1.1) has at least one positive solution in K .

Proof Let r1 ∈ (0, δ) small enough, where δ is the positive constant introduced by (H1).
Then, by Lemma 3.1, we try to prove that, for any u ∈ K ∩ ∂	r1 and 0 < μ ≤ 1,

μAu 
= u. (3.1)

Suppose to the contrary that there exists u0 ∈ K ∩ ∂	r1 and 0 < μ0 ≤ 1 such that μ0Au0 =
u0. This implies that u0 is a positive solution of the problem

⎧
⎨

⎩

�2u(t – 1) + μ0f (t, u(t),�u(t)) = 0, t ∈ [1, T]Z,

u(0) = u(T + 1) = 0.

Now, by (H1), we have

f
(
t, u0(t),�u0(t)

) ≤ au0(t) + b
∣
∣�u0(t)

∣
∣

≤ a‖u0‖E + b max
t∈[0,T]Z

∣
∣�u0(t)

∣
∣

≤ (a + 2b)‖u0‖E .

Therefore, combining this with the fact

–�2u0(t – 1) = μ0f
(
t, u0(t),�u0(t)

)
,

we get

�u0(0) – �u0(T) ≤ (a + 2b)T‖u0‖E .

Combining this with Lemma 2.3 (ii) and (iii), we obtain

1
T

‖u0‖E ≤ (a + 2b)T‖u0‖E .

This contradicts the assumption a + 2b < 1
T2 . Therefore, (3.1) holds. By Lemma 3.1, we get

i(A, K ∩ 	r1 , K) = 1. (3.2)

Now, let L0 = max{|f (t, u, v) – cu| : (t, u, v) ∈ [1, T]Z ×R
+ ×R, |u| + |v| ≤ H} + 1. Then, the

condition (H2) implies that

f (t, u, v) ≥ cu – L0, (t, u, v) ∈ [1, T]Z ×R
+ ×R.
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Define a operator A1 : K → E by

A1u(t) =
T∑

s=1

G(t, s)
(
f
(
s, u(s),�u(s)

)
+ L0

)
.

Then A1 : K → K is a completely continuous operator. Now, let r2 > δ, we show that

i(A1, K ∩ 	r2 , K) = 0. (3.3)

To get it, by Lemma 3.2, we only need to show that

u – A1u 
= τϕ1, u ∈ K ∩ ∂	r2 , τ ≥ 0, (3.4)

where ϕ1(t) = sin π t
T+1 /‖ sin π t

T+1‖E is the eigenfunction of the linear eigenvalue problem
(2.4), which corresponds to the first eigenvalue λ1 = 2 – 2 cos π

T+1 . Then ‖ϕ1‖E = 1 and
ϕ1(t) > 0 on [1, T]Z. Suppose to the contrary that there exist u1 ∈ K ∩ ∂	r2 and τ1 ≥ 0
such that u1 – A1u1 = τ1ϕ1. Combining this with the definition of A1, we know that u1 is a
solution of the problem

⎧
⎨

⎩

–�2u(t – 1) = f (t, u(t),�u(t)) + L0 + τ1λ1ϕ1, t ∈ [1, T]Z,

u(0) = u(T + 1) = 0.

Therefore, by (H2), we get

–�2u1(t – 1) = f
(
t, u1(t),�u1(t)

)
+ L0 + τ1λ1ϕ1

≥ cu1(t) + τ1λ1ϕ1

≥ cu1(t).

Multiplying this inequality by ϕ1(t) and summing from s = 1 to s = t, we get

λ1

T∑

t=1

u1(t)ϕ1(t) ≥ c
T∑

t=1

u1(t)ϕ1(t).

Now, if
∑T

t=1 u1(t)ϕ1(t) 
= 0, then we get λ1 ≥ c. In fact, by Lemma 2.3 (i), for t ∈ [0, T + 1]Z,
we get

u1(t) ≥ 1
T + 1

G(t, t)‖u1‖E , ϕ1(t) ≥ 1
T + 1

G(t, t)‖ϕ1‖E .

This implies that

T∑

t=1

u1(t)ϕ1(t) ≥ 1
(T + 1)2 ‖u1‖E

T∑

s=1

G2(s, s) > 0.

Therefore, λ1 ≥ c. However, this contradicts the condition (H2). So, we see that (3.4) holds
and then (3.3) holds too.
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Now, let us show that the operator A and A1 satisfy the condition of Lemma 3.3 for r2 > 0
large enough, i.e.,

(1 – t)Au + tA1u 
= u, u ∈ K ∩ ∂	r2 , 0 ≤ t ≤ 1. (3.5)

Suppose to the contrary that there exist u2 ∈ K ∩ ∂	r2 and 0 ≤ t0 ≤ 1 such that

(1 – t0)Au2 + t0A1u2 = u2.

