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Abstract
The objective of this work is to show a new kind of mean-field anticipated backward
stochastic differential equation (in short MF-ABSDE) driven by time-changed Lévy
noises. We give two methods to prove the existence and uniqueness of the solution
of those equations by the fixed point theorem and the Picard iterative sequence.
Finally, we obtain a comparison theorem for the solutions.
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1 Introduction
With the pioneering work of Pardoux and Peng [13], different properties of backward
stochastic differential equations (in short BSDEs) in wider areas have attracted many re-
searchers’ great interests. Applying these results to finance, biology and physics, such pro-
cesses appear in many different applications. Many achievements have been made in the
research of BSDEs in a more general framework. We note there are several constructions
of BSDEs in the literature. See e.g. El Karou et al. [5], Peng [14], Buckdahn et al. [2] and
Douissi et al. [4]. In mathematical terms, following for instance Peng and Yang [15], this
amounts to solving a fundamental class of BSDE, called anticipated BSDE; that is,

⎧
⎪⎪⎨

⎪⎪⎩

Yt = ξT +
∫ T

t f (s, Ys, Zs, Ys+u(s), Zs+v(s)) ds –
∫ T

t Zs dWs;

Yt = ξt , t ∈ [T , T + K];

Zt = ηt , t ∈ [T , T + K],

(1)

where u(t), v(t) ∈ C[0, T] and they satisfy
(A1) ∃K > 0, ∀t ∈ [0, T] such that

t + u(t) ≤ T + K , t + v(t) ≤ T + K ;

(A2) ∃L > 0, ∀t ∈ [0, T], g(t) ≥ 0 and g(t) ∈ L[0, T + K] such that

∫ T

t
g
(
s + u(s)

)
ds ≤ L

∫ T+K

t
g(s) ds,

∫ T

t
g
(
s + v(s)

)
ds ≤ L

∫ T+K

t
g(s) ds.
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Clearly we note that the generator f (·) contains many values (Yt , Zt) of current time and
future time in Eq. (1). And the authors dealt with the fact that the anticipated BSDE has
a unique result and established a comparison theorem for the solution. Also, they veri-
fied by a duality relationship between anticipated BSDEs and stochastic differential delay
equations. Using the duality, they solved some stochastic optimal control problems (see
e.g. Xu [20], Yu [21], Giulia and Steffen [7], Klimsiak [9], Wang [19], Wang, Shi and Meng
[18], Zhang and Yan [22], among others).

Furthermore, Lu and Ren [12] studied anticipated backward stochastic differential equa-
tions on Markov chains. Richter [17] studied a rich and flexible kind of quadratic BSDEs
involving affine processes and explicated up to the solution of an ODE in detail. Frei [6]
established a new notion of local solution ofq BSDEs and quoted the implications in a fi-
nancial context. Based on the work of Ren and Mohamed [16], Kallsen and Muhle-Karbe
[8], Di Nunno and Sjursen (2014) [3] studied a kind of BSDEs when the noises are time-
changing Lévy noises and the generator f (·) is linear. In the article they also gave the mean-
variance portfolio selection.

Very recently, Liu and Ren [11] considered anticipated BSDE for time-changed Lévy
noises of the type

⎧
⎪⎪⎨

⎪⎪⎩

Yt = ξT +
∫ T

t f (s,λs, Ys, Zs, Ys+u(s), Zs+v(s)) ds –
∫ T

t Zs(x)μ(ds, dx);

Yt = ξt , t ∈ [T , T + K];

Zt = ηt , t ∈ [T , T + K],

(2)

where μ is the structure of the mixture of a conditional Brownian measure and a doubly
stochastic Poisson measure as follows:

μ(α) := B
(
α ∩ [0, T] × {0}) + H̃

(
α ∩ [0, T] × {

R \ {0}}).

They talked about the classical problem of the solutions in depth and showed the connec-
tion between the two kinds of equations. Liu [10] continued the study of these equations.
He gave a direct proof using useful a priori estimates of the solution and included some
applications of the classical Feynman–Kac formula.