Therefore, by the definition of A and A2, we know that u2 is a solution of the problem
⎧
⎨

⎩

–�2u(t – 1) = f (t, u(t),�u(t)) + t0L0, t ∈ [1, T]Z,

u(0) = u(T + 1) = 0.

Therefore,

–�2u2(t – 1) = f
(
t, u2(t),�u2(t)

)
+ t0L0

≥ cu2 – (1 – t0)L0

≥ cu2 – L0.

Multiplying both sides of this inequality by ϕ1(t) and summing from s = 1 to s = T , we get

λ1

T∑

s=1

u2(t)ϕ1(t) ≥ c
T∑

s=1

u2(t)ϕ1(t) – L0T .

This implies that

T∑

s=1

u2(t)ϕ1(t) ≤ L0T
c – λ1

. (3.6)

Furthermore, by Lemma 2.3 (i), we know that

u1(t) ≥ 1
T + 1

G(t, t)‖u1‖E , ϕ1(t) ≥ 1
T + 1

G(t, t)‖ϕ1‖E .

So,

T∑

s=1

u2(t)ϕ1(t) ≥ 1
(T + 1)2 ‖u2‖E

T∑

s=1

G2(s, s) > 0.

Combining this with (3.6), we obtain

‖u2‖E ≤ L0T(T + 1)2

(c – λ1)
∑T

s=1 G2(s, s)
. (3.7)

Let

M :=
L0T(T + 1)2

(c – λ1)
∑T

s=1 G2(s, s)
.
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Now, let r2 = max{M, δ}. Then, by the definition of 	r2 , we get ‖u2‖E = r2 > M if u ∈
K ∩ ∂	r2 . However, this contradicts (3.7). Therefore, (3.5) holds, which implies that the
operator A and A1 satisfy the condition in Lemma 3.2. Therefore, by Lemma 3.2, we get

i(A, K ∩ 	r2 , K) = i(A1, K ∩ 	r2 , K).

Combining this with (3.3), we get

i(A, K ∩ 	r2 , K) = 0.

Hence,

i
(
A, K ∩ (	r2 \ 	r1 ), K

)
= i(A, K ∩ 	r2 , K) – i(A, K ∩ 	r1 , K) = –1.

Therefore, A has a fixed-point u ∈ K ∩ (	r2 \	r1 ). Furthermore, it is a positive solution of
(1.1). �

Remark 3.1 In this remark, we try to show that our condition (H1) and (H2) are weaker
than the usual limitation conditions. In fact, Let f : [1, T]Z ×R

+ ×R → R
+ is continuous

and

f 0 = lim sup
|u|+|v|→0+

max
t∈[1,T]Z

f (t, u, v)
|u| + |v| , f0 = lim inf

|u|+|v|→0+
min

t∈[1,T]Z

f (t, u, v)
|u| + |v| ,

f ∞ = lim sup
|u|+|v|→+∞

max
t∈[1,T]Z

f (t, u, v)
|u| + |v| , f∞ = lim inf|u|+|v|→+∞ min

t∈[1,T]Z

f (t, u, v)
|u| + |v| .

Then it is not difficult to see that

f 0 <
1

2T2 , f∞ > λ1 = 2 – 2 cos
π

T + 1

imply the condition (H1) and the condition (H2) hold, respectively. In fact, if f 0 < 1
2T2 , then

there exist two positive constants ε1 > 0 and δ > 0 small enough such that f 0 + ε1 < 1
2T2 and

f (t, u, v) ≤ (
f 0 + ε1

)(
u + |v|), (t, u, v) ∈ [1, T]Z × [0, δ] × [–2δ, 2δ].

Now, if we choose a = f 0 + ε1 and b = f 0+ε1
2 , then a + b < 1

T2 and

f (t, u, v) ≤ au + b|v|, (t, u, v) ∈ [1, T]Z × [0, δ] × [–2δ, 2δ].

This means that the condition (H1) holds. If f∞ > λ1, then there exist a constant ε2 > 0
small enough and a positive constant H > 0 big enough such that f∞ – ε2 > λ1 and

f (t, u, v) ≥ (f∞ – ε2)
(
u + |v|), (t, u, v) ∈ [1, T]Z ×R

+ ×R, |u| + |v| > H .