On the other hand, mean-field limits have played a very important role in different fields
of physics and chemistry, but have found in recent work also application in economics and
game theory (Buckdahn et al. [2]). Specifically, as far as we are aware of, mean-field limits
also have been researched in the context of their applications, such as the optimal control
problem, the McKean–Vlasov equation and stochastic games. More and more scholars
begin to study stochastic systems with mean-field interaction. Buckdahn et al. [2] investi-
gated mean-field SDEs associated McKean–Vlasov forward SPEs and PDEs. Buckdahn et
al. [1] studied the optimal control problem for a kind of general mean-field SDEs. Douissi
et al. [4] researched a related stochastic optimal control problem of MF-BSDEs when the
noises are fractional Brownian.
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In our approach here we are concerned with a kind of MF-ABSDE driven by time-
changing Lévy noises, it follows that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Yt = ξT +
∫ T

t E′[f (s,λs, Ys, Zs, Y ′
s , Z′

s, Ys+u(s), Zs+v(s), Y ′
s+u(s), Z′

s+v(s))] ds

–
∫ T

t Zs(x)μ(ds, dx);

Yt = ξt , t ∈ [T , T + K];

Zt = ηt , t ∈ [T , T + K].

(3)

The main objective of this manuscript is the profound study of the anticipated BSDEs
(e.g. Liu (2016), [10]). We study the equation in the sense of mean-field limits. In other
words, the aim of this manuscript is to discuss some applications of the mean-field antici-
pated backward stochastic differential equation driven by time-changing Lévy noises. One
of the motivations is to study the solution of MF-ABSDE (3). And we give two methods
to prove the existence and uniqueness of this solution. Finally, we explore the comparison
theorem.

An outline of the paper is as follows: Sect. 2 is devoted to recalling of concepts and
auxiliary results. In Sect. 3, we present the existence and uniqueness of the solution for
the MF-ABSDE with two methods. In Sect. 4, we obtain the comparison theorem of the
solutions.

2 The framework
The aim of this section is to present some concepts and notation. For more details, one
can see Buckdahn, Li and Peng [2], Di Nunno and Sjursen [3], Douissi, Wen and Shi [4]
and the references therein.

Suppose X := [0, T] × R = ([0, T] ∪ {0}) ∪ ([0, T] × {R \ {0}}). and let (�̄, F̄ , P̄) := (� ×
�,F⊗F , P⊗P) be the product of (�,F , P) with itself. Suppose T > 0, let λt := (λB

t ,λH
t ) ≥ 0

be a two-dimensional stochastic process satisfying
(B1) ∀ε > 0, ∀t ∈ [0, T], lim�t→0 P(|λk

t+�t – λk
t | ≥ ε) = 0, k = B, H ;

(B2) E[
∫ T

0 λk
t dt] < +∞, k = B, H .

Consider the following mixture of measures:

	(α) :=
∫ T

0
1{(s,0)∈α}(s)λB

s ds +
∫ T

0

∫

R0

1α(s, x)q(dx)λH
s ds

= 	B(
α ∩ [0, T] × {0}) + 	H(

α ∩ [0, T] × {
R \ {0}}),

where α ⊆ X, and q is a deterministic, σ -finite measure on B{R \ {0}} such that

∫

R0

z2q(dx) < +∞.

Let we now define the noises driving (3),

Definition 1 B is a random measure on B{[0, T] × {0}}. H is a random measure on
B{[0, T] × {R \ {0}}. They satisfy (C1)–(C5).

(C1) P(B(α) ≤ t|F	) = P(B(α) ≤ t|	B(α)) = �( t√
	B(α)

), t ∈R, α ⊆ [0, T] × {0}, where

�(·) represents the density function of the standard normal distribution function.



Liu and Dai Advances in Difference Equations        (2020) 2020:621 Page 4 of 12

(C2) P(B(α1) ∩ B(α2)|F	) = P(B(α1)|F	) ∩ P(B(α2)|F	) whenever α1 ∩ α2 = φ, where
α1,α2 ⊆ [0, T] × {0}.

(C3) P(H(α) = k|F	) = P(H(α) = k|	H (α)) = 	H (α)k

k! e–	H (α), k ∈N,
α ⊆ [0, T] × {R \ {0}}.

(C4) P(H(α1) ∩ H(α2)|F	) = P(H(α1)|F	) ∩ P(H(α2)|F	) whenever α1 ∩ α2 = φ,
where α1,α2 ⊆ [0, T] × {R \ {0}}.

(C5) B and H are conditionally independent given F	.

Suppose H̃ := H – 	H is the signed random measure of the form

H̃(α) = H(α) – 	H (α), α ⊂ [0, T] × {
R \ {0}}.

Definition 2 We define the singed random measure μ on the Borel subsets of X by

μ(α) := B
(
α ∩ [0, T] × {0}) + H̃

(
α ∩ [0, T] × {

R \ {0}}), α ⊆ X.

Clearly, from (C1)–(C5), we get

E
[
B(α)|F	

]
= 0, E

[
H̃(α)|F	

]
= 0, E

[
μ(α)|F	

]
= 0,

E
[
B(α)2|F	

]
= 	B(α), E

[
H̃(α)2|F	

]
= 	H(α), E

[
μ(α)2|F	

]
= 	(α),

and

E
[
μ(α1)μ(α2)|F	

]
= E

[
μ(α1)|F	

]
E

[
μ(α2)|F	

]
= 0,

where α1 ∩ α2 = φ. So α1 and α2 are orthogonal given F	. The random measure B and
H are related to a specific form of time change for Brownian motion and a pure Lévy
process. To be more specific, for convenience, we define 	B

t :=
∫ t

0 λB
s ds and λ̃H

t :=
∫ t

0 λH
s ds,

t ∈ [0, T].
Set F = {Ft , t ∈ [0, T]}, where Ft =

⋂
r>t F

μ
r and Fμ

t = FB
t ∨FH

t ∨F	
t . Furthermore, we

set G = {Gt , t ∈ [0, T]} with Gt = Fμ
t ∨ F	. Indeed it is not a natural choice of filtration

because it includes some anticipating information, the future values of 	B and 	H .
We give this product space to the filtration F̄ = {F̄t = F ⊗Ft , t ∈ [0, T]}. A random vari-

able ξ ∈ L1(�,F , P) originally defined on � is extended canonically to �̄ : ξ ′(ω′,ω) = ξ (ω′),
(ω′,ω) ∈ �̄ = �×�. For ∀θ ∈ (�̄, F̄ , P̄), the variable θ (·,ω) : � →R is in L1(�,F , P), P-a.s.
and its expectation is denoted by

E′[θ (·,ω)
]

=
∫

�

θ
(
ω′,ω

)
P
(
dω′).

Hence we have E′[θ ] = E′[θ (·,ω)] ∈ L1(�,F , P) and

Ē
[
θ (·,ω)

]
=

∫

�̄

θ (·,ω) dP̄ =
∫

�

E′[θ (·,ω)
]
P(dω) = E

[
E′(θ )

]
.

Remark 3 For our notation, we consider the following derivation:

E′[f
(
t,λt , Yt , Zt , Y ′

t , Z′
t , Yt+u(t), Zt+v(t), Y ′

t+u(t), Z′
t+v(t)

)]
(ω)

= E′[f
(
t,λt , Yt(ω), Zt(ω), Y ′

t , Z′
t , Yt+u(t)(ω), Zt+v(t)(ω), Y ′

t+u(t), Z′
t+v(t)

)]
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=
∫

�

[
f
(
t,λt , Yt(ω), Zt(ω), Y ′

t
(
ω′), Z′

t
(
ω′), Yt+u(t)(ω), Zt+v(t)(ω), Y ′

t+u(t)
(
ω′),

Z′
t+v(t)

(
ω′))]P

(
dω′).

In addition,

E
{

E′[f
(
t,λt , Y ′

t , Z′
t , Y ′

t+u(t), Z′
t+v(t)

)]}
= E

{
E
[
f (t,λt , Yt , Zt , Yt+u(t), Zt+v(t))

]}

= E
[
f
(
t,λt , Yt , Zt , Yt+u(t), Zt+v(t)

)]
;

E
{

E′[f (t,λt , Yt , Zt , Yt+u(t), Zt+v(t))
]}

= E
{

E
[
f (t,λt , Yt , Zt , Yt+u(t), Zt+v(t))

]}

= E
[
f (t,λt , Yt , Zt , Yt+u(t), Zt+v(t))

]
.

Here and in the sequel, we shall denote the following two appropriate spaces of processes
which are used frequently:

• S2
G

(0, T + K ;R) :=
{
φt(ω)(0≤t≤T+K ,ω∈�) real-valued G-adapted stochastic process:

(
E

[
sup

0≤t≤T+K

∣
∣φt(ω)

∣
∣2

])1/2
< +∞

}
.

• L2
G

(0, T + K ;R) :=
{

ϕt(ω)(0≤t≤T+K ,ω∈�) real-valued G-adapted stochastic process:

(

E

[∫ T+K

0

∣
∣ϕs(0)

∣
∣2

λB
s ds +

∫ T+K

0

∫

R0

∣
∣ϕs(x)

∣
∣2q(dx)λH

s ds
])1/2

< +∞
}

.