Now, let c = f∞ – ε2. Then (H2) holds.
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Theorem 3.2 f : [1, T]Z ×R
+ ×R → R

+ be a continuous function. Suppose that the con-
ditions

(H3) there exist constants c > λ1 and η > 0 such that

f (t, u, v) ≥ cu, (t, u, v) ∈ [1, T]Z × [0,η] × [–2η, 2η];

(H4) there exist three positive constants a > 0, b > 0 and H > 0 with a + 2b < 1
T2 , such that

f (t, u, v) ≤ au + b|v|, (t, u, v) ∈ [1, T]Z ×R
+ ×R, |u| + |v| > H ,

hold.
Then the boundary value problem (1.1) has at least one positive solution in K .

Proof Let r3 ∈ (0,η), where η is the constant in (H3). Then we will show that

i(A, K ∩ 	r3 , K) = 0.

To get it, we choose v0 = ϕ1(t) and verify the condition of Lemma 3.2 holds, that is,

u – Au 
= τϕ1, u ∈ K ∩ ∂	r3 , τ ≥ 0. (3.8)

Suppose to the contrary that there exist u3 ∈ K ∩ ∂	r3 and τ3 ≥ 0 such that

u3 – Au3 = τ3ϕ1.

Then, by the definition of A, we know that u3 is a solution of the problem

⎧
⎨

⎩

–�2u(t – 1) = f (t, u(t),�u(t)) + L0 + τ3λ1ϕ1, t ∈ [1, T]Z,

u(0) = u(T + 1) = 0.

Furthermore, since u3 ∈ K ∩ ∂	r3 , we know that 0 ≤ |u3(t)| ≤ ‖u3‖E = r3 < η and 0 ≤
|�u3(t)| ≤ 2‖u3‖E = 2r3 < 2η. Therefore, by (H4), we get

–�2u3(t – 1) = f
(
t, u3(t),�u3(t)

)
+ L0 + τ3λ1ϕ1

≥ cu3(t) + τ3λ1ϕ1

≥ cu3(t).

Now, similar to the proof of (3.4), we get a contradiction. Therefore, (3.8) holds and then,
by Lemma 3.2,

i(A, K ∩ 	r3 , K) = 0. (3.9)

Next, let r4 > δ large enough. Then, by Lemma 3.1, we only need to show that

μAu 
= u, u ∈ K ∩ ∂	r4 , 0 < μ ≤ 1. (3.10)
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Suppose to the contrary that there exist u4 ∈ K ∩ ∂	r4 and μ4 ∈ (0, 1] such that

μ4Au4 = u4.

Then, by the definition of A, we know that u4 is a solution of the problem

⎧
⎨

⎩

�2u(t – 1) + μ4f (t, u(t),�u(t)) = 0, t ∈ [1, T]Z,

u(0) = u(T + 1) = 0.

Now, choose L1 = max{|f (t, u, v) – (au + b|v|)| : (t, u, v) ∈ [1, T]Z ×R
+ ×R, |u|+ |v| ≤ H}+ 1.

Then the condition (H4) implies that

f (t, u, v) ≤ au + b|v| + L1, (t, u, v) ∈ [1, T]Z ×R
+ ×R.

Then, by the facts that u4 ∈ K ∩ ∂	r4 and μ4 ∈ (0, 1], we obtain

–�2u4(t – 1) = μ4f
(
t, u4(t),�u4(t)

)

≤ au4(t) + b
∣
∣�u4(t)

∣
∣ + L1

≤ a‖u4‖E + b max
t∈[0,T]Z

∣
∣�u4(t)

∣
∣ + L1

≤ (a + 2b)‖u4‖E + L1.

Summing both sides of the above inequality from s = 1 to s = T , then we get

�u4(0) – �u4(T) ≤ T
[
(a + 2b)‖u4‖E + L1

]
. (3.11)

Furthermore, by Lemma 2.3 (ii) and (iii),

‖u4‖E ≤ T max
t∈[0,T]Z

∣
∣�u4(t)

∣
∣ ≤ T

(
�u4(0) – �u4(T)

)
.

Combining this with (3.11), we obtain

‖u4‖E ≤ L1T
1 – T2(a + 2b)

:= M1. (3.12)

Let r4 > max{M1, δ}. Since u4 ∈ K ∩ ∂	r4 , we know that ‖u4‖E = r4 > M1. However, this
contradicts (3.12). Therefore, (3.10) holds. Now, by Lemma 3.1, we get

i(A, K ∩ 	r4 , K) = 1. (3.13)

Combining (3.9) with (3.13), we obtain

i
(
A, K ∩ (	r4 \ 	r3 ), K

)
= i(A, K ∩ 	r4 , K) – i(A, K ∩ 	r3 , K) = 1.

Therefore, A has a fixed-point u ∈ K ∩ (	r4 \	r3 ). Furthermore, it is a positive solution of
(1.1). �
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Remark 3.2 Similar to Remark 3.1, it is not difficult to see that the condition (H3) and (H4)
are also weaker than the usual limitation conditions.
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