Now, we suppose that f (t, (λB,λH ), y, z, y′, z′, ξ ,η, ξ ′,η′) : [0, T] × [0, +∞)2 × � × R
4 ×

S2
G

(0, T + K ;R) × L2
G

(0, T + K ;R) × S2
G

(0, T + K ;R) × L2
G

(0, T + K ;R) → L2(Gt ;R) are two
progressive functions satisfying the non-Lipschitz condition of the form

(H1) f (t, (λB,λH), 0, 0, 0, 0, 0, 0, 0, 0) ∈ L2
G

(0, T + K ;R).
(H2) For every y, y′, ȳ, ȳ′, z, z′, z̄, z̄′ ∈R, ξ , ξ ′, ξ̄ , ξ̄ ′ ∈ S2

G
(t, T + K ;R),

η,η′, η̄, η̄′ ∈ L2
G

(t, T + K ;R) dt × dP a.e., r, r′ ∈ [t, T + K], we have
∣
∣f

(
t,

(
λB,λH)

, y, z, y′, z′, ξr ,ηr′ , ξ ′
r ,η′

r′
)

– f
(
s,

(
λB,λH)

, ȳ, z̄, ȳ′, z̄′, ξ̄r , η̄r′ , ξ̄ ′
r , η̄′

r′
)∣
∣

≤ C
[(

|y – ȳ| +
∣
∣z(0) – z̄(0)

∣
∣
√

λB +

√∫

R0

∣
∣z(x) – z̄(x)

∣
∣2q(dx)

√
λH

)

+
(

∣
∣y′ – ȳ′∣∣ +

∣
∣z′(0) – z̄′(0)

∣
∣
√

λB +

√∫

R0

∣
∣z′(x) – z̄′(x)

∣
∣2q(dx)

√
λH

)

+ EGt

(

|ξr – ξ̄r| +
∣
∣ηr′ (0) – η̄r′ (0)

∣
∣
√

λB
r′ +

√∫

R0

∣
∣ηr′ (x) – η̄r′ (x)

∣
∣2q(dx)

√

λH
r′

)

+ E′Gt

(
∣
∣ξ ′

r – ξ̄ ′
r
∣
∣ +

∣
∣η′

r′ (0) – η̄′
r′ (0)

∣
∣
√

λB
r′

+

√∫

R0

∣
∣η′

r′ (x) – η̄′
r′ (x)

∣
∣2q(dx)

√

λH
r′

)]

,

where C > 0 is a constant.
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3 An existence and uniqueness result for MF-ABSDE
The aim of this section is to seek out a pair of processes (Y (t), Z(t)) ∈ S2

G
(0, T + K ;R) ×

L2
G

(0, T + K ;R) satisfying the mean-field anticipated BSDE (3). According to Liu and Ren
[11], Lemma 4, we can easily draw the following conclusion.

Lemma 4 Given a terminal condition ξ ∈ L2(�,FT , P) and f (t, ·) satisfy E
∫ T

0 |f0(t)|2 dt <
+∞, Yt ∈ S2

G
(0, T + K ;R) and Zt ∈ L2

G
(0, T + K ;R) is a pair of processes satisfying the fol-

lowing mean-field BSDE:

Yt = ξ +
∫ T

t
E′f0(s) ds –

∫ T

t

∫

R

Zs(x)μ(ds, dx)

= ξ +
∫ T

t
E′f0(s) ds –

∫ T

t
Zs(0) dBs –

∫ T

t

∫

R0

Zs(x)H̃(ds, dx), (4)

for β > 0, we have

|Y0|2 + E
[∫ T

0

β

2
eβs|Ys|2 ds +

∫ T

0

∫

R

eβs|Zs|2(x)	(ds, dx)
]

≤ E
[

|ξ |2eβT +
2
β

∫ T

0
eβs∣∣E′f0(s)

∣
∣2 ds

]

. (5)

Lemma 5 Let f (t, ·) satisfy (H1) and (H2) for each t ∈ [0, T]. And suppose that (y(k)
t , z(k)

t ),
(y′(k)

t , z′(k)
t ) ∈R

2, (y(k)
t+u(t), z(k)

t+v(t)), (y′(k)
t+u(t), z′(k)

t+v(t)) ∈ S2
G

(0, T + K ;R) × L2
G

(0, T + K ;R) and f (t, ·) :
[0, T]× [0, +∞)2 ×�×R

4 ×S2
G

(0, T + K ;R)×L2
G

(0, T + K ;R)×S2
G

(0, T + K ;R)×L2
G

(0, T +
K ;R) →R, k = 1, 2, we get

EGt

[∫ T

t
eβs(E′Gt f

(
s,λs, y(1)

s , z(1)
s , y′(1)

s , z′(1)
s , y(1)

s+u(s), z(1)
s+v(s), y′(1)

s+u(s), z′(1)
s+v(s)

)

– E′Gt f
(
s,λs, y(2)

s , z(2)
s , y′(2)

s , z′(2)
s , y(2)

s+u(s), z(2)
s+v(s), y′(2)

s+u(s), z′(2)
s+v(s)

))
ds

]2

≤ 24C2(1 + L)(T – t)EGt

[∫ T+K

t
eβs∣∣y(1)

s – y(2)
s

∣
∣2 ds

+
∫ T+K

t

∫

R

eβs∣∣z(1)
t (x) – z(2)

t (x)
∣
∣2

	(ds, dx)
]

. (6)

Proof Using conditions (A1)–(A2) and (H2), we get

EGt

[∫ T

t
eβs(E′Gt f

(
s,λs, y(1)

s , z(1)
s , y′(1)

s , z′(1)
s , y(1)

s+u(s), z(1)
s+v(s), y′(1)

s+u(s), z′(1)
s+v(s)

)

– E′Gt f
(
s,λs, y(2)

s , z(2)
s , y′(2)

s , z′(2)
s , y(2)

s+u(s), z(2)
s+v(s), y′(2)

s+u(s), z′(2)
s+v(s)

))
ds

]2

≤ C2EGt

{∫ T

t
eβs

[(
∣
∣y(1)

s – y(2)
s

∣
∣ +

∣
∣z(1)

s (0) – z(2)
s (0)

∣
∣
√

λB
s

+

√∫

R0

∣
∣z(1)

s (x) – z(2)
s (x)

∣
∣2q(dx)

√

λH
s

)
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+
(

∣
∣y′(1)

s – y′(2)
s

∣
∣ +

∣
∣z′(1)

s (0) – z′(2)
s (0)

∣
∣
√

λB
s +

√∫

R0

∣
∣z′(1)

s (x) – z′(2)
s (x)

∣
∣2q(dx)

√

λH
s

)

+ EGs

(
∣
∣y(1)

s+u(s) – y(2)
s+u(s)

∣
∣ +

∣
∣z(1)

s+v(s)(0) – z(2)
s+v(s)(0)

∣
∣
√

λB
s+v(s)

+

√∫

R0

∣
∣z(1)

s+v(s)(x) – z(2)
s+v(s)(x)

∣
∣2q(dx)

√

λH
s+v(s)

)

+ E′Gs

(
∣
∣y′(1)

s+u(s) – y′(2)
s+u(s)

∣
∣ +

∣
∣z′(1)

s+v(s)(0) – z′(2)
s+v(s)(0)

∣
∣
√

λB
s+v(s)

+

√∫

R0

∣
∣z′(1)

s+v(s)(x) – z′(2)
s+v(s)(x)

∣
∣2q(dx)

√

λH
s+v(s)

)]2}

ds

≤ 24C2(T – t)EGt {
∫ T

t
eβs

[(
∣
∣y(1)

s – y(2)
s

∣
∣2

+
∣
∣z(1)

s (0) – z(2)
s (0)

∣
∣2

λB
s +

∫

R0

∣
∣z(1)

s (x) – z(2)
s (x)

∣
∣2q(dx)λH

s

)

+ EGs

(
∣
∣y(1)

s+u(s) – y(2)
s+u(s)

∣
∣2 +

∣
∣z(1)

s+v(s)(0) – z(2)
s+v(s)(0)

∣
∣2

λB
s+v(s)

+
∫

R0

∣
∣z(1)

s (x) – z(2)
s (x)

∣
∣2q(dx)λH

s+v(s)

)]

ds

≤ 24C2(1 + L)(T – t)EGt

[∫ T+K

t
eβs∣∣y(1)

s – y(2)
s

∣
∣2 ds

+
∫ T+K

t

∫

R

eβs∣∣z(1)
s (x) – z(2)

s (x)
∣
∣2

	(ds, dx)
]

. �

Theorem 6 Suppose that ξ (t) ∈ S2
G

(T , T + K ;R) and η(t) ∈ L2
G

(T , T + K ;R), (H1) and (H2)
hold, u(·) and v(·) satisfy (A1) and (A2). The MF-ABSDE (3) has a unique solution (Y , Z),
i.e., we have Y ∈ S2

G
(0, T + K ;R), Z ∈ L2

G
(0, T + K ;R) satisfying MF-ABSDE (3).

Proof We structure a norm on the space S2
G

(0, T + K ;R) × L2
G

(0, T + K ;R) which is equiv-
alent to the following norm:

∥
∥(g, h)

∥
∥

β
=

(

E
∫ T+K

0
eβs|gs|2 ds + E

∫ T+K

0

∫

R

eβs∣∣hs(x)
∣
∣2

	(ds, dx)
)1/2

.

We consider the following MF-ABSDE driven by Lévy noises:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Yt = ξT +
∫ T

t E′[f (t,λt , Yt , Zt , Y ′
t , Z′

t , Yt+u(t), Zt+v(t), Y ′
t+u(t), Z′

t+v(t))] dt

–
∫ T

t Zt(x)μ(dt, dx), t ∈ [0, T];

Yt = ξt , t ∈ [T , T + K];

Zt = ηt , t ∈ [T , T + K].

(7)

For two any elements (y(1), z(1)), (y(2), z(2)) ∈ S2
G

(0, T + K ;R) × L2
G

(0, T + K ;R), we define
a mapping � : S2

G
(0, T + K ;R) × L2

G
(0, T + K ;R) → S2

G
(0, T + K ;R) × L2

G
(0, T + K ;R), that

is, �[(y, z)] = (Y , Z). We introduce the mapping (Y (1), Z(1)) = �[(y(1), z(1))] and (Y (2), Z(2)) =
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�[(y(2), z(2))]: S2
G

(0, T + K ;R)×L2
G

(0, T + K ;R) → S2
G

(0, T + K ;R)×L2
G

(0, T + K ;R) through
MF-ABSDEs (7). We put Ŷ = Y (1) – Y (2), Ẑ = Z(1) – Z(2), ŷ = y(1) – y(2), ẑ = z(1) – z(2), and

E′Gt f̂ (s) = E′Gt f
(
s,λs, y(1)

s , z(1)
s , y′(1)

s , z′(1)
s , y(1)

s+u(s), z(1)
s+v(s), y′(1)

s+u(s), z′(1)
s+v(s)

)

– E′Gt f
(
s,λs, y(2)

s , z(2)
s , y′(2)

s , z′(2)
s , y(2)

s+u(s), z(2)
s+v(s), y′(2)

s+u(s), z′(2)
s+v(s)

)
.

Then we have

⎧
⎪⎪⎨

⎪⎪⎩

dŶt = E′Gt f̂ (t) dt – Ẑt(x)μ(dt, dx), t ∈ [0, T];

Ŷt = 0, t ∈ [T , T + K];

Ẑt = 0, t ∈ [T , T + K].

(8)

Now we will prove that Y ∈ S2
G

(0, T + K ;R), Z ∈ L2
G

(0, T + K ;R) solves MF-ABSDE (3) if
and only if it is a fixed point of � .

By Lemma 4, we get

E
[∫ T

0

β

2
eβt|Ŷs|2 ds +

∫ T

0

∫

R

eβt|Ẑs|2(x)	(ds, dx)
]

≤ 2
β

E
(∫ T

0
eβs∣∣E′Gs f̂ (s)

∣
∣2 ds

)

.

Using the fact that u(x), v(x) satisfy (A1) and (A2), by Lemma 5, we get

E
[∫ T

0

β

2
eβs|Ŷs|2 ds +

∫ T

0

∫

R

eβs|Ẑs|2(x)	(ds, dx)
]

≤ 2
β

E
{∫ T

0
eβs[E′Gt f

(
s,λs, y(1)

s , z(1)
s , y′(1)

s , z′(1)
s , y(1)

s+u(s), z(1)
s+v(s), y′(1)

s+u(s), z′(1)
s+v(s)

)

– E′Gt f
(
s,λs, y(2)

s , z(2)
s , y′(2)

s , z′(2)
s , y(2)

s+u(s), z(2)
s+v(s), y′(2)

s+u(s), z′(2)
s+v(s)

)]
}

≤ 48C2(1 + L)(T – t)
β

E
[∫ T+K

0
eβs|ȳs|2 ds +

∫ T+K

0

∫

R

eβs∣∣z̄s(x)
∣
∣2

	(ds, dx)
]

,

that is,

E
[∫ T+K

0
eβs|Ȳs|2 ds +

∫ T+K

0

∫

R

eβs|Z̄s|2(x)	(ds, dx)
]

≤ 48C2T(1 + L)
β

E
[∫ T+K

0
eβs|ȳs|2 ds +

∫ T+K

0

∫

R

eβs∣∣z̄s(x)
∣
∣2

	(ds, dx)
]

. (9)

Let β = 96C2T(1+ L) + 2, it is very easy for us to find ‖(Ŷ , Ẑ)‖β ≤ 1√
2‖(ŷ, ẑ)‖β . Hence we see

that this mapping � is a strict contraction on S2
G

(0, T + K ;R) × L2
G

(0, T + K ;R). It follows
by the fixed point theorem that � has a unique fixed point, that is, the MF-ABSDE (3)
has a unique solution (Yt , Zt) ∈ S2

G
(0, T + K ;R) × L2

G
(0, T + K ;R) on [0, T + K] such that

�(Y , Z) = (Y , Z). The proof is complete. �

Remark 7 In fact, we almost surely get the solution of the mean-field anticipated BSDE
(3) by the Picard iterative sequence.
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We suppose that (Y n
t , Zn

t ) is the sequence defined recursively by (Y 0
t = 0, Z0

t = 0) and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dY n+1
t = –E′[f (t,λt , Y n

t , Zn
t , Y ′n

t , Z′n
t , Y n

t+u(t), Zn
t+v(t), Y ′n

t+u(t), Z′n
t+v(t))] dt

+ Zn+1
t (x)μ(dt, dx), t ∈ [0, T],

Y n+1
t = ξt , t ∈ [T , T + K],

Zn+1
t = ηt , t ∈ [T , T + K].

(10)

Then the sequence (Y n
t , Zn

t ) converges to (Y (·), Y (·)) when n → +∞.
In fact, suppose (Y n

t , Zn
t ) is the sequence defined recursively by (10). By (9)

∥
∥Y n+1

t – Y n
t
∥
∥2 +

∥
∥Zn+1

t – Zn
t
∥
∥2 ≤

(
48C2T(1 + L)

β

)n(∥
∥Y 1

t – Y 0
t
∥
∥2 +

∥
∥Z1

t – Z0
t
∥
∥2),

choosing β > 48C2T(1 + L), we find that {Y n
t } is a Cauchy sequence in S2

G
(0, T + K ;R) and

{Zn
t } is a Cauchy sequence in L2

G
(0, T + K ;R) and the result follows.

4 Comparison theorem
In this section, we will study a kind of mean-field anticipated BSDE driven by time-
changing Lévy noises. Let (Y (1), Z(1)), (Y (2), Z(2)) be, respectively, solutions for the following
two one-dimensional mean-field anticipated BSDE:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Y (k)
t = ξT +

∫ T
t E′f (k)(s,λs, Y (k)

s , Z(k)
s , Y ′(k)

s+u(s), Z′(k)
s+v(s)) ds

–
∫ T

t
∫

R
Z(k)

s (x)μ(ds, dx), t ∈ [0, T];

Y (k)
t = ξ

(k)
t , t ∈ [T , T + K];

Z(k)
t = η

(k)
t , t ∈ [T , T + K].

(11)

That is,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–dY (k)
t = E′f (k)(t,λt , Y (k)

t , Z(k)
t , Y ′(k)

t+u(t), Z′(k)
t+v(t)) dt – Z(k)

t (0) dBt

–
∫

R0
Z(k)

t (x)H̃(dt, dx), t ∈ [0, T];

Y (k)
t = ξ

(k)
t , t ∈ [T , T + K];

Z(k)
t = η

(k)
t , t ∈ [T , T + K],

(12)

where k = 1, 2.

Theorem 8 Assume that f (1)(t, ·), f (2)(t, ·) satisfy (H1)–(H2), ξ (1)
t , ξ (2)

t ∈ S2
G

(T , T +K ;R) and
(A1), (A2) hold for u(·), v(·). Assume:

(H3) One of the two coefficients is independent of z′.
(H4) One of the two coefficients is nondecreasing in y′.
Moreover, we suppose that
(H5) ξ

(1)
t ≤ ξ

(2)
t , t ∈ [T , T + K] P-a.s.

(H6) f (1)(t, ·) ≤ f (2)(t, ·) P-a.s.
It is then true that Y (1)

t ≤ Y (2)
t P-a.s.

Proof Without loss of generality, we assume that f (1)(t, ·) is nondecreasing in y′ and f (2)(t, ·)
is independent of z′. For notational simplicity we use Ŷt = Y (1)

t – Y (2)
t , Ẑt = Z(1)

t – Z(2)
t , ξ̂t =
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ξ
(1)
t –ξ

(2)
t ; then the pair (Y , Z) can be regarded as the solution to the mean-field anticipated

BSDE

–dŶt = E′[f (1)(t,λt , Y (1)
t , Z(1)

t , Y ′(1)
t+u(t), Z′(1)

t+v(t)
)

– f (2)(t,λt , Y (2)
t , Z(2)

t , Y ′(2)
t+u(t)

)]
dt

– Ẑt(x)μ(dt, dx), t ∈ [0, T].
(13)

From the Itô formula applied from s = t to s = T on (Ŷ +
t )2, it follows that

EGt
∣
∣Ŷ +

t
∣
∣2 + EGt

∫ T

t

∫

R

1{Ŷs>0}
∣
∣Ẑs(x)

∣
∣2

	(ds, dx)

= 2EGt

∫ T

t
Ŷ +

s E′[f (1)(s,λs, Y (1)
s , Z(1)

s , Y ′(1)
s+u(s), Z′(1)

s+v(s)
)

– f (2)(s,λs, Y (2)
s , Z(2)

s , Y ′(2)
s+u(s)

)]
ds

= 2EGt

∫ T

t
Ŷ +

s E′[f (1)(s,λs, Y (1)
s , Z(1)

s , Y ′(1)
s+u(s), Z′(1)

s+v(s)
)

– f (1)(s,λs, Y (1)
s , Z(1)

s , Y ′(2)
s+u(s), Z′(1)

s+v(s)
)]

ds

+ 2EGt

∫ T

t
Ŷ +

s E′[f (1)(s,λs, Y (1)
s , Z(1)

s , Y ′(2)
s+u(s), Z′(1)

t+v(s)
)

– f (2)(s,λs, Y (2)
s , Z(2)

s , Y ′(2)
s+u(s)

)]
ds

≤ 2EGt

∫ T

t
Ŷ +

s E′[f (1)(s,λs, Y (1)
s , Z(1)

s , Y ′(1)
s+u(s), Z′(1)

s+v(s)
)

– f (1)(s,λs, Y (1)
s , Z(1)

s , Y ′(2)
s+u(s), Z′(1)

s+v(s)
)]

ds

+ 2EGt

∫ T

t
Ŷ +

s E′[f (2)(s,λs, Y (1)
s , Z(1)

s , Y ′(2)
s+u(s)

)
– f (2)(s,λs, Y (2)

s , Z(2)
s , Y ′(2)

s+u(s)
)]

ds.

From assumptions (H1)–(H2) and (A1)–(A2), we obtain

2EGt

∫ T

t
Ŷ +

s E′[f (1)(s,λs, Y (1)
s , Z(1)

s , Y ′(1)
s+u(s), Z′(1)

s+v(s)
)

– f (1)(s,λs, Y (1)
s , Z(1)

s , Y ′(2)
s+u(s), Z′(1)

s+v(s)
)]

ds

≤ 2CEGt

∫ T

t
Ŷ +

s E′(Y ′(1)
s+u(s) – Y ′(2)

s+u(s)
)+ ds

≤ 2CL
∫ T

t
EGt

∣
∣Ŷ +

s
∣
∣2 ds

and

2EGt

∫ T

t
Ŷ +

s E′[f (2)(s,λs, Y (1)
s , Z(1)

s , Y ′(2)
s+u(s)

)
– f (2)(s,λs, Y (2)

s , Z(2)
s , Y ′(2)

s+u(s)
)]

dt

≤ 2CEGt

∫ T

t
Ŷ +

s E′
(

|Ŷs| +
∣
∣Ẑ(0)

∣
∣
√

λB
s +

√∫

R0

∣
∣Ẑs(x)

∣
∣2q(dx)

√

λH
s

)

ds

≤ 2C
∫ T

t
EGs |Ŷs|2 ds + 2CEGt

∫ T

t
Ŷ +

s E′
(

∣
∣Ẑ′

s)(0)
∣
∣
√

λB
s +

√∫

R0

∣
∣Ẑ′

s(x)
∣
∣2q(dx)

√

λH
s

)

ds

≤ (
2C + 4C2)

∫ T

t
EGs

∣
∣Ŷ +

s
∣
∣2 ds
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+
1
4

EGt

∫ T

t
1{Ŷs>0}

(
∣
∣Ẑ(0)

∣
∣
√

λB
s +

√∫

R0

∣
∣Ẑs(x)

∣
∣q(dx)

√

λH
s

)2

ds

≤ (
2C + 4C2)

∫ T

t
EGs

∣
∣Ŷ +

s
∣
∣2 ds +

1
2

EGt

∫ T

t

∫

R

1{Ŷs>0}
∣
∣Ẑs(x)

∣
∣2

	(ds, dx),

where we use the fact that 2ab ≤ ca2 + 1
c b2, c > 0. We get

EGt
∣
∣Ŷ +

t
∣
∣2 ≤ –

1
2

EGt

∫ T

t

∫

R

1{Ŷs>0}
∣
∣Ẑs(x)

∣
∣2

	(ds, dx)

+
(
2C + 2CL + 4C2)

∫ T

t
EGs

∣
∣Ŷ +

s
∣
∣2 ds, t ∈ [0, T].

Then from Gronwall’s inequality it follows that Ŷt = Y (1)
t – Y (2)

t ≤ 0, t ∈ [0, T], P-a.s. �
